Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from tqdm import tqdm
|
8 |
+
import math
|
9 |
+
|
10 |
+
# 1. Dataset class for loading and processing data
|
11 |
+
class FullChatDataset(Dataset):
|
12 |
+
def __init__(self, dataset_names=["blended_skill_talk", "conv_ai_2", "social_i_qa"], max_length=128):
|
13 |
+
self.datasets = []
|
14 |
+
|
15 |
+
# Load all specified datasets
|
16 |
+
for name in dataset_names:
|
17 |
+
try:
|
18 |
+
dataset = load_dataset(name, split="train")
|
19 |
+
self.datasets.append(dataset)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Failed to load dataset {name}: {e}")
|
22 |
+
|
23 |
+
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
24 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
25 |
+
self.max_length = max_length
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return sum(len(d) for d in self.datasets)
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
# Determine which dataset the index belongs to
|
32 |
+
for dataset in self.datasets:
|
33 |
+
if idx < len(dataset):
|
34 |
+
item = dataset[idx]
|
35 |
+
break
|
36 |
+
idx -= len(dataset)
|
37 |
+
|
38 |
+
# Handling different dataset formats
|
39 |
+
if 'dialog' in item: # For Daily Dialog
|
40 |
+
dialog = item['dialog']
|
41 |
+
elif 'messages' in item: # For some other datasets
|
42 |
+
dialog = [msg['text'] for msg in item['messages']]
|
43 |
+
else: # Universal handling
|
44 |
+
dialog = [v for k, v in item.items() if isinstance(v, str)]
|
45 |
+
|
46 |
+
context = " [SEP] ".join(dialog[:-1])
|
47 |
+
response = dialog[-1]
|
48 |
+
|
49 |
+
inputs = self.tokenizer(
|
50 |
+
context,
|
51 |
+
text_pair=response,
|
52 |
+
max_length=self.max_length,
|
53 |
+
padding='max_length',
|
54 |
+
truncation=True,
|
55 |
+
return_tensors="pt"
|
56 |
+
)
|
57 |
+
|
58 |
+
return {
|
59 |
+
'input_ids': inputs['input_ids'].flatten(),
|
60 |
+
'attention_mask': inputs['attention_mask'].flatten(),
|
61 |
+
'labels': inputs['input_ids'].flatten()
|
62 |
+
}
|
63 |
+
|
64 |
+
# 2. Model architecture
|
65 |
+
class SimpleTransformerModel(nn.Module):
|
66 |
+
def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3):
|
67 |
+
super().__init__()
|
68 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
69 |
+
self.pos_encoder = PositionalEncoding(d_model)
|
70 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
|
71 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
|
72 |
+
self.fc = nn.Linear(d_model, vocab_size)
|
73 |
+
|
74 |
+
def forward(self, x, mask=None):
|
75 |
+
x = self.embedding(x)
|
76 |
+
x = self.pos_encoder(x)
|
77 |
+
x = self.transformer(x, mask)
|
78 |
+
return self.fc(x)
|
79 |
+
|
80 |
+
class PositionalEncoding(nn.Module):
|
81 |
+
def __init__(self, d_model, max_len=500):
|
82 |
+
super().__init__()
|
83 |
+
position = torch.arange(max_len).unsqueeze(1)
|
84 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
85 |
+
pe = torch.zeros(max_len, d_model)
|
86 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
87 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
88 |
+
self.register_buffer('pe', pe)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
return x + self.pe[:x.size(1)]
|
92 |
+
|
93 |
+
# 3. Model training
|
94 |
+
def train(model, dataloader, epochs=3, lr=3e-4):
|
95 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
96 |
+
model = model.to(device)
|
97 |
+
criterion = nn.CrossEntropyLoss(ignore_index=0)
|
98 |
+
optimizer = optim.Adam(model.parameters(), lr=lr)
|
99 |
+
|
100 |
+
for epoch in range(epochs):
|
101 |
+
model.train()
|
102 |
+
total_loss = 0
|
103 |
+
pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
|
104 |
+
|
105 |
+
for batch in pbar:
|
106 |
+
inputs = batch['input_ids'].to(device)
|
107 |
+
masks = batch['attention_mask'].to(device)
|
108 |
+
labels = batch['labels'].to(device)
|
109 |
+
|
110 |
+
optimizer.zero_grad()
|
111 |
+
outputs = model(inputs, masks)
|
112 |
+
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
|
113 |
+
loss.backward()
|
114 |
+
optimizer.step()
|
115 |
+
|
116 |
+
total_loss += loss.item()
|
117 |
+
pbar.set_postfix({'loss': loss.item()})
|
118 |
+
|
119 |
+
print(f"Epoch {epoch+1} - Avg loss: {total_loss/len(dataloader):.4f}")
|
120 |
+
|
121 |
+
# 4. Response generation
|
122 |
+
def chat(model, tokenizer, prompt, max_length=50):
|
123 |
+
device = next(model.parameters()).device
|
124 |
+
model.eval()
|
125 |
+
|
126 |
+
inputs = tokenizer(
|
127 |
+
prompt,
|
128 |
+
return_tensors="pt",
|
129 |
+
max_length=128,
|
130 |
+
truncation=True,
|
131 |
+
padding='max_length'
|
132 |
+
).to(device)
|
133 |
+
|
134 |
+
with torch.no_grad():
|
135 |
+
outputs = model.generate(
|
136 |
+
input_ids=inputs['input_ids'],
|
137 |
+
attention_mask=inputs['attention_mask'],
|
138 |
+
max_length=max_length,
|
139 |
+
do_sample=True,
|
140 |
+
top_k=50,
|
141 |
+
top_p=0.95,
|
142 |
+
temperature=0.7
|
143 |
+
)
|
144 |
+
|
145 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
146 |
+
|
147 |
+
# 5. Main process
|
148 |
+
if __name__ == "__main__":
|
149 |
+
# Initialization
|
150 |
+
dataset = FullChatDataset()
|
151 |
+
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
|
152 |
+
|
153 |
+
# Model creation
|
154 |
+
model = SimpleTransformerModel(len(dataset.tokenizer))
|
155 |
+
|
156 |
+
# Training
|
157 |
+
train(model, dataloader)
|
158 |
+
|
159 |
+
# Saving
|
160 |
+
torch.save(model.state_dict(), "chatbot_model.pt")
|
161 |
+
dataset.tokenizer.save_pretrained("chatbot_tokenizer")
|
162 |
+
|
163 |
+
|
164 |
+
while True:
|
165 |
+
user_input = input("You: ")
|
166 |
+
if user_input.lower() in ['exit', 'quit']:
|
167 |
+
break
|
168 |
+
response = chat(model, dataset.tokenizer, user_input)
|
169 |
+
print(f"Bot: {response}")
|