jeromeramos commited on
Commit
e811d7f
·
verified ·
1 Parent(s): cefcac1

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-8B-Base
3
+ library_name: transformers
4
+ model_name: inter-play-sim-assistant-sft-qwen3-8B
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for inter-play-sim-assistant-sft-qwen3-8B
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="Sim4Rec/inter-play-sim-assistant-sft-qwen3-8B", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jerome-ramos-20/huggingface/runs/uiam4kxx)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.14.0
38
+ - Transformers: 4.51.3
39
+ - Pytorch: 2.6.0
40
+ - Datasets: 3.0.1
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</action>": 151672,
3
+ "</movie_title>": 151680,
4
+ "</response>": 151670,
5
+ "</think>": 151668,
6
+ "</tool_call>": 151658,
7
+ "</tool_response>": 151666,
8
+ "<accept>": 151678,
9
+ "<action>": 151671,
10
+ "<disclose-goal>": 151676,
11
+ "<feedback>": 151677,
12
+ "<greeting>": 151675,
13
+ "<inquire>": 151673,
14
+ "<movie_title>": 151679,
15
+ "<recommend>": 151674,
16
+ "<response>": 151669,
17
+ "<think>": 151667,
18
+ "<tool_call>": 151657,
19
+ "<tool_response>": 151665,
20
+ "<|box_end|>": 151649,
21
+ "<|box_start|>": 151648,
22
+ "<|endoftext|>": 151643,
23
+ "<|file_sep|>": 151664,
24
+ "<|fim_middle|>": 151660,
25
+ "<|fim_pad|>": 151662,
26
+ "<|fim_prefix|>": 151659,
27
+ "<|fim_suffix|>": 151661,
28
+ "<|im_end|>": 151645,
29
+ "<|im_start|>": 151644,
30
+ "<|image_pad|>": 151655,
31
+ "<|object_ref_end|>": 151647,
32
+ "<|object_ref_start|>": 151646,
33
+ "<|quad_end|>": 151651,
34
+ "<|quad_start|>": 151650,
35
+ "<|repo_name|>": 151663,
36
+ "<|video_pad|>": 151656,
37
+ "<|vision_end|>": 151653,
38
+ "<|vision_pad|>": 151654,
39
+ "<|vision_start|>": 151652
40
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9982692973347178,
3
+ "total_flos": 4.774796461726499e+18,
4
+ "train_loss": 0.7511481684000538,
5
+ "train_runtime": 11380.9982,
6
+ "train_samples": 46218,
7
+ "train_samples_per_second": 8.122,
8
+ "train_steps_per_second": 0.127
9
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151644,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.51.3",
28
+ "use_cache": false,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 151744
31
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.51.3"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96a394cf06656eb935d8aca02a770eb51293879dac12830ca28cb3b3db52b73
3
+ size 4900684832
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64e36df7574ed89bb0a7d2333c9c3d1c174fc44e89e5d5c02a24295e815c6a64
3
+ size 4915960368
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3265e7d720cb19447f8949b971b894cc15d84d77bafebc76b6d4c312650a6585
3
+ size 4983068496
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:566b74e36508f9f8b1f841d007f80c63469a6e2afb6d9afd9f230f5e3f96061b
3
+ size 1578657400
model.safetensors.index.json ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16378324992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
374
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
377
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
394
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
395
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
398
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.norm.weight": "model-00004-of-00004.safetensors"
405
+ }
406
+ }
runs/May17_01-35-22_w-jerom-inter-play-sim-94c6890b9ccf44ea86f033a3db8a5dbd-56x5fg8/events.out.tfevents.1747445859.w-jerom-inter-play-sim-94c6890b9ccf44ea86f033a3db8a5dbd-56x5fg8.10629.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b81d6c00025b18fc4fa5d0b568e4a305a9904020144964bbfb41bba7dea80c1
3
+ size 67464
special_tokens_map.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<response>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "</response>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<action>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ {
25
+ "content": "</action>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ {
32
+ "content": "<inquire>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ {
39
+ "content": "<recommend>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false
44
+ },
45
+ {
46
+ "content": "<greeting>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false
51
+ },
52
+ {
53
+ "content": "<disclose-goal>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false
58
+ },
59
+ {
60
+ "content": "<feedback>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false
65
+ },
66
+ {
67
+ "content": "<accept>",
68
+ "lstrip": false,
69
+ "normalized": false,
70
+ "rstrip": false,
71
+ "single_word": false
72
+ },
73
+ {
74
+ "content": "<movie_title>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false
79
+ },
80
+ {
81
+ "content": "</movie_title>",
82
+ "lstrip": false,
83
+ "normalized": false,
84
+ "rstrip": false,
85
+ "single_word": false
86
+ }
87
+ ],
88
+ "bos_token": {
89
+ "content": "<|im_start|>",
90
+ "lstrip": false,
91
+ "normalized": false,
92
+ "rstrip": false,
93
+ "single_word": false
94
+ },
95
+ "eos_token": {
96
+ "content": "<|im_end|>",
97
+ "lstrip": false,
98
+ "normalized": false,
99
+ "rstrip": false,
100
+ "single_word": false
101
+ },
102
+ "pad_token": "ÙģØŃ"
103
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db976505810ec9dd83bba0026e309fb8472c6e5b43d986b588991da67502f70b
3
+ size 11425005
tokenizer_config.json ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "151669": {
214
+ "content": "<response>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "</response>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "151671": {
230
+ "content": "<action>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "151672": {
238
+ "content": "</action>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "151673": {
246
+ "content": "<inquire>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "151674": {
254
+ "content": "<recommend>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "151675": {
262
+ "content": "<greeting>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "151676": {
270
+ "content": "<disclose-goal>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "151677": {
278
+ "content": "<feedback>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "151678": {
286
+ "content": "<accept>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "151679": {
294
+ "content": "<movie_title>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "151680": {
302
+ "content": "</movie_title>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ }
309
+ },
310
+ "additional_special_tokens": [
311
+ "<response>",
312
+ "</response>",
313
+ "<action>",
314
+ "</action>",
315
+ "<inquire>",
316
+ "<recommend>",
317
+ "<greeting>",
318
+ "<disclose-goal>",
319
+ "<feedback>",
320
+ "<accept>",
321
+ "<movie_title>",
322
+ "</movie_title>"
323
+ ],
324
+ "bos_token": "<|im_start|>",
325
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
326
+ "clean_up_tokenization_spaces": false,
327
+ "eos_token": "<|im_end|>",
328
+ "errors": "replace",
329
+ "extra_special_tokens": {},
330
+ "model_max_length": 131072,
331
+ "pad_token": "ÙģØŃ",
332
+ "split_special_tokens": false,
333
+ "tokenizer_class": "Qwen2Tokenizer",
334
+ "unk_token": null
335
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9982692973347178,
3
+ "total_flos": 4.774796461726499e+18,
4
+ "train_loss": 0.7511481684000538,
5
+ "train_runtime": 11380.9982,
6
+ "train_samples": 46218,
7
+ "train_samples_per_second": 8.122,
8
+ "train_steps_per_second": 0.127
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2082 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.9982692973347178,
6
+ "eval_steps": 500,
7
+ "global_step": 1444,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0013845621322256837,
14
+ "grad_norm": 36.99692916870117,
15
+ "learning_rate": 0.0,
16
+ "loss": 3.0679,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.006922810661128418,
21
+ "grad_norm": 15.91442584991455,
22
+ "learning_rate": 5.517241379310345e-06,
23
+ "loss": 2.9546,
24
+ "step": 5
25
+ },
26
+ {
27
+ "epoch": 0.013845621322256836,
28
+ "grad_norm": 6.445705413818359,
29
+ "learning_rate": 1.2413793103448277e-05,
30
+ "loss": 2.3265,
31
+ "step": 10
32
+ },
33
+ {
34
+ "epoch": 0.020768431983385256,
35
+ "grad_norm": 7.000129699707031,
36
+ "learning_rate": 1.9310344827586207e-05,
37
+ "loss": 2.0234,
38
+ "step": 15
39
+ },
40
+ {
41
+ "epoch": 0.027691242644513673,
42
+ "grad_norm": 9.449470520019531,
43
+ "learning_rate": 2.620689655172414e-05,
44
+ "loss": 1.7883,
45
+ "step": 20
46
+ },
47
+ {
48
+ "epoch": 0.034614053305642094,
49
+ "grad_norm": 7.50212287902832,
50
+ "learning_rate": 3.310344827586207e-05,
51
+ "loss": 1.5598,
52
+ "step": 25
53
+ },
54
+ {
55
+ "epoch": 0.04153686396677051,
56
+ "grad_norm": 3.6690421104431152,
57
+ "learning_rate": 4e-05,
58
+ "loss": 1.2904,
59
+ "step": 30
60
+ },
61
+ {
62
+ "epoch": 0.04845967462789893,
63
+ "grad_norm": 3.425504446029663,
64
+ "learning_rate": 4.689655172413793e-05,
65
+ "loss": 1.2698,
66
+ "step": 35
67
+ },
68
+ {
69
+ "epoch": 0.055382485289027346,
70
+ "grad_norm": 3.642073392868042,
71
+ "learning_rate": 5.379310344827586e-05,
72
+ "loss": 1.2002,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.06230529595015576,
77
+ "grad_norm": 3.359834909439087,
78
+ "learning_rate": 6.068965517241379e-05,
79
+ "loss": 1.1228,
80
+ "step": 45
81
+ },
82
+ {
83
+ "epoch": 0.06922810661128419,
84
+ "grad_norm": 2.215944528579712,
85
+ "learning_rate": 6.758620689655173e-05,
86
+ "loss": 1.0101,
87
+ "step": 50
88
+ },
89
+ {
90
+ "epoch": 0.0761509172724126,
91
+ "grad_norm": 1.9135385751724243,
92
+ "learning_rate": 7.448275862068966e-05,
93
+ "loss": 0.9731,
94
+ "step": 55
95
+ },
96
+ {
97
+ "epoch": 0.08307372793354102,
98
+ "grad_norm": 1.415416955947876,
99
+ "learning_rate": 8.137931034482759e-05,
100
+ "loss": 0.9475,
101
+ "step": 60
102
+ },
103
+ {
104
+ "epoch": 0.08999653859466944,
105
+ "grad_norm": 1.5166492462158203,
106
+ "learning_rate": 8.827586206896552e-05,
107
+ "loss": 0.998,
108
+ "step": 65
109
+ },
110
+ {
111
+ "epoch": 0.09691934925579786,
112
+ "grad_norm": 1.4899680614471436,
113
+ "learning_rate": 9.517241379310345e-05,
114
+ "loss": 0.9947,
115
+ "step": 70
116
+ },
117
+ {
118
+ "epoch": 0.10384215991692627,
119
+ "grad_norm": 1.1434413194656372,
120
+ "learning_rate": 0.0001020689655172414,
121
+ "loss": 0.9879,
122
+ "step": 75
123
+ },
124
+ {
125
+ "epoch": 0.11076497057805469,
126
+ "grad_norm": 1.0257912874221802,
127
+ "learning_rate": 0.00010896551724137931,
128
+ "loss": 1.0003,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.11768778123918311,
133
+ "grad_norm": 1.187396764755249,
134
+ "learning_rate": 0.00011586206896551725,
135
+ "loss": 1.0114,
136
+ "step": 85
137
+ },
138
+ {
139
+ "epoch": 0.12461059190031153,
140
+ "grad_norm": 0.9548481106758118,
141
+ "learning_rate": 0.00012275862068965518,
142
+ "loss": 1.0146,
143
+ "step": 90
144
+ },
145
+ {
146
+ "epoch": 0.13153340256143994,
147
+ "grad_norm": 1.1940933465957642,
148
+ "learning_rate": 0.0001296551724137931,
149
+ "loss": 0.995,
150
+ "step": 95
151
+ },
152
+ {
153
+ "epoch": 0.13845621322256838,
154
+ "grad_norm": 1.1477693319320679,
155
+ "learning_rate": 0.00013655172413793104,
156
+ "loss": 0.9914,
157
+ "step": 100
158
+ },
159
+ {
160
+ "epoch": 0.14537902388369678,
161
+ "grad_norm": 0.9720847606658936,
162
+ "learning_rate": 0.00014344827586206896,
163
+ "loss": 0.9888,
164
+ "step": 105
165
+ },
166
+ {
167
+ "epoch": 0.1523018345448252,
168
+ "grad_norm": 0.9881941080093384,
169
+ "learning_rate": 0.0001503448275862069,
170
+ "loss": 1.0105,
171
+ "step": 110
172
+ },
173
+ {
174
+ "epoch": 0.1592246452059536,
175
+ "grad_norm": 0.8291202783584595,
176
+ "learning_rate": 0.00015724137931034485,
177
+ "loss": 1.0039,
178
+ "step": 115
179
+ },
180
+ {
181
+ "epoch": 0.16614745586708204,
182
+ "grad_norm": 2.3537802696228027,
183
+ "learning_rate": 0.00016413793103448276,
184
+ "loss": 0.9973,
185
+ "step": 120
186
+ },
187
+ {
188
+ "epoch": 0.17307026652821045,
189
+ "grad_norm": 10.804582595825195,
190
+ "learning_rate": 0.0001710344827586207,
191
+ "loss": 1.1009,
192
+ "step": 125
193
+ },
194
+ {
195
+ "epoch": 0.17999307718933888,
196
+ "grad_norm": 37.236934661865234,
197
+ "learning_rate": 0.00017793103448275862,
198
+ "loss": 1.7116,
199
+ "step": 130
200
+ },
201
+ {
202
+ "epoch": 0.18691588785046728,
203
+ "grad_norm": 2.900162935256958,
204
+ "learning_rate": 0.00018482758620689654,
205
+ "loss": 1.1986,
206
+ "step": 135
207
+ },
208
+ {
209
+ "epoch": 0.19383869851159571,
210
+ "grad_norm": 1.222854733467102,
211
+ "learning_rate": 0.0001917241379310345,
212
+ "loss": 1.0546,
213
+ "step": 140
214
+ },
215
+ {
216
+ "epoch": 0.20076150917272412,
217
+ "grad_norm": 1.0050123929977417,
218
+ "learning_rate": 0.00019862068965517243,
219
+ "loss": 1.0607,
220
+ "step": 145
221
+ },
222
+ {
223
+ "epoch": 0.20768431983385255,
224
+ "grad_norm": 1.7881501913070679,
225
+ "learning_rate": 0.0001999953208384105,
226
+ "loss": 1.1013,
227
+ "step": 150
228
+ },
229
+ {
230
+ "epoch": 0.21460713049498095,
231
+ "grad_norm": 1.2163009643554688,
232
+ "learning_rate": 0.0001999763124949378,
233
+ "loss": 1.06,
234
+ "step": 155
235
+ },
236
+ {
237
+ "epoch": 0.22152994115610938,
238
+ "grad_norm": 0.9521149396896362,
239
+ "learning_rate": 0.0001999426852993044,
240
+ "loss": 0.9803,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 0.2284527518172378,
245
+ "grad_norm": 0.8825615644454956,
246
+ "learning_rate": 0.00019989444416858502,
247
+ "loss": 0.9539,
248
+ "step": 165
249
+ },
250
+ {
251
+ "epoch": 0.23537556247836622,
252
+ "grad_norm": 1.0269418954849243,
253
+ "learning_rate": 0.0001998315961567502,
254
+ "loss": 0.9898,
255
+ "step": 170
256
+ },
257
+ {
258
+ "epoch": 0.24229837313949462,
259
+ "grad_norm": 1.4703561067581177,
260
+ "learning_rate": 0.00019975415045363467,
261
+ "loss": 1.0,
262
+ "step": 175
263
+ },
264
+ {
265
+ "epoch": 0.24922118380062305,
266
+ "grad_norm": 3.445188045501709,
267
+ "learning_rate": 0.00019966211838359378,
268
+ "loss": 1.0302,
269
+ "step": 180
270
+ },
271
+ {
272
+ "epoch": 0.25614399446175146,
273
+ "grad_norm": 1.095542311668396,
274
+ "learning_rate": 0.00019955551340384743,
275
+ "loss": 1.0432,
276
+ "step": 185
277
+ },
278
+ {
279
+ "epoch": 0.2630668051228799,
280
+ "grad_norm": 3.0603744983673096,
281
+ "learning_rate": 0.00019943435110251248,
282
+ "loss": 1.0197,
283
+ "step": 190
284
+ },
285
+ {
286
+ "epoch": 0.2699896157840083,
287
+ "grad_norm": 4.020196914672852,
288
+ "learning_rate": 0.0001992986491963232,
289
+ "loss": 1.2696,
290
+ "step": 195
291
+ },
292
+ {
293
+ "epoch": 0.27691242644513675,
294
+ "grad_norm": 2.0897724628448486,
295
+ "learning_rate": 0.00019914842752804103,
296
+ "loss": 1.7173,
297
+ "step": 200
298
+ },
299
+ {
300
+ "epoch": 0.2838352371062651,
301
+ "grad_norm": 7.256534576416016,
302
+ "learning_rate": 0.00019898370806355263,
303
+ "loss": 1.1485,
304
+ "step": 205
305
+ },
306
+ {
307
+ "epoch": 0.29075804776739356,
308
+ "grad_norm": 1.7438695430755615,
309
+ "learning_rate": 0.00019880451488865836,
310
+ "loss": 1.1805,
311
+ "step": 210
312
+ },
313
+ {
314
+ "epoch": 0.297680858428522,
315
+ "grad_norm": 1.0164345502853394,
316
+ "learning_rate": 0.00019861087420555018,
317
+ "loss": 1.1521,
318
+ "step": 215
319
+ },
320
+ {
321
+ "epoch": 0.3046036690896504,
322
+ "grad_norm": 0.9694517850875854,
323
+ "learning_rate": 0.0001984028143289803,
324
+ "loss": 0.9914,
325
+ "step": 220
326
+ },
327
+ {
328
+ "epoch": 0.3115264797507788,
329
+ "grad_norm": 0.8658626079559326,
330
+ "learning_rate": 0.00019818036568212106,
331
+ "loss": 0.951,
332
+ "step": 225
333
+ },
334
+ {
335
+ "epoch": 0.3184492904119072,
336
+ "grad_norm": 0.6972668766975403,
337
+ "learning_rate": 0.00019794356079211604,
338
+ "loss": 0.9571,
339
+ "step": 230
340
+ },
341
+ {
342
+ "epoch": 0.32537210107303566,
343
+ "grad_norm": 0.8320409655570984,
344
+ "learning_rate": 0.00019769243428532422,
345
+ "loss": 0.9898,
346
+ "step": 235
347
+ },
348
+ {
349
+ "epoch": 0.3322949117341641,
350
+ "grad_norm": 0.7591261267662048,
351
+ "learning_rate": 0.00019742702288225652,
352
+ "loss": 0.9512,
353
+ "step": 240
354
+ },
355
+ {
356
+ "epoch": 0.33921772239529246,
357
+ "grad_norm": 1.5846096277236938,
358
+ "learning_rate": 0.00019714736539220648,
359
+ "loss": 0.9506,
360
+ "step": 245
361
+ },
362
+ {
363
+ "epoch": 0.3461405330564209,
364
+ "grad_norm": 0.6878282427787781,
365
+ "learning_rate": 0.00019685350270757555,
366
+ "loss": 0.9655,
367
+ "step": 250
368
+ },
369
+ {
370
+ "epoch": 0.3530633437175493,
371
+ "grad_norm": 0.6172508597373962,
372
+ "learning_rate": 0.0001965454777978936,
373
+ "loss": 0.9626,
374
+ "step": 255
375
+ },
376
+ {
377
+ "epoch": 0.35998615437867776,
378
+ "grad_norm": 0.6852116584777832,
379
+ "learning_rate": 0.00019622333570353567,
380
+ "loss": 0.9412,
381
+ "step": 260
382
+ },
383
+ {
384
+ "epoch": 0.36690896503980613,
385
+ "grad_norm": 0.6652204990386963,
386
+ "learning_rate": 0.00019588712352913625,
387
+ "loss": 0.9313,
388
+ "step": 265
389
+ },
390
+ {
391
+ "epoch": 0.37383177570093457,
392
+ "grad_norm": 0.638995885848999,
393
+ "learning_rate": 0.00019553689043670127,
394
+ "loss": 0.9454,
395
+ "step": 270
396
+ },
397
+ {
398
+ "epoch": 0.380754586362063,
399
+ "grad_norm": 4.199680328369141,
400
+ "learning_rate": 0.00019517268763841962,
401
+ "loss": 0.9238,
402
+ "step": 275
403
+ },
404
+ {
405
+ "epoch": 0.38767739702319143,
406
+ "grad_norm": 0.6641167402267456,
407
+ "learning_rate": 0.00019479456838917473,
408
+ "loss": 0.9295,
409
+ "step": 280
410
+ },
411
+ {
412
+ "epoch": 0.39460020768431986,
413
+ "grad_norm": 0.6575414538383484,
414
+ "learning_rate": 0.0001944025879787574,
415
+ "loss": 0.9135,
416
+ "step": 285
417
+ },
418
+ {
419
+ "epoch": 0.40152301834544823,
420
+ "grad_norm": 0.6238983273506165,
421
+ "learning_rate": 0.0001939968037237812,
422
+ "loss": 0.9436,
423
+ "step": 290
424
+ },
425
+ {
426
+ "epoch": 0.40844582900657667,
427
+ "grad_norm": 0.587856650352478,
428
+ "learning_rate": 0.00019357727495930146,
429
+ "loss": 0.9264,
430
+ "step": 295
431
+ },
432
+ {
433
+ "epoch": 0.4153686396677051,
434
+ "grad_norm": 0.6809896230697632,
435
+ "learning_rate": 0.00019314406303013904,
436
+ "loss": 0.918,
437
+ "step": 300
438
+ },
439
+ {
440
+ "epoch": 0.42229145032883353,
441
+ "grad_norm": 0.6164669394493103,
442
+ "learning_rate": 0.00019269723128191048,
443
+ "loss": 0.9091,
444
+ "step": 305
445
+ },
446
+ {
447
+ "epoch": 0.4292142609899619,
448
+ "grad_norm": 0.5151002407073975,
449
+ "learning_rate": 0.00019223684505176517,
450
+ "loss": 0.9181,
451
+ "step": 310
452
+ },
453
+ {
454
+ "epoch": 0.43613707165109034,
455
+ "grad_norm": 2.156830310821533,
456
+ "learning_rate": 0.00019176297165883165,
457
+ "loss": 0.9445,
458
+ "step": 315
459
+ },
460
+ {
461
+ "epoch": 0.44305988231221877,
462
+ "grad_norm": 0.5134182572364807,
463
+ "learning_rate": 0.00019127568039437406,
464
+ "loss": 0.9116,
465
+ "step": 320
466
+ },
467
+ {
468
+ "epoch": 0.4499826929733472,
469
+ "grad_norm": 0.6247857809066772,
470
+ "learning_rate": 0.00019077504251166006,
471
+ "loss": 0.9073,
472
+ "step": 325
473
+ },
474
+ {
475
+ "epoch": 0.4569055036344756,
476
+ "grad_norm": 0.6191543340682983,
477
+ "learning_rate": 0.00019026113121554204,
478
+ "loss": 0.9038,
479
+ "step": 330
480
+ },
481
+ {
482
+ "epoch": 0.463828314295604,
483
+ "grad_norm": 0.5713596940040588,
484
+ "learning_rate": 0.00018973402165175268,
485
+ "loss": 0.9082,
486
+ "step": 335
487
+ },
488
+ {
489
+ "epoch": 0.47075112495673244,
490
+ "grad_norm": 0.524921178817749,
491
+ "learning_rate": 0.0001891937908959172,
492
+ "loss": 0.8912,
493
+ "step": 340
494
+ },
495
+ {
496
+ "epoch": 0.47767393561786087,
497
+ "grad_norm": 0.5696610808372498,
498
+ "learning_rate": 0.00018864051794228282,
499
+ "loss": 0.9034,
500
+ "step": 345
501
+ },
502
+ {
503
+ "epoch": 0.48459674627898924,
504
+ "grad_norm": 0.6064379215240479,
505
+ "learning_rate": 0.00018807428369216822,
506
+ "loss": 0.8678,
507
+ "step": 350
508
+ },
509
+ {
510
+ "epoch": 0.4915195569401177,
511
+ "grad_norm": 0.5061264634132385,
512
+ "learning_rate": 0.00018749517094213375,
513
+ "loss": 0.8718,
514
+ "step": 355
515
+ },
516
+ {
517
+ "epoch": 0.4984423676012461,
518
+ "grad_norm": 0.6122836470603943,
519
+ "learning_rate": 0.00018690326437187472,
520
+ "loss": 0.8837,
521
+ "step": 360
522
+ },
523
+ {
524
+ "epoch": 0.5053651782623745,
525
+ "grad_norm": 0.5305922031402588,
526
+ "learning_rate": 0.00018629865053183911,
527
+ "loss": 0.8754,
528
+ "step": 365
529
+ },
530
+ {
531
+ "epoch": 0.5122879889235029,
532
+ "grad_norm": 0.6255595088005066,
533
+ "learning_rate": 0.0001856814178305722,
534
+ "loss": 0.86,
535
+ "step": 370
536
+ },
537
+ {
538
+ "epoch": 0.5192107995846313,
539
+ "grad_norm": 0.49683791399002075,
540
+ "learning_rate": 0.00018505165652178893,
541
+ "loss": 0.8589,
542
+ "step": 375
543
+ },
544
+ {
545
+ "epoch": 0.5261336102457598,
546
+ "grad_norm": 0.5160537362098694,
547
+ "learning_rate": 0.00018440945869117675,
548
+ "loss": 0.8842,
549
+ "step": 380
550
+ },
551
+ {
552
+ "epoch": 0.5330564209068882,
553
+ "grad_norm": 0.4708365201950073,
554
+ "learning_rate": 0.00018375491824293067,
555
+ "loss": 0.8795,
556
+ "step": 385
557
+ },
558
+ {
559
+ "epoch": 0.5399792315680166,
560
+ "grad_norm": 0.47004085779190063,
561
+ "learning_rate": 0.00018308813088602227,
562
+ "loss": 0.8793,
563
+ "step": 390
564
+ },
565
+ {
566
+ "epoch": 0.5469020422291451,
567
+ "grad_norm": 0.5247258543968201,
568
+ "learning_rate": 0.00018240919412020466,
569
+ "loss": 0.859,
570
+ "step": 395
571
+ },
572
+ {
573
+ "epoch": 0.5538248528902735,
574
+ "grad_norm": 0.5026205778121948,
575
+ "learning_rate": 0.00018171820722175604,
576
+ "loss": 0.8764,
577
+ "step": 400
578
+ },
579
+ {
580
+ "epoch": 0.5607476635514018,
581
+ "grad_norm": 0.504045307636261,
582
+ "learning_rate": 0.00018101527122896293,
583
+ "loss": 0.8728,
584
+ "step": 405
585
+ },
586
+ {
587
+ "epoch": 0.5676704742125303,
588
+ "grad_norm": 0.5254899859428406,
589
+ "learning_rate": 0.0001803004889273463,
590
+ "loss": 0.8593,
591
+ "step": 410
592
+ },
593
+ {
594
+ "epoch": 0.5745932848736587,
595
+ "grad_norm": 0.46688538789749146,
596
+ "learning_rate": 0.0001795739648346317,
597
+ "loss": 0.8352,
598
+ "step": 415
599
+ },
600
+ {
601
+ "epoch": 0.5815160955347871,
602
+ "grad_norm": 0.48121586441993713,
603
+ "learning_rate": 0.00017883580518546647,
604
+ "loss": 0.8342,
605
+ "step": 420
606
+ },
607
+ {
608
+ "epoch": 0.5884389061959155,
609
+ "grad_norm": 0.5108678936958313,
610
+ "learning_rate": 0.00017808611791588584,
611
+ "loss": 0.8504,
612
+ "step": 425
613
+ },
614
+ {
615
+ "epoch": 0.595361716857044,
616
+ "grad_norm": 0.5048635005950928,
617
+ "learning_rate": 0.00017732501264752996,
618
+ "loss": 0.8389,
619
+ "step": 430
620
+ },
621
+ {
622
+ "epoch": 0.6022845275181724,
623
+ "grad_norm": 0.4736952781677246,
624
+ "learning_rate": 0.00017655260067161503,
625
+ "loss": 0.8625,
626
+ "step": 435
627
+ },
628
+ {
629
+ "epoch": 0.6092073381793008,
630
+ "grad_norm": 0.5057955980300903,
631
+ "learning_rate": 0.00017576899493265954,
632
+ "loss": 0.847,
633
+ "step": 440
634
+ },
635
+ {
636
+ "epoch": 0.6161301488404292,
637
+ "grad_norm": 0.4556281864643097,
638
+ "learning_rate": 0.00017497431001196943,
639
+ "loss": 0.849,
640
+ "step": 445
641
+ },
642
+ {
643
+ "epoch": 0.6230529595015576,
644
+ "grad_norm": 0.4683106541633606,
645
+ "learning_rate": 0.00017416866211088366,
646
+ "loss": 0.8554,
647
+ "step": 450
648
+ },
649
+ {
650
+ "epoch": 0.629975770162686,
651
+ "grad_norm": 0.5124343633651733,
652
+ "learning_rate": 0.00017335216903378267,
653
+ "loss": 0.8383,
654
+ "step": 455
655
+ },
656
+ {
657
+ "epoch": 0.6368985808238145,
658
+ "grad_norm": 0.5505478978157043,
659
+ "learning_rate": 0.00017252495017086296,
660
+ "loss": 0.8315,
661
+ "step": 460
662
+ },
663
+ {
664
+ "epoch": 0.6438213914849429,
665
+ "grad_norm": 0.486219197511673,
666
+ "learning_rate": 0.0001716871264806791,
667
+ "loss": 0.8476,
668
+ "step": 465
669
+ },
670
+ {
671
+ "epoch": 0.6507442021460713,
672
+ "grad_norm": 0.45981094241142273,
673
+ "learning_rate": 0.0001708388204724572,
674
+ "loss": 0.8453,
675
+ "step": 470
676
+ },
677
+ {
678
+ "epoch": 0.6576670128071997,
679
+ "grad_norm": 0.4615215063095093,
680
+ "learning_rate": 0.00016998015618818087,
681
+ "loss": 0.8579,
682
+ "step": 475
683
+ },
684
+ {
685
+ "epoch": 0.6645898234683282,
686
+ "grad_norm": 0.4511210024356842,
687
+ "learning_rate": 0.00016911125918445363,
688
+ "loss": 0.8384,
689
+ "step": 480
690
+ },
691
+ {
692
+ "epoch": 0.6715126341294566,
693
+ "grad_norm": 0.42190468311309814,
694
+ "learning_rate": 0.00016823225651413953,
695
+ "loss": 0.8265,
696
+ "step": 485
697
+ },
698
+ {
699
+ "epoch": 0.6784354447905849,
700
+ "grad_norm": 0.479647696018219,
701
+ "learning_rate": 0.00016734327670778508,
702
+ "loss": 0.8191,
703
+ "step": 490
704
+ },
705
+ {
706
+ "epoch": 0.6853582554517134,
707
+ "grad_norm": 0.608330249786377,
708
+ "learning_rate": 0.00016644444975482523,
709
+ "loss": 0.8149,
710
+ "step": 495
711
+ },
712
+ {
713
+ "epoch": 0.6922810661128418,
714
+ "grad_norm": 0.4981730580329895,
715
+ "learning_rate": 0.0001655359070845757,
716
+ "loss": 0.8219,
717
+ "step": 500
718
+ },
719
+ {
720
+ "epoch": 0.6992038767739702,
721
+ "grad_norm": 0.4622678756713867,
722
+ "learning_rate": 0.0001646177815470151,
723
+ "loss": 0.8246,
724
+ "step": 505
725
+ },
726
+ {
727
+ "epoch": 0.7061266874350987,
728
+ "grad_norm": 0.4577881693840027,
729
+ "learning_rate": 0.00016369020739335924,
730
+ "loss": 0.8066,
731
+ "step": 510
732
+ },
733
+ {
734
+ "epoch": 0.7130494980962271,
735
+ "grad_norm": 0.44852638244628906,
736
+ "learning_rate": 0.00016275332025643028,
737
+ "loss": 0.8216,
738
+ "step": 515
739
+ },
740
+ {
741
+ "epoch": 0.7199723087573555,
742
+ "grad_norm": 0.4342646300792694,
743
+ "learning_rate": 0.00016180725713082434,
744
+ "loss": 0.8273,
745
+ "step": 520
746
+ },
747
+ {
748
+ "epoch": 0.726895119418484,
749
+ "grad_norm": 0.5106623768806458,
750
+ "learning_rate": 0.0001608521563528795,
751
+ "loss": 0.8121,
752
+ "step": 525
753
+ },
754
+ {
755
+ "epoch": 0.7338179300796123,
756
+ "grad_norm": 0.45252540707588196,
757
+ "learning_rate": 0.00015988815758044792,
758
+ "loss": 0.8056,
759
+ "step": 530
760
+ },
761
+ {
762
+ "epoch": 0.7407407407407407,
763
+ "grad_norm": 0.4194222092628479,
764
+ "learning_rate": 0.00015891540177247467,
765
+ "loss": 0.8296,
766
+ "step": 535
767
+ },
768
+ {
769
+ "epoch": 0.7476635514018691,
770
+ "grad_norm": 0.5437247157096863,
771
+ "learning_rate": 0.00015793403116838613,
772
+ "loss": 0.8201,
773
+ "step": 540
774
+ },
775
+ {
776
+ "epoch": 0.7545863620629976,
777
+ "grad_norm": 0.46110814809799194,
778
+ "learning_rate": 0.00015694418926729146,
779
+ "loss": 0.8049,
780
+ "step": 545
781
+ },
782
+ {
783
+ "epoch": 0.761509172724126,
784
+ "grad_norm": 0.4320140779018402,
785
+ "learning_rate": 0.00015594602080699956,
786
+ "loss": 0.8129,
787
+ "step": 550
788
+ },
789
+ {
790
+ "epoch": 0.7684319833852544,
791
+ "grad_norm": 0.5183108448982239,
792
+ "learning_rate": 0.00015493967174285512,
793
+ "loss": 0.8029,
794
+ "step": 555
795
+ },
796
+ {
797
+ "epoch": 0.7753547940463829,
798
+ "grad_norm": 0.40923014283180237,
799
+ "learning_rate": 0.00015392528922639662,
800
+ "loss": 0.8151,
801
+ "step": 560
802
+ },
803
+ {
804
+ "epoch": 0.7822776047075113,
805
+ "grad_norm": 0.4213641583919525,
806
+ "learning_rate": 0.00015290302158383923,
807
+ "loss": 0.8027,
808
+ "step": 565
809
+ },
810
+ {
811
+ "epoch": 0.7892004153686397,
812
+ "grad_norm": 0.4880472719669342,
813
+ "learning_rate": 0.0001518730182943862,
814
+ "loss": 0.805,
815
+ "step": 570
816
+ },
817
+ {
818
+ "epoch": 0.796123226029768,
819
+ "grad_norm": 0.41654378175735474,
820
+ "learning_rate": 0.0001508354299683715,
821
+ "loss": 0.8012,
822
+ "step": 575
823
+ },
824
+ {
825
+ "epoch": 0.8030460366908965,
826
+ "grad_norm": 0.46547961235046387,
827
+ "learning_rate": 0.0001497904083252371,
828
+ "loss": 0.8049,
829
+ "step": 580
830
+ },
831
+ {
832
+ "epoch": 0.8099688473520249,
833
+ "grad_norm": 0.41686978936195374,
834
+ "learning_rate": 0.00014873810617134806,
835
+ "loss": 0.7993,
836
+ "step": 585
837
+ },
838
+ {
839
+ "epoch": 0.8168916580131533,
840
+ "grad_norm": 0.4086816906929016,
841
+ "learning_rate": 0.00014767867737764876,
842
+ "loss": 0.7949,
843
+ "step": 590
844
+ },
845
+ {
846
+ "epoch": 0.8238144686742818,
847
+ "grad_norm": 0.43626415729522705,
848
+ "learning_rate": 0.0001466122768571633,
849
+ "loss": 0.8033,
850
+ "step": 595
851
+ },
852
+ {
853
+ "epoch": 0.8307372793354102,
854
+ "grad_norm": 0.42999717593193054,
855
+ "learning_rate": 0.0001455390605423437,
856
+ "loss": 0.8104,
857
+ "step": 600
858
+ },
859
+ {
860
+ "epoch": 0.8376600899965386,
861
+ "grad_norm": 0.5020118951797485,
862
+ "learning_rate": 0.00014445918536226904,
863
+ "loss": 0.7927,
864
+ "step": 605
865
+ },
866
+ {
867
+ "epoch": 0.8445829006576671,
868
+ "grad_norm": 0.48819220066070557,
869
+ "learning_rate": 0.00014337280921969858,
870
+ "loss": 0.7883,
871
+ "step": 610
872
+ },
873
+ {
874
+ "epoch": 0.8515057113187954,
875
+ "grad_norm": 0.4125864803791046,
876
+ "learning_rate": 0.0001422800909679829,
877
+ "loss": 0.7987,
878
+ "step": 615
879
+ },
880
+ {
881
+ "epoch": 0.8584285219799238,
882
+ "grad_norm": 0.48757144808769226,
883
+ "learning_rate": 0.00014118119038783588,
884
+ "loss": 0.7902,
885
+ "step": 620
886
+ },
887
+ {
888
+ "epoch": 0.8653513326410522,
889
+ "grad_norm": 0.47712209820747375,
890
+ "learning_rate": 0.00014007626816397087,
891
+ "loss": 0.8082,
892
+ "step": 625
893
+ },
894
+ {
895
+ "epoch": 0.8722741433021807,
896
+ "grad_norm": 0.4102008640766144,
897
+ "learning_rate": 0.00013896548586160503,
898
+ "loss": 0.7948,
899
+ "step": 630
900
+ },
901
+ {
902
+ "epoch": 0.8791969539633091,
903
+ "grad_norm": 0.4306066632270813,
904
+ "learning_rate": 0.00013784900590283473,
905
+ "loss": 0.7952,
906
+ "step": 635
907
+ },
908
+ {
909
+ "epoch": 0.8861197646244375,
910
+ "grad_norm": 0.42309749126434326,
911
+ "learning_rate": 0.00013672699154288569,
912
+ "loss": 0.7787,
913
+ "step": 640
914
+ },
915
+ {
916
+ "epoch": 0.893042575285566,
917
+ "grad_norm": 0.4400608539581299,
918
+ "learning_rate": 0.00013559960684624112,
919
+ "loss": 0.8045,
920
+ "step": 645
921
+ },
922
+ {
923
+ "epoch": 0.8999653859466944,
924
+ "grad_norm": 0.50711989402771,
925
+ "learning_rate": 0.0001344670166626519,
926
+ "loss": 0.7725,
927
+ "step": 650
928
+ },
929
+ {
930
+ "epoch": 0.9068881966078228,
931
+ "grad_norm": 0.45436131954193115,
932
+ "learning_rate": 0.0001333293866030317,
933
+ "loss": 0.7773,
934
+ "step": 655
935
+ },
936
+ {
937
+ "epoch": 0.9138110072689511,
938
+ "grad_norm": 0.40752795338630676,
939
+ "learning_rate": 0.0001321868830152407,
940
+ "loss": 0.7597,
941
+ "step": 660
942
+ },
943
+ {
944
+ "epoch": 0.9207338179300796,
945
+ "grad_norm": 0.43623602390289307,
946
+ "learning_rate": 0.00013103967295976179,
947
+ "loss": 0.7849,
948
+ "step": 665
949
+ },
950
+ {
951
+ "epoch": 0.927656628591208,
952
+ "grad_norm": 0.4025138318538666,
953
+ "learning_rate": 0.0001298879241852724,
954
+ "loss": 0.7823,
955
+ "step": 670
956
+ },
957
+ {
958
+ "epoch": 0.9345794392523364,
959
+ "grad_norm": 0.438235878944397,
960
+ "learning_rate": 0.0001287318051041159,
961
+ "loss": 0.7812,
962
+ "step": 675
963
+ },
964
+ {
965
+ "epoch": 0.9415022499134649,
966
+ "grad_norm": 0.4313248097896576,
967
+ "learning_rate": 0.00012757148476767553,
968
+ "loss": 0.7726,
969
+ "step": 680
970
+ },
971
+ {
972
+ "epoch": 0.9484250605745933,
973
+ "grad_norm": 0.40096625685691833,
974
+ "learning_rate": 0.0001264071328416555,
975
+ "loss": 0.7776,
976
+ "step": 685
977
+ },
978
+ {
979
+ "epoch": 0.9553478712357217,
980
+ "grad_norm": 0.39130938053131104,
981
+ "learning_rate": 0.00012523891958127168,
982
+ "loss": 0.7729,
983
+ "step": 690
984
+ },
985
+ {
986
+ "epoch": 0.9622706818968502,
987
+ "grad_norm": 0.4303322434425354,
988
+ "learning_rate": 0.0001240670158063565,
989
+ "loss": 0.7707,
990
+ "step": 695
991
+ },
992
+ {
993
+ "epoch": 0.9691934925579785,
994
+ "grad_norm": 0.3983173072338104,
995
+ "learning_rate": 0.00012289159287638105,
996
+ "loss": 0.7801,
997
+ "step": 700
998
+ },
999
+ {
1000
+ "epoch": 0.9761163032191069,
1001
+ "grad_norm": 0.40058690309524536,
1002
+ "learning_rate": 0.00012171282266539845,
1003
+ "loss": 0.7767,
1004
+ "step": 705
1005
+ },
1006
+ {
1007
+ "epoch": 0.9830391138802353,
1008
+ "grad_norm": 0.4056876003742218,
1009
+ "learning_rate": 0.00012053087753691172,
1010
+ "loss": 0.7585,
1011
+ "step": 710
1012
+ },
1013
+ {
1014
+ "epoch": 0.9899619245413638,
1015
+ "grad_norm": 0.4484279155731201,
1016
+ "learning_rate": 0.00011934593031867038,
1017
+ "loss": 0.7733,
1018
+ "step": 715
1019
+ },
1020
+ {
1021
+ "epoch": 0.9968847352024922,
1022
+ "grad_norm": 0.38870301842689514,
1023
+ "learning_rate": 0.00011815815427739911,
1024
+ "loss": 0.7706,
1025
+ "step": 720
1026
+ },
1027
+ {
1028
+ "epoch": 1.0,
1029
+ "eval_loss": 0.7746492028236389,
1030
+ "eval_runtime": 60.0688,
1031
+ "eval_samples_per_second": 34.444,
1032
+ "eval_steps_per_second": 2.164,
1033
+ "step": 723
1034
+ },
1035
+ {
1036
+ "epoch": 1.0027691242644514,
1037
+ "grad_norm": 0.41168180108070374,
1038
+ "learning_rate": 0.00011696772309346182,
1039
+ "loss": 0.6965,
1040
+ "step": 725
1041
+ },
1042
+ {
1043
+ "epoch": 1.0096919349255797,
1044
+ "grad_norm": 0.4434298574924469,
1045
+ "learning_rate": 0.0001157748108354659,
1046
+ "loss": 0.5974,
1047
+ "step": 730
1048
+ },
1049
+ {
1050
+ "epoch": 1.0166147455867083,
1051
+ "grad_norm": 0.3997260332107544,
1052
+ "learning_rate": 0.00011457959193480925,
1053
+ "loss": 0.5963,
1054
+ "step": 735
1055
+ },
1056
+ {
1057
+ "epoch": 1.0235375562478366,
1058
+ "grad_norm": 0.4161541163921356,
1059
+ "learning_rate": 0.00011338224116017423,
1060
+ "loss": 0.5973,
1061
+ "step": 740
1062
+ },
1063
+ {
1064
+ "epoch": 1.0304603669089651,
1065
+ "grad_norm": 0.6814983487129211,
1066
+ "learning_rate": 0.00011218293359197267,
1067
+ "loss": 0.5994,
1068
+ "step": 745
1069
+ },
1070
+ {
1071
+ "epoch": 1.0373831775700935,
1072
+ "grad_norm": 0.4457721710205078,
1073
+ "learning_rate": 0.00011098184459674484,
1074
+ "loss": 0.5688,
1075
+ "step": 750
1076
+ },
1077
+ {
1078
+ "epoch": 1.0443059882312218,
1079
+ "grad_norm": 0.41027259826660156,
1080
+ "learning_rate": 0.00010977914980151691,
1081
+ "loss": 0.5982,
1082
+ "step": 755
1083
+ },
1084
+ {
1085
+ "epoch": 1.0512287988923503,
1086
+ "grad_norm": 0.41261303424835205,
1087
+ "learning_rate": 0.00010857502506812029,
1088
+ "loss": 0.5781,
1089
+ "step": 760
1090
+ },
1091
+ {
1092
+ "epoch": 1.0581516095534786,
1093
+ "grad_norm": 0.3924131393432617,
1094
+ "learning_rate": 0.00010736964646747629,
1095
+ "loss": 0.578,
1096
+ "step": 765
1097
+ },
1098
+ {
1099
+ "epoch": 1.0650744202146072,
1100
+ "grad_norm": 0.38322097063064575,
1101
+ "learning_rate": 0.00010616319025385089,
1102
+ "loss": 0.5979,
1103
+ "step": 770
1104
+ },
1105
+ {
1106
+ "epoch": 1.0719972308757355,
1107
+ "grad_norm": 0.3903074562549591,
1108
+ "learning_rate": 0.00010495583283908177,
1109
+ "loss": 0.5887,
1110
+ "step": 775
1111
+ },
1112
+ {
1113
+ "epoch": 1.078920041536864,
1114
+ "grad_norm": 0.40374380350112915,
1115
+ "learning_rate": 0.00010374775076678332,
1116
+ "loss": 0.5708,
1117
+ "step": 780
1118
+ },
1119
+ {
1120
+ "epoch": 1.0858428521979924,
1121
+ "grad_norm": 0.41232338547706604,
1122
+ "learning_rate": 0.00010253912068653146,
1123
+ "loss": 0.5899,
1124
+ "step": 785
1125
+ },
1126
+ {
1127
+ "epoch": 1.092765662859121,
1128
+ "grad_norm": 0.37063470482826233,
1129
+ "learning_rate": 0.00010133011932803378,
1130
+ "loss": 0.5792,
1131
+ "step": 790
1132
+ },
1133
+ {
1134
+ "epoch": 1.0996884735202492,
1135
+ "grad_norm": 0.42684876918792725,
1136
+ "learning_rate": 0.00010012092347528705,
1137
+ "loss": 0.589,
1138
+ "step": 795
1139
+ },
1140
+ {
1141
+ "epoch": 1.1066112841813776,
1142
+ "grad_norm": 0.4422379732131958,
1143
+ "learning_rate": 9.891170994072793e-05,
1144
+ "loss": 0.5821,
1145
+ "step": 800
1146
+ },
1147
+ {
1148
+ "epoch": 1.113534094842506,
1149
+ "grad_norm": 0.4900904595851898,
1150
+ "learning_rate": 9.770265553937831e-05,
1151
+ "loss": 0.5807,
1152
+ "step": 805
1153
+ },
1154
+ {
1155
+ "epoch": 1.1204569055036344,
1156
+ "grad_norm": 0.43178027868270874,
1157
+ "learning_rate": 9.649393706299127e-05,
1158
+ "loss": 0.5657,
1159
+ "step": 810
1160
+ },
1161
+ {
1162
+ "epoch": 1.127379716164763,
1163
+ "grad_norm": 0.43203285336494446,
1164
+ "learning_rate": 9.52857312541998e-05,
1165
+ "loss": 0.5762,
1166
+ "step": 815
1167
+ },
1168
+ {
1169
+ "epoch": 1.1343025268258913,
1170
+ "grad_norm": 0.41020694375038147,
1171
+ "learning_rate": 9.407821478067304e-05,
1172
+ "loss": 0.5682,
1173
+ "step": 820
1174
+ },
1175
+ {
1176
+ "epoch": 1.1412253374870198,
1177
+ "grad_norm": 0.404141902923584,
1178
+ "learning_rate": 9.287156420928342e-05,
1179
+ "loss": 0.5701,
1180
+ "step": 825
1181
+ },
1182
+ {
1183
+ "epoch": 1.1481481481481481,
1184
+ "grad_norm": 0.36725813150405884,
1185
+ "learning_rate": 9.166595598028832e-05,
1186
+ "loss": 0.5909,
1187
+ "step": 830
1188
+ },
1189
+ {
1190
+ "epoch": 1.1550709588092767,
1191
+ "grad_norm": 0.40943267941474915,
1192
+ "learning_rate": 9.046156638153056e-05,
1193
+ "loss": 0.5683,
1194
+ "step": 835
1195
+ },
1196
+ {
1197
+ "epoch": 1.161993769470405,
1198
+ "grad_norm": 0.3729795515537262,
1199
+ "learning_rate": 8.925857152266103e-05,
1200
+ "loss": 0.5716,
1201
+ "step": 840
1202
+ },
1203
+ {
1204
+ "epoch": 1.1689165801315333,
1205
+ "grad_norm": 0.4161226451396942,
1206
+ "learning_rate": 8.805714730938728e-05,
1207
+ "loss": 0.5769,
1208
+ "step": 845
1209
+ },
1210
+ {
1211
+ "epoch": 1.1758393907926619,
1212
+ "grad_norm": 0.3843950927257538,
1213
+ "learning_rate": 8.685746941775219e-05,
1214
+ "loss": 0.5678,
1215
+ "step": 850
1216
+ },
1217
+ {
1218
+ "epoch": 1.1827622014537902,
1219
+ "grad_norm": 0.40685024857521057,
1220
+ "learning_rate": 8.565971326844584e-05,
1221
+ "loss": 0.5692,
1222
+ "step": 855
1223
+ },
1224
+ {
1225
+ "epoch": 1.1896850121149187,
1226
+ "grad_norm": 0.40106266736984253,
1227
+ "learning_rate": 8.44640540011553e-05,
1228
+ "loss": 0.5738,
1229
+ "step": 860
1230
+ },
1231
+ {
1232
+ "epoch": 1.196607822776047,
1233
+ "grad_norm": 0.4031878113746643,
1234
+ "learning_rate": 8.327066644895469e-05,
1235
+ "loss": 0.5712,
1236
+ "step": 865
1237
+ },
1238
+ {
1239
+ "epoch": 1.2035306334371756,
1240
+ "grad_norm": 0.42471978068351746,
1241
+ "learning_rate": 8.207972511274095e-05,
1242
+ "loss": 0.5639,
1243
+ "step": 870
1244
+ },
1245
+ {
1246
+ "epoch": 1.210453444098304,
1247
+ "grad_norm": 0.3819376528263092,
1248
+ "learning_rate": 8.089140413571747e-05,
1249
+ "loss": 0.5665,
1250
+ "step": 875
1251
+ },
1252
+ {
1253
+ "epoch": 1.2173762547594325,
1254
+ "grad_norm": 0.43387338519096375,
1255
+ "learning_rate": 7.970587727793051e-05,
1256
+ "loss": 0.5593,
1257
+ "step": 880
1258
+ },
1259
+ {
1260
+ "epoch": 1.2242990654205608,
1261
+ "grad_norm": 0.38693514466285706,
1262
+ "learning_rate": 7.852331789086135e-05,
1263
+ "loss": 0.5644,
1264
+ "step": 885
1265
+ },
1266
+ {
1267
+ "epoch": 1.231221876081689,
1268
+ "grad_norm": 0.40408262610435486,
1269
+ "learning_rate": 7.73438988920784e-05,
1270
+ "loss": 0.5692,
1271
+ "step": 890
1272
+ },
1273
+ {
1274
+ "epoch": 1.2381446867428176,
1275
+ "grad_norm": 0.4097476303577423,
1276
+ "learning_rate": 7.616779273995252e-05,
1277
+ "loss": 0.5719,
1278
+ "step": 895
1279
+ },
1280
+ {
1281
+ "epoch": 1.245067497403946,
1282
+ "grad_norm": 0.40725842118263245,
1283
+ "learning_rate": 7.499517140843968e-05,
1284
+ "loss": 0.5652,
1285
+ "step": 900
1286
+ },
1287
+ {
1288
+ "epoch": 1.2519903080650745,
1289
+ "grad_norm": 0.41550350189208984,
1290
+ "learning_rate": 7.382620636193438e-05,
1291
+ "loss": 0.5612,
1292
+ "step": 905
1293
+ },
1294
+ {
1295
+ "epoch": 1.2589131187262028,
1296
+ "grad_norm": 0.4235980808734894,
1297
+ "learning_rate": 7.266106853019759e-05,
1298
+ "loss": 0.5597,
1299
+ "step": 910
1300
+ },
1301
+ {
1302
+ "epoch": 1.2658359293873311,
1303
+ "grad_norm": 0.3927691876888275,
1304
+ "learning_rate": 7.149992828336274e-05,
1305
+ "loss": 0.5658,
1306
+ "step": 915
1307
+ },
1308
+ {
1309
+ "epoch": 1.2727587400484597,
1310
+ "grad_norm": 0.4296377897262573,
1311
+ "learning_rate": 7.034295540702397e-05,
1312
+ "loss": 0.5591,
1313
+ "step": 920
1314
+ },
1315
+ {
1316
+ "epoch": 1.2796815507095882,
1317
+ "grad_norm": 0.39783212542533875,
1318
+ "learning_rate": 6.919031907740922e-05,
1319
+ "loss": 0.5779,
1320
+ "step": 925
1321
+ },
1322
+ {
1323
+ "epoch": 1.2866043613707165,
1324
+ "grad_norm": 0.4201776087284088,
1325
+ "learning_rate": 6.804218783664288e-05,
1326
+ "loss": 0.5715,
1327
+ "step": 930
1328
+ },
1329
+ {
1330
+ "epoch": 1.2935271720318449,
1331
+ "grad_norm": 0.3674381673336029,
1332
+ "learning_rate": 6.689872956810102e-05,
1333
+ "loss": 0.5583,
1334
+ "step": 935
1335
+ },
1336
+ {
1337
+ "epoch": 1.3004499826929734,
1338
+ "grad_norm": 0.39247825741767883,
1339
+ "learning_rate": 6.5760111471863e-05,
1340
+ "loss": 0.5574,
1341
+ "step": 940
1342
+ },
1343
+ {
1344
+ "epoch": 1.3073727933541017,
1345
+ "grad_norm": 0.3951855003833771,
1346
+ "learning_rate": 6.46265000402628e-05,
1347
+ "loss": 0.5646,
1348
+ "step": 945
1349
+ },
1350
+ {
1351
+ "epoch": 1.3142956040152303,
1352
+ "grad_norm": 0.37041106820106506,
1353
+ "learning_rate": 6.349806103354417e-05,
1354
+ "loss": 0.561,
1355
+ "step": 950
1356
+ },
1357
+ {
1358
+ "epoch": 1.3212184146763586,
1359
+ "grad_norm": 0.4068072736263275,
1360
+ "learning_rate": 6.23749594556226e-05,
1361
+ "loss": 0.5555,
1362
+ "step": 955
1363
+ },
1364
+ {
1365
+ "epoch": 1.328141225337487,
1366
+ "grad_norm": 0.3812420666217804,
1367
+ "learning_rate": 6.125735952995775e-05,
1368
+ "loss": 0.5606,
1369
+ "step": 960
1370
+ },
1371
+ {
1372
+ "epoch": 1.3350640359986155,
1373
+ "grad_norm": 0.42359232902526855,
1374
+ "learning_rate": 6.0145424675540394e-05,
1375
+ "loss": 0.5557,
1376
+ "step": 965
1377
+ },
1378
+ {
1379
+ "epoch": 1.341986846659744,
1380
+ "grad_norm": 0.3885987401008606,
1381
+ "learning_rate": 5.9039317482996735e-05,
1382
+ "loss": 0.5655,
1383
+ "step": 970
1384
+ },
1385
+ {
1386
+ "epoch": 1.3489096573208723,
1387
+ "grad_norm": 0.3710838258266449,
1388
+ "learning_rate": 5.793919969081374e-05,
1389
+ "loss": 0.5445,
1390
+ "step": 975
1391
+ },
1392
+ {
1393
+ "epoch": 1.3558324679820006,
1394
+ "grad_norm": 0.3927723169326782,
1395
+ "learning_rate": 5.68452321616894e-05,
1396
+ "loss": 0.5417,
1397
+ "step": 980
1398
+ },
1399
+ {
1400
+ "epoch": 1.3627552786431292,
1401
+ "grad_norm": 0.39248526096343994,
1402
+ "learning_rate": 5.5757574859010886e-05,
1403
+ "loss": 0.5584,
1404
+ "step": 985
1405
+ },
1406
+ {
1407
+ "epoch": 1.3696780893042575,
1408
+ "grad_norm": 0.4080273509025574,
1409
+ "learning_rate": 5.467638682346403e-05,
1410
+ "loss": 0.5412,
1411
+ "step": 990
1412
+ },
1413
+ {
1414
+ "epoch": 1.376600899965386,
1415
+ "grad_norm": 0.3992749750614166,
1416
+ "learning_rate": 5.3601826149777966e-05,
1417
+ "loss": 0.5734,
1418
+ "step": 995
1419
+ },
1420
+ {
1421
+ "epoch": 1.3835237106265144,
1422
+ "grad_norm": 0.37569689750671387,
1423
+ "learning_rate": 5.25340499636082e-05,
1424
+ "loss": 0.5538,
1425
+ "step": 1000
1426
+ },
1427
+ {
1428
+ "epoch": 1.3904465212876427,
1429
+ "grad_norm": 0.40693604946136475,
1430
+ "learning_rate": 5.147321439856091e-05,
1431
+ "loss": 0.557,
1432
+ "step": 1005
1433
+ },
1434
+ {
1435
+ "epoch": 1.3973693319487712,
1436
+ "grad_norm": 0.35887908935546875,
1437
+ "learning_rate": 5.041947457336274e-05,
1438
+ "loss": 0.5589,
1439
+ "step": 1010
1440
+ },
1441
+ {
1442
+ "epoch": 1.4042921426098995,
1443
+ "grad_norm": 0.36887434124946594,
1444
+ "learning_rate": 4.937298456917889e-05,
1445
+ "loss": 0.5357,
1446
+ "step": 1015
1447
+ },
1448
+ {
1449
+ "epoch": 1.411214953271028,
1450
+ "grad_norm": 0.3944549262523651,
1451
+ "learning_rate": 4.8333897407082896e-05,
1452
+ "loss": 0.5465,
1453
+ "step": 1020
1454
+ },
1455
+ {
1456
+ "epoch": 1.4181377639321564,
1457
+ "grad_norm": 0.3607221841812134,
1458
+ "learning_rate": 4.7302365025681206e-05,
1459
+ "loss": 0.5553,
1460
+ "step": 1025
1461
+ },
1462
+ {
1463
+ "epoch": 1.425060574593285,
1464
+ "grad_norm": 0.3826063275337219,
1465
+ "learning_rate": 4.627853825889642e-05,
1466
+ "loss": 0.5313,
1467
+ "step": 1030
1468
+ },
1469
+ {
1470
+ "epoch": 1.4319833852544133,
1471
+ "grad_norm": 0.3818247616291046,
1472
+ "learning_rate": 4.526256681391192e-05,
1473
+ "loss": 0.5486,
1474
+ "step": 1035
1475
+ },
1476
+ {
1477
+ "epoch": 1.4389061959155418,
1478
+ "grad_norm": 0.40942633152008057,
1479
+ "learning_rate": 4.4254599249281016e-05,
1480
+ "loss": 0.5302,
1481
+ "step": 1040
1482
+ },
1483
+ {
1484
+ "epoch": 1.4458290065766701,
1485
+ "grad_norm": 0.40826553106307983,
1486
+ "learning_rate": 4.3254782953204375e-05,
1487
+ "loss": 0.5407,
1488
+ "step": 1045
1489
+ },
1490
+ {
1491
+ "epoch": 1.4527518172377984,
1492
+ "grad_norm": 0.3731902241706848,
1493
+ "learning_rate": 4.2263264121978505e-05,
1494
+ "loss": 0.5471,
1495
+ "step": 1050
1496
+ },
1497
+ {
1498
+ "epoch": 1.459674627898927,
1499
+ "grad_norm": 0.40096205472946167,
1500
+ "learning_rate": 4.12801877386183e-05,
1501
+ "loss": 0.536,
1502
+ "step": 1055
1503
+ },
1504
+ {
1505
+ "epoch": 1.4665974385600553,
1506
+ "grad_norm": 0.374845415353775,
1507
+ "learning_rate": 4.030569755165736e-05,
1508
+ "loss": 0.546,
1509
+ "step": 1060
1510
+ },
1511
+ {
1512
+ "epoch": 1.4735202492211839,
1513
+ "grad_norm": 0.3810202181339264,
1514
+ "learning_rate": 3.9339936054128466e-05,
1515
+ "loss": 0.5375,
1516
+ "step": 1065
1517
+ },
1518
+ {
1519
+ "epoch": 1.4804430598823122,
1520
+ "grad_norm": 0.39244675636291504,
1521
+ "learning_rate": 3.8383044462727826e-05,
1522
+ "loss": 0.5306,
1523
+ "step": 1070
1524
+ },
1525
+ {
1526
+ "epoch": 1.4873658705434407,
1527
+ "grad_norm": 0.40670761466026306,
1528
+ "learning_rate": 3.7435162697166107e-05,
1529
+ "loss": 0.5497,
1530
+ "step": 1075
1531
+ },
1532
+ {
1533
+ "epoch": 1.494288681204569,
1534
+ "grad_norm": 0.4042389392852783,
1535
+ "learning_rate": 3.649642935970859e-05,
1536
+ "loss": 0.5541,
1537
+ "step": 1080
1538
+ },
1539
+ {
1540
+ "epoch": 1.5012114918656976,
1541
+ "grad_norm": 0.39131784439086914,
1542
+ "learning_rate": 3.556698171490871e-05,
1543
+ "loss": 0.5415,
1544
+ "step": 1085
1545
+ },
1546
+ {
1547
+ "epoch": 1.508134302526826,
1548
+ "grad_norm": 0.3889631927013397,
1549
+ "learning_rate": 3.464695566953644e-05,
1550
+ "loss": 0.5313,
1551
+ "step": 1090
1552
+ },
1553
+ {
1554
+ "epoch": 1.5150571131879542,
1555
+ "grad_norm": 0.4033074975013733,
1556
+ "learning_rate": 3.373648575270576e-05,
1557
+ "loss": 0.538,
1558
+ "step": 1095
1559
+ },
1560
+ {
1561
+ "epoch": 1.5219799238490828,
1562
+ "grad_norm": 0.36675384640693665,
1563
+ "learning_rate": 3.283570509620344e-05,
1564
+ "loss": 0.5443,
1565
+ "step": 1100
1566
+ },
1567
+ {
1568
+ "epoch": 1.5289027345102113,
1569
+ "grad_norm": 0.380545049905777,
1570
+ "learning_rate": 3.1944745415021915e-05,
1571
+ "loss": 0.5394,
1572
+ "step": 1105
1573
+ },
1574
+ {
1575
+ "epoch": 1.5358255451713396,
1576
+ "grad_norm": 0.35882043838500977,
1577
+ "learning_rate": 3.106373698809958e-05,
1578
+ "loss": 0.5445,
1579
+ "step": 1110
1580
+ },
1581
+ {
1582
+ "epoch": 1.542748355832468,
1583
+ "grad_norm": 0.3889442980289459,
1584
+ "learning_rate": 3.0192808639271065e-05,
1585
+ "loss": 0.5536,
1586
+ "step": 1115
1587
+ },
1588
+ {
1589
+ "epoch": 1.5496711664935963,
1590
+ "grad_norm": 0.3797926902770996,
1591
+ "learning_rate": 2.933208771843018e-05,
1592
+ "loss": 0.5409,
1593
+ "step": 1120
1594
+ },
1595
+ {
1596
+ "epoch": 1.5565939771547248,
1597
+ "grad_norm": 0.38983410596847534,
1598
+ "learning_rate": 2.8481700082908268e-05,
1599
+ "loss": 0.5347,
1600
+ "step": 1125
1601
+ },
1602
+ {
1603
+ "epoch": 1.5635167878158533,
1604
+ "grad_norm": 0.39294636249542236,
1605
+ "learning_rate": 2.7641770079071127e-05,
1606
+ "loss": 0.5374,
1607
+ "step": 1130
1608
+ },
1609
+ {
1610
+ "epoch": 1.5704395984769817,
1611
+ "grad_norm": 0.37386760115623474,
1612
+ "learning_rate": 2.681242052413656e-05,
1613
+ "loss": 0.5198,
1614
+ "step": 1135
1615
+ },
1616
+ {
1617
+ "epoch": 1.57736240913811,
1618
+ "grad_norm": 0.41262131929397583,
1619
+ "learning_rate": 2.59937726882158e-05,
1620
+ "loss": 0.5231,
1621
+ "step": 1140
1622
+ },
1623
+ {
1624
+ "epoch": 1.5842852197992385,
1625
+ "grad_norm": 0.4110383987426758,
1626
+ "learning_rate": 2.5185946276580918e-05,
1627
+ "loss": 0.5478,
1628
+ "step": 1145
1629
+ },
1630
+ {
1631
+ "epoch": 1.591208030460367,
1632
+ "grad_norm": 0.3801433742046356,
1633
+ "learning_rate": 2.4389059412161087e-05,
1634
+ "loss": 0.5395,
1635
+ "step": 1150
1636
+ },
1637
+ {
1638
+ "epoch": 1.5981308411214954,
1639
+ "grad_norm": 0.37619632482528687,
1640
+ "learning_rate": 2.3603228618270356e-05,
1641
+ "loss": 0.5355,
1642
+ "step": 1155
1643
+ },
1644
+ {
1645
+ "epoch": 1.6050536517826237,
1646
+ "grad_norm": 0.3852304220199585,
1647
+ "learning_rate": 2.2828568801569283e-05,
1648
+ "loss": 0.5133,
1649
+ "step": 1160
1650
+ },
1651
+ {
1652
+ "epoch": 1.611976462443752,
1653
+ "grad_norm": 0.35891711711883545,
1654
+ "learning_rate": 2.2065193235262782e-05,
1655
+ "loss": 0.5114,
1656
+ "step": 1165
1657
+ },
1658
+ {
1659
+ "epoch": 1.6188992731048806,
1660
+ "grad_norm": 0.3851226568222046,
1661
+ "learning_rate": 2.1313213542537058e-05,
1662
+ "loss": 0.5308,
1663
+ "step": 1170
1664
+ },
1665
+ {
1666
+ "epoch": 1.6258220837660091,
1667
+ "grad_norm": 0.3977566659450531,
1668
+ "learning_rate": 2.0572739680237717e-05,
1669
+ "loss": 0.5459,
1670
+ "step": 1175
1671
+ },
1672
+ {
1673
+ "epoch": 1.6327448944271374,
1674
+ "grad_norm": 0.3800656497478485,
1675
+ "learning_rate": 1.984387992279153e-05,
1676
+ "loss": 0.5479,
1677
+ "step": 1180
1678
+ },
1679
+ {
1680
+ "epoch": 1.6396677050882658,
1681
+ "grad_norm": 0.41137266159057617,
1682
+ "learning_rate": 1.912674084637409e-05,
1683
+ "loss": 0.5429,
1684
+ "step": 1185
1685
+ },
1686
+ {
1687
+ "epoch": 1.6465905157493943,
1688
+ "grad_norm": 0.3646909296512604,
1689
+ "learning_rate": 1.8421427313326046e-05,
1690
+ "loss": 0.5212,
1691
+ "step": 1190
1692
+ },
1693
+ {
1694
+ "epoch": 1.6535133264105226,
1695
+ "grad_norm": 0.38323456048965454,
1696
+ "learning_rate": 1.7728042456819704e-05,
1697
+ "loss": 0.5419,
1698
+ "step": 1195
1699
+ },
1700
+ {
1701
+ "epoch": 1.6604361370716512,
1702
+ "grad_norm": 0.3656870126724243,
1703
+ "learning_rate": 1.7046687665778717e-05,
1704
+ "loss": 0.523,
1705
+ "step": 1200
1706
+ },
1707
+ {
1708
+ "epoch": 1.6673589477327795,
1709
+ "grad_norm": 0.3620772957801819,
1710
+ "learning_rate": 1.6377462570052438e-05,
1711
+ "loss": 0.5203,
1712
+ "step": 1205
1713
+ },
1714
+ {
1715
+ "epoch": 1.6742817583939078,
1716
+ "grad_norm": 0.4021745026111603,
1717
+ "learning_rate": 1.5720465025847987e-05,
1718
+ "loss": 0.5243,
1719
+ "step": 1210
1720
+ },
1721
+ {
1722
+ "epoch": 1.6812045690550363,
1723
+ "grad_norm": 0.3713143467903137,
1724
+ "learning_rate": 1.5075791101421166e-05,
1725
+ "loss": 0.5251,
1726
+ "step": 1215
1727
+ },
1728
+ {
1729
+ "epoch": 1.6881273797161649,
1730
+ "grad_norm": 0.3876360356807709,
1731
+ "learning_rate": 1.4443535063029279e-05,
1732
+ "loss": 0.5429,
1733
+ "step": 1220
1734
+ },
1735
+ {
1736
+ "epoch": 1.6950501903772932,
1737
+ "grad_norm": 0.38543200492858887,
1738
+ "learning_rate": 1.3823789361147044e-05,
1739
+ "loss": 0.5178,
1740
+ "step": 1225
1741
+ },
1742
+ {
1743
+ "epoch": 1.7019730010384215,
1744
+ "grad_norm": 0.39921507239341736,
1745
+ "learning_rate": 1.3216644616948282e-05,
1746
+ "loss": 0.5248,
1747
+ "step": 1230
1748
+ },
1749
+ {
1750
+ "epoch": 1.70889581169955,
1751
+ "grad_norm": 0.36942583322525024,
1752
+ "learning_rate": 1.2622189609054979e-05,
1753
+ "loss": 0.5174,
1754
+ "step": 1235
1755
+ },
1756
+ {
1757
+ "epoch": 1.7158186223606784,
1758
+ "grad_norm": 0.41628918051719666,
1759
+ "learning_rate": 1.2040511260555831e-05,
1760
+ "loss": 0.5253,
1761
+ "step": 1240
1762
+ },
1763
+ {
1764
+ "epoch": 1.722741433021807,
1765
+ "grad_norm": 0.3788851797580719,
1766
+ "learning_rate": 1.1471694626296049e-05,
1767
+ "loss": 0.523,
1768
+ "step": 1245
1769
+ },
1770
+ {
1771
+ "epoch": 1.7296642436829353,
1772
+ "grad_norm": 0.369893342256546,
1773
+ "learning_rate": 1.0915822880440308e-05,
1774
+ "loss": 0.5167,
1775
+ "step": 1250
1776
+ },
1777
+ {
1778
+ "epoch": 1.7365870543440636,
1779
+ "grad_norm": 0.37253957986831665,
1780
+ "learning_rate": 1.037297730431085e-05,
1781
+ "loss": 0.513,
1782
+ "step": 1255
1783
+ },
1784
+ {
1785
+ "epoch": 1.7435098650051921,
1786
+ "grad_norm": 0.3707478940486908,
1787
+ "learning_rate": 9.843237274502282e-06,
1788
+ "loss": 0.5268,
1789
+ "step": 1260
1790
+ },
1791
+ {
1792
+ "epoch": 1.7504326756663207,
1793
+ "grad_norm": 0.38524284958839417,
1794
+ "learning_rate": 9.326680251274777e-06,
1795
+ "loss": 0.5357,
1796
+ "step": 1265
1797
+ },
1798
+ {
1799
+ "epoch": 1.757355486327449,
1800
+ "grad_norm": 0.3852950930595398,
1801
+ "learning_rate": 8.823381767227667e-06,
1802
+ "loss": 0.5257,
1803
+ "step": 1270
1804
+ },
1805
+ {
1806
+ "epoch": 1.7642782969885773,
1807
+ "grad_norm": 0.38060450553894043,
1808
+ "learning_rate": 8.333415416254831e-06,
1809
+ "loss": 0.527,
1810
+ "step": 1275
1811
+ },
1812
+ {
1813
+ "epoch": 1.7712011076497056,
1814
+ "grad_norm": 0.3773637115955353,
1815
+ "learning_rate": 7.856852842783547e-06,
1816
+ "loss": 0.5161,
1817
+ "step": 1280
1818
+ },
1819
+ {
1820
+ "epoch": 1.7781239183108342,
1821
+ "grad_norm": 0.3634498119354248,
1822
+ "learning_rate": 7.393763731298387e-06,
1823
+ "loss": 0.5116,
1824
+ "step": 1285
1825
+ },
1826
+ {
1827
+ "epoch": 1.7850467289719627,
1828
+ "grad_norm": 0.3612436056137085,
1829
+ "learning_rate": 6.944215796151765e-06,
1830
+ "loss": 0.5153,
1831
+ "step": 1290
1832
+ },
1833
+ {
1834
+ "epoch": 1.791969539633091,
1835
+ "grad_norm": 0.40675196051597595,
1836
+ "learning_rate": 6.5082747716625255e-06,
1837
+ "loss": 0.5276,
1838
+ "step": 1295
1839
+ },
1840
+ {
1841
+ "epoch": 1.7988923502942193,
1842
+ "grad_norm": 0.3541720509529114,
1843
+ "learning_rate": 6.086004402504098e-06,
1844
+ "loss": 0.5096,
1845
+ "step": 1300
1846
+ },
1847
+ {
1848
+ "epoch": 1.8058151609553479,
1849
+ "grad_norm": 0.38791441917419434,
1850
+ "learning_rate": 5.6774664343834495e-06,
1851
+ "loss": 0.5346,
1852
+ "step": 1305
1853
+ },
1854
+ {
1855
+ "epoch": 1.8127379716164764,
1856
+ "grad_norm": 0.37747085094451904,
1857
+ "learning_rate": 5.2827206050125585e-06,
1858
+ "loss": 0.5218,
1859
+ "step": 1310
1860
+ },
1861
+ {
1862
+ "epoch": 1.8196607822776047,
1863
+ "grad_norm": 0.3927886486053467,
1864
+ "learning_rate": 4.9018246353732755e-06,
1865
+ "loss": 0.5352,
1866
+ "step": 1315
1867
+ },
1868
+ {
1869
+ "epoch": 1.826583592938733,
1870
+ "grad_norm": 0.3697344958782196,
1871
+ "learning_rate": 4.534834221277262e-06,
1872
+ "loss": 0.5143,
1873
+ "step": 1320
1874
+ },
1875
+ {
1876
+ "epoch": 1.8335064035998614,
1877
+ "grad_norm": 0.37708741426467896,
1878
+ "learning_rate": 4.181803025221898e-06,
1879
+ "loss": 0.5243,
1880
+ "step": 1325
1881
+ },
1882
+ {
1883
+ "epoch": 1.84042921426099,
1884
+ "grad_norm": 0.3722737431526184,
1885
+ "learning_rate": 3.842782668543599e-06,
1886
+ "loss": 0.5211,
1887
+ "step": 1330
1888
+ },
1889
+ {
1890
+ "epoch": 1.8473520249221185,
1891
+ "grad_norm": 0.347428560256958,
1892
+ "learning_rate": 3.5178227238696347e-06,
1893
+ "loss": 0.5123,
1894
+ "step": 1335
1895
+ },
1896
+ {
1897
+ "epoch": 1.8542748355832468,
1898
+ "grad_norm": 0.3938564658164978,
1899
+ "learning_rate": 3.2069707078694057e-06,
1900
+ "loss": 0.5079,
1901
+ "step": 1340
1902
+ },
1903
+ {
1904
+ "epoch": 1.8611976462443751,
1905
+ "grad_norm": 0.37338557839393616,
1906
+ "learning_rate": 2.9102720743064527e-06,
1907
+ "loss": 0.5287,
1908
+ "step": 1345
1909
+ },
1910
+ {
1911
+ "epoch": 1.8681204569055037,
1912
+ "grad_norm": 0.3692079484462738,
1913
+ "learning_rate": 2.6277702073919997e-06,
1914
+ "loss": 0.5069,
1915
+ "step": 1350
1916
+ },
1917
+ {
1918
+ "epoch": 1.8750432675666322,
1919
+ "grad_norm": 0.3760637938976288,
1920
+ "learning_rate": 2.3595064154412374e-06,
1921
+ "loss": 0.5129,
1922
+ "step": 1355
1923
+ },
1924
+ {
1925
+ "epoch": 1.8819660782277605,
1926
+ "grad_norm": 0.38482972979545593,
1927
+ "learning_rate": 2.1055199248330546e-06,
1928
+ "loss": 0.5163,
1929
+ "step": 1360
1930
+ },
1931
+ {
1932
+ "epoch": 1.8888888888888888,
1933
+ "grad_norm": 0.3872315585613251,
1934
+ "learning_rate": 1.8658478742742625e-06,
1935
+ "loss": 0.5157,
1936
+ "step": 1365
1937
+ },
1938
+ {
1939
+ "epoch": 1.8958116995500172,
1940
+ "grad_norm": 0.3754504919052124,
1941
+ "learning_rate": 1.6405253093690343e-06,
1942
+ "loss": 0.5132,
1943
+ "step": 1370
1944
+ },
1945
+ {
1946
+ "epoch": 1.9027345102111457,
1947
+ "grad_norm": 0.3796706199645996,
1948
+ "learning_rate": 1.429585177494419e-06,
1949
+ "loss": 0.5107,
1950
+ "step": 1375
1951
+ },
1952
+ {
1953
+ "epoch": 1.9096573208722742,
1954
+ "grad_norm": 0.37216416001319885,
1955
+ "learning_rate": 1.2330583229827053e-06,
1956
+ "loss": 0.5228,
1957
+ "step": 1380
1958
+ },
1959
+ {
1960
+ "epoch": 1.9165801315334026,
1961
+ "grad_norm": 0.3697955012321472,
1962
+ "learning_rate": 1.0509734826112394e-06,
1963
+ "loss": 0.5105,
1964
+ "step": 1385
1965
+ },
1966
+ {
1967
+ "epoch": 1.9235029421945309,
1968
+ "grad_norm": 0.39311596751213074,
1969
+ "learning_rate": 8.833572814004321e-07,
1970
+ "loss": 0.5069,
1971
+ "step": 1390
1972
+ },
1973
+ {
1974
+ "epoch": 1.9304257528556594,
1975
+ "grad_norm": 0.3675869405269623,
1976
+ "learning_rate": 7.302342287205943e-07,
1977
+ "loss": 0.511,
1978
+ "step": 1395
1979
+ },
1980
+ {
1981
+ "epoch": 1.937348563516788,
1982
+ "grad_norm": 0.38679271936416626,
1983
+ "learning_rate": 5.916267147080934e-07,
1984
+ "loss": 0.5175,
1985
+ "step": 1400
1986
+ },
1987
+ {
1988
+ "epoch": 1.9442713741779163,
1989
+ "grad_norm": 0.3862612247467041,
1990
+ "learning_rate": 4.6755500699138253e-07,
1991
+ "loss": 0.5075,
1992
+ "step": 1405
1993
+ },
1994
+ {
1995
+ "epoch": 1.9511941848390446,
1996
+ "grad_norm": 0.3884969651699066,
1997
+ "learning_rate": 3.5803724772740523e-07,
1998
+ "loss": 0.5132,
1999
+ "step": 1410
2000
+ },
2001
+ {
2002
+ "epoch": 1.958116995500173,
2003
+ "grad_norm": 0.36823418736457825,
2004
+ "learning_rate": 2.630894509488058e-07,
2005
+ "loss": 0.5151,
2006
+ "step": 1415
2007
+ },
2008
+ {
2009
+ "epoch": 1.9650398061613015,
2010
+ "grad_norm": 0.36939066648483276,
2011
+ "learning_rate": 1.8272550022230272e-07,
2012
+ "loss": 0.5128,
2013
+ "step": 1420
2014
+ },
2015
+ {
2016
+ "epoch": 1.97196261682243,
2017
+ "grad_norm": 0.38535770773887634,
2018
+ "learning_rate": 1.1695714661856816e-07,
2019
+ "loss": 0.5019,
2020
+ "step": 1425
2021
+ },
2022
+ {
2023
+ "epoch": 1.9788854274835583,
2024
+ "grad_norm": 0.3671540915966034,
2025
+ "learning_rate": 6.579400699397998e-08,
2026
+ "loss": 0.5135,
2027
+ "step": 1430
2028
+ },
2029
+ {
2030
+ "epoch": 1.9858082381446867,
2031
+ "grad_norm": 0.36039796471595764,
2032
+ "learning_rate": 2.9243562584402305e-08,
2033
+ "loss": 0.525,
2034
+ "step": 1435
2035
+ },
2036
+ {
2037
+ "epoch": 1.9927310488058152,
2038
+ "grad_norm": 0.3742762804031372,
2039
+ "learning_rate": 7.311157911249478e-09,
2040
+ "loss": 0.5266,
2041
+ "step": 1440
2042
+ },
2043
+ {
2044
+ "epoch": 1.9982692973347178,
2045
+ "eval_loss": 0.7263619303703308,
2046
+ "eval_runtime": 60.0642,
2047
+ "eval_samples_per_second": 34.446,
2048
+ "eval_steps_per_second": 2.164,
2049
+ "step": 1444
2050
+ },
2051
+ {
2052
+ "epoch": 1.9982692973347178,
2053
+ "step": 1444,
2054
+ "total_flos": 4.774796461726499e+18,
2055
+ "train_loss": 0.7511481684000538,
2056
+ "train_runtime": 11380.9982,
2057
+ "train_samples_per_second": 8.122,
2058
+ "train_steps_per_second": 0.127
2059
+ }
2060
+ ],
2061
+ "logging_steps": 5,
2062
+ "max_steps": 1444,
2063
+ "num_input_tokens_seen": 0,
2064
+ "num_train_epochs": 2,
2065
+ "save_steps": 500,
2066
+ "stateful_callbacks": {
2067
+ "TrainerControl": {
2068
+ "args": {
2069
+ "should_epoch_stop": false,
2070
+ "should_evaluate": false,
2071
+ "should_log": false,
2072
+ "should_save": false,
2073
+ "should_training_stop": false
2074
+ },
2075
+ "attributes": {}
2076
+ }
2077
+ },
2078
+ "total_flos": 4.774796461726499e+18,
2079
+ "train_batch_size": 4,
2080
+ "trial_name": null,
2081
+ "trial_params": null
2082
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f69b66d816c2099f74805fb3fb5224381d74a293161d0078d22df01687bcaf
3
+ size 7096
vocab.json ADDED
The diff for this file is too large to render. See raw diff