File size: 6,541 Bytes
cf3fe89 0c766eb a81e381 0c766eb 5eb281e 0c766eb a81e381 0c766eb a81e381 da81d5f a81e381 85a4a61 a81e381 072ee1f a81e381 da81d5f a81e381 0c766eb a81e381 0c766eb cf3fe89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-72B-Instruct
pipeline_tag: text-generation
---
# MindLink
[English](README.md) | [中文](README_CN.md)
## Model Description
We introduce **MindLink**, a new family of large language models developed by **Kunlun Inc**. Built on **Qwen**, these models incorporate our latest advances in post-training techniques. MindLink demonstrates strong performance across various common benchmarks and is widely applicable in diverse AI scenarios. We welcome feedback to help us continuously optimize and improve our models.
### 🚀 Model Downloads
<div align="center">
| **🤖 Model** | **📏 Context Length** | **⬇️ Download** |
| :---: | :---: | :---: |
| **MindLink 32B** | `128K` | [🤗 **HuggingFace**](https://huggingface.co/Skywork/MindLink-32B-0801) |
| **MindLink 72B** | `128K` | [🤗 **HuggingFace**](https://huggingface.co/Skywork/MindLink-72B-0801) |
</div>
### 📖 Technical Report
Our training methodology and evaluation: [MindLink](https://github.com/SkyworkAI/MindLink/blob/main/mindlink.pdf)
---
## Highlights
* **Plan-based Reasoning**: Without the "think" tag, MindLink achieves competitive performance with leading proprietary models across a wide range of reasoning and general tasks. It significantly reduces inference cost, and improves multi-turn capabilities.
* **Mathematical Framework**: It analyzes the effectiveness of both **Chain-of-Thought (CoT)** and **Plan-based Reasoning**.
* **Adaptive Reasoning**: it automatically adapts its reasoning strategy based on task complexity: complex tasks produce detailed reasoning traces, while simpler tasks yield concise outputs.
---
## Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
> ⚠️ Please make sure you have installed `transformers>=4.51.0`. Lower versions are not supported.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Skywork/MindLink-72B-0801"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "What is the capital of China?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
For deployment, you can use sglang>=0.4.9.post1 to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Skywork/MindLink-72B-0801 --tp 2
```
---
## API Access
📢 We provide developers with a **one-month free trial** of our API for exploring and testing our models. To request access to an **Open WebUI account** (https://sd1svahsfo0m61h76e190.apigateway-cn-beijing.volceapi.com), please contact us at: **[[email protected]](mailto:[email protected])**
⚠️ Note: If you encounter inconsistent responses during inference, we recommend clearing the session context (history) and retrying.
### 🔧 Usage Instructions
Our Chat API supports OpenAI's format. Simply include your API Key with HTTP POST requests.
#### ✅ Sample Request using `curl`:
```bash
curl -X POST https://sd2690u280c6ft26qcdi0.apigateway-cn-beijing.volceapi.com/v1/chat/completions \
-H "Authorization: Bearer nc6Dt7DrLJNzLELiqOR1bogO5Oh1qHtO" \
-H "Content-Type: application/json" \
-d '{
"model": "Mind_Link_beta_32B",
"messages": [
{"role": "user", "content": "What is the capital of China?"}
],
"temperature": 0.7,
"max_tokens": 128,
"stream": false
}'
```
#### 🐍 Sample Request using Python:
```python
import requests
API_KEY = "nc6Dt7DrLJNzLELiqOR1bogO5Oh1qHtO"
API_URL = "https://sd2690u280c6ft26qcdi0.apigateway-cn-beijing.volceapi.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "Mind_Link_beta_32B",
"messages": [
{"role": "user", "content": "What is the capital of China?"}
],
"temperature": 0.7,
"max_tokens": 128,
"stream": False
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
reply = response.json()
print("MindLink Response:")
print(reply["choices"][0]["message"]["content"])
else:
print(f"Error {response.status_code}: {response.text}")
```
---
### 🌐 API Interface Details
* **Endpoint**: `https://sd2690u280c6ft26qcdi0.apigateway-cn-beijing.volceapi.com/v1/chat/completions`
* **Authentication**: Use your API key via `Authorization: Bearer <api_key>`
* **Request Format**: Compatible with OpenAI's Chat Completion API
* **Supported Fields**: `model`, `messages`, `temperature`, `top_p`, `max_tokens`, `stream`, `stop`, etc.
* **Model Identifiers**: Use either `"Mind_Link_beta_32B"` or `"Mind_Link_beta_72B"`
* **Public API Key**: We provide the following public API key: `"nc6Dt7DrLJNzLELiqOR1bogO5Oh1qHtO"` (requests via this key enter a queue and have limited request rates; contact us for unlimited access).
---
## Evaluation
The results are shown below:

---
## License and Usage Information
### Model License and Terms of Use
#### 1. Core License
This model is licensed under the **Apache License 2.0**, granting users the following rights:
✅ Commercial deployment
✅ Source code modification
✅ Patent authorization
✅ Closed-source derivatives
⚠️ Prohibition on using model names/logos for promotion without written authorization
⚠️ No warranties provided
#### 2. Inheritance Declaration
This model is based on improvements from **Qwen** (Apache 2.0 License). You must:
* Retain original Qwen copyright notices in derivative works.
* Clearly document changes made in modification notes.
* Adhere to any additional usage restrictions imposed by Qwen.
If you have any questions, please raise an issue or contact us at [email protected].
--- |