import pandas as pd import torch from transformers import DebertaV2ForSequenceClassification, DebertaV2Tokenizer, DataCollatorWithPadding, Trainer, TrainingArguments from tqdm import tqdm from datasets import Dataset, load_dataset import numpy as np import wandb from sklearn.metrics import accuracy_score, precision_recall_fscore_support output_dir = './german_politic_DeBERTa-v2-base' model_name = "ikim-uk-essen/geberta-base" max_length = 512 id2label = {0: 'other', 1: 'politic'} label2id = {'other': 0, 'politic': 1} wandb.init(project="german_politic_yes_no_classifier", entity="xxx", name="german_politic_DeBERTa") model = DebertaV2ForSequenceClassification.from_pretrained(model_name, num_labels = 2, id2label=id2label, label2id=label2id, output_attentions = False, output_hidden_states = False) tokenizer = DebertaV2Tokenizer.from_pretrained(model_name, do_lower_case=False, max_length = max_length, TOKENIZERS_PARALLELISM=True) dataset = load_dataset("SinclairSchneider/trainset_political_text_yes_no_german") dataset = dataset['train'].train_test_split(0.2) def preprocess(sample): return tokenizer(sample["text"], truncation=True) dataset_tokenized = dataset.map(preprocess, batched = True) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted') acc = accuracy_score(labels, preds) return { 'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall } training_args = TrainingArguments( output_dir = output_dir, learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=4, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, report_to="wandb", fp16 = False, logging_steps = 8, disable_tqdm = False, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset_tokenized["train"], eval_dataset=dataset_tokenized["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir)