import pandas as pd import numpy as np import joblib import gradio as gr import os import tempfile # Set a custom directory for Gradio's temporary files os.environ["GRADIO_TEMP"] = tempfile.mkdtemp() # Load the trained Decision Tree model decision_tree_model = joblib.load('decision_tree_model.pkl') # Update path if necessary # Define required numeric features numeric_features = [ "date_numeric", "time_numeric", "latitude", "longitude", "label" ] # Class labels for attack types class_labels = { 0: "Normal", 1: "Backdoor", 2: "DDoS", 3: "Injection", 4: "Password Attack", 5: "Ransomware", 6: "Scanning", 7: "XSS", } def convert_datetime_features(log_data): """Convert date and time into numeric values.""" try: log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%b-%y', errors='coerce') log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9 time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce') log_data['time_numeric'] = ( time_parsed.dt.hour * 3600 + time_parsed.dt.minute * 60 + time_parsed.dt.second ) except Exception as e: return f"Error processing date/time: {str(e)}" return log_data def detect_intrusion(file): """Process GPS tracker log file and predict attack type.""" try: log_data = pd.read_csv(file.name) except Exception as e: return f"Error reading file: {str(e)}" log_data = convert_datetime_features(log_data) missing_features = [feature for feature in numeric_features if feature not in log_data.columns] if missing_features: return f"Missing features in file: {', '.join(missing_features)}" try: feature_values = log_data[numeric_features].astype(float).values predictions = model.predict(feature_values) except Exception as e: return f"Error during prediction: {str(e)}" # Map predictions to specific attack types log_data['Prediction'] = [class_labels.get(pred, 'Unknown Attack') for pred in predictions] # Format date for output log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d') # Select final output columns output_df = log_data[['date', 'time', 'latitude', 'longitude', 'Prediction']] # Save the output to a CSV file for download output_file = "gps_intrusion_results.csv" output_df.to_csv(output_file, index=False) return output_df, output_file # Create Gradio interface iface = gr.Interface( fn=detect_intrusion, inputs=[gr.File(label="Upload GPS Tracker Log File (CSV format)")], outputs=[ gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV") ], title="GPS Tracker Intrusion Detection System", description=( """ Upload a GPS log file with the following features: date,time,latitude,longitude,label,type Example: 25-Apr-19,18:31:39,116.521704,132.162504,1,ddos """ ) ) iface.launch()