Update Sniffer_AI(Garage-door Dataset).py
Browse files
Sniffer_AI(Garage-door Dataset).py
CHANGED
@@ -13,8 +13,7 @@ rf_model = joblib.load('rf_model.pkl') # Ensure the correct model path
|
|
13 |
|
14 |
# Define required numeric features
|
15 |
numeric_features = [
|
16 |
-
"date_numeric", "
|
17 |
-
"door_state", "sphone_signal", "label"
|
18 |
]
|
19 |
|
20 |
# Class labels for attack types
|
@@ -36,8 +35,7 @@ def convert_datetime_features(log_data):
|
|
36 |
log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
|
37 |
|
38 |
time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
|
39 |
-
log_data['
|
40 |
-
log_data['seconds'] = time_parsed.dt.second
|
41 |
except Exception as e:
|
42 |
return f"Error processing date/time: {str(e)}"
|
43 |
|
|
|
13 |
|
14 |
# Define required numeric features
|
15 |
numeric_features = [
|
16 |
+
"date_numeric", "time_numeric", "door_state", "sphone_signal", "label"
|
|
|
17 |
]
|
18 |
|
19 |
# Class labels for attack types
|
|
|
35 |
log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
|
36 |
|
37 |
time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
|
38 |
+
log_data['time_numeric'] = (time_parsed.dt.hour * 3600) + (time_parsed.dt.minute * 60) + time_parsed.dt.second
|
|
|
39 |
except Exception as e:
|
40 |
return f"Error processing date/time: {str(e)}"
|
41 |
|