chrisliu298 commited on
Commit
a1046f7
·
verified ·
1 Parent(s): 8a9a290

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/Skywork_Reward_V2.pdf filter=lfs diff=lfs merge=lfs -text
37
+ assets/skywork_logo.png filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,230 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Skywork-Reward-V2
2
+ <!-- markdownlint-disable html -->
3
+
4
+ <div align="center">
5
+ <img src="assets/skywork_logo.png" width="60%" alt="Skywork-Reward-V2"/>
6
+ </div>
7
+ <hr>
8
+ <div align="center" style="line-height: 1;">
9
+ <a href="https://arxiv.org/abs/2410.18451" target="_blank">
10
+ <img alt="Paper" src="https://img.shields.io/badge/📖%20Paper-Skywork--Reward--V2-4D5EFF?style=flat-square&labelColor=202124"/>
11
+ </a>
12
+ <a href="https://huggingface.co/Skywork" target="_blank">
13
+ <img alt="Hugging Face" src="https://img.shields.io/badge/🤗_Hugging_Face-Skywork-4D5EFF?style=flat-square&labelColor=202124"/>
14
+ </a>
15
+ </div>
16
+
17
+ ## 🔥 Highlights
18
+
19
+ **Skywork-Reward-V2** is a series of reward models designed for versatility across a wide range of tasks, trained on a mixture of 26 million carefully curated preference pairs. While the Skywork-Reward-V2 series remains based on the Bradley-Terry model, we push the boundaries of training data scale and quality to achieve superior performance. Compared to the first generation of Skywork-Reward, the Skywork-Reward-V2 series offers the following major improvements:
20
+
21
+ - **Trained on a significantly larger and higher-quality preference data mixture**, consisting of **26 million preference pairs** curated via a large-scale human-LLM synergistic pipeline.
22
+ - **State-of-the-art performance on seven major reward model benchmarks**, including RewardBench v1, RewardBench v2, PPE Preference, PPE Correctness, RMB, RM-Bench, and JudgeBench.
23
+ - **Available in eight models across multiple sizes**, with the smallest 0.6B variant, *Skywork-Reward-V2-Qwen3-0.6B*, nearly matching the average performance of our previous best model, Skywork-Reward-Gemma-2-27B-v0.2. The largest 8B version, *Skywork-Reward-V2-Llama-3.1-8B*, surpasses all existing reward models across all benchmarks on average. Our top experimental model, *Skywork-Reward-V2-Llama-3.1-8B-40M*, **outperforms all existing reward models on every benchmark**.
24
+
25
+ ## 📊 Evaluation
26
+
27
+ In the following table, we categorize the models into two types: Bradley-Terry (BT) reward models and Generative reward models. The Skywork-Reward-V2 series outperforms models in both categories with much smaller model sizes.
28
+
29
+ | Category | Model | RewardBench v1 | RewardBench v2 | PPE Preference | PPE Correctness | RMB | RM-Bench | JudgeBench | Avg. |
30
+ |:------------------------:|:---------------------------------------|:--------------:|:--------------:|:--------------:|:---------------:|:--------:|:--------:|:----------:|:--------:|
31
+ | **Bradley-Terry** | Llama-3-OffsetBias-RM-8B | 89.0 | 64.8 | 59.2 | 64.1 | 57.8 | 71.3 | 63.5 | 67.1 |
32
+ | | ArmoRM-Llama3-8B-v0.1 | 90.4 | 66.5 | 60.6 | 60.6 | 64.6 | 69.3 | 59.7 | 67.4 |
33
+ | | Internlm2-20b-reward | 90.2 | 56.3 | 61.0 | 63.0 | 62.9 | 68.3 | 64.3 | 66.6 |
34
+ | | Skywork-Reward-Llama-3.1-8B-v0.2 | 93.1 | 71.8 | 62.2 | 62.5 | 66.6 | 72.1 | 62.9 | 70.2 |
35
+ | | LDL-Reward-Gemma-2-27B-v0.1 | 95.0 | 72.5 | 62.4 | 63.9 | 67.9 | 71.1 | 64.2 | 71.0 |
36
+ | | Skywork-Reward-Gemma-2-27B-v0.2 | 94.3 | 75.3 | 63.6 | 61.9 | 69.4 | 70.0 | 66.5 | 71.6 |
37
+ | | INF-ORM-Llama3.1-70B | 95.1 | 76.5 | 64.2 | 64.4 | 70.5 | 73.8 | 70.2 | 73.5 |
38
+ | **Generative** | GPT-4o | 86.7 | 64.9 | 67.7 | - | 73.8 | - | 59.8 | - |
39
+ | | Claude-3.5-Sonnet | 84.2 | 64.7 | 67.3 | - | 70.6 | - | 64.8 | - |
40
+ | | DeepSeek-GRM-27B | 88.5 | - | 65.3 | 60.4 | 69.0 | - | - | - |
41
+ | | DeepSeek-GRM-27B (w/ MetaRM) | 90.4 | - | 67.2 | 63.2 | 70.3 | - | - | - |
42
+ | | RM-R1-Qwen-Instruct-32B | 92.9 | - | - | - | 73.0 | 79.1 | - | - |
43
+ | | RM-R1-DeepSeek-Distill-Qwen-32B | 90.9 | - | - | - | 69.8 | 83.9 | - | - |
44
+ | | EvalPlanner (Llama-3.1-70B) | 93.9 | - | - | - | - | 80.0 | 50.9 | - |
45
+ | | EvalPlanner (Llama-3.3-70B) | 93.8 | - | - | - | - | 82.1 | 56.6 | - |
46
+ | | J1-Llama-8B | 85.7 | - | 60.3 | 59.2 | - | 73.4 | 42.0 | - |
47
+ | | J1-Llama-8B (Maj@32) | - | - | 60.6 | 61.9 | - | - | - | - |
48
+ | | J1-Llama-70B | 93.3 | - | 66.3 | 72.9 | - | 82.7 | 60.0 | - |
49
+ | | J1-Llama-70B (Maj@32) | - | - | 67.0 | 73.7 | - | - | - | - |
50
+ | Bradley-Terry** | **Skywork-Reward-V2-Qwen3-0.6B** | 85.2 | 61.3 | 65.3 | 68.3 | 74.5 | 74.4 | 67.6 | 70.9 |
51
+ | | **Skywork-Reward-V2-Qwen3-1.7B** | 90.3 | 68.3 | 67.6 | 70.5 | 78.1 | 78.7 | 72.9 | 75.2 |
52
+ | | **Skywork-Reward-V2-Qwen3-4B** | 93.4 | 75.5 | 69.5 | 74.7 | 80.6 | 81.6 | 69.3 | 77.8 |
53
+ | | **Skywork-Reward-V2-Qwen3-8B** | 93.7 | 78.2 | 70.6 | 75.1 | 81.2 | 82.6 | 73.4 | 79.3 |
54
+ | | **Skywork-Reward-V2-Llama-3.2-1B** | 89.9 | 64.3 | 66.6 | 67.4 | 76.7 | 76.4 | 65.0 | 72.3 |
55
+ | | **Skywork-Reward-V2-Llama-3.2-3B** | 93.0 | 74.7 | 69.1 | 72.1 | 80.5 | 81.1 | 69.2 | 77.1 |
56
+ | | **Skywork-Reward-V2-Llama-3.1-8B** | 96.4 | 84.1 | 77.3 | 83.4 | 86.4 | 92.8 | 80.0 | 85.8 |
57
+ | | **Skywork-Reward-V2-Llama-3.1-8B-40M** | **97.8** | **86.5** | **79.8** | **87.2** | **89.3** | **96.0** | **83.4** | **88.6** |
58
+
59
+ ## 💡 Recommended Usage
60
+
61
+ We make the following recommendations for using the Skywork-Reward-V2 model series:
62
+
63
+ 1. For most use cases, we recommend Skywork-Reward-V2-Llama-3.1-8B and consider smaller variants for low-resource settings.
64
+ 2. All models are trained on preference data with a maximum length of 16,384 tokens. It is recommended to perform inference within this limit.
65
+ 3. Do not include system prompts when using chat templates.
66
+
67
+ Special note on Skywork-Reward-V2-Llama-3.1-8B-40M:
68
+
69
+ > [!NOTE]
70
+ > Although Skywork-Reward-V2-Llama-3.1-8B-40M outperforms the original Skywork-Reward-V2-Llama-3.1-8B, we consider it an experimental variant. This model is trained on the complete set of 40 million preference pairs, with about one third of the chosen-rejected pairs flipped. We recommend using this model solely for research or non-production purposes.
71
+
72
+ ## 📦 Model Usage
73
+
74
+ ### 📝 Simple Example in `transformers`
75
+
76
+ The example below shows how to perform inference in Hugging Face Transformers to get the reward score for conversations. For better data parallelization and throughput, we recommend using it along with [Accelerate](https://github.com/huggingface/accelerate) if multiple GPUs are available.
77
+
78
+ ```python
79
+ import torch
80
+
81
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
82
+
83
+ # Load model and tokenizer
84
+ device = "cuda:0"
85
+ model_name = "Skywork/Skywork-Reward-V2-Llama-3.1-8B"
86
+ rm = AutoModelForSequenceClassification.from_pretrained(
87
+ model_name,
88
+ torch_dtype=torch.bfloat16,
89
+ device_map=device,
90
+ attn_implementation="flash_attention_2",
91
+ num_labels=1,
92
+ )
93
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
94
+
95
+ prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
96
+ response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
97
+ response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
98
+
99
+ conv1 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}]
100
+ conv2 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}]
101
+
102
+ # Format and tokenize the conversations
103
+ conv1_formatted = tokenizer.apply_chat_template(conv1, tokenize=False)
104
+ conv2_formatted = tokenizer.apply_chat_template(conv2, tokenize=False)
105
+ # These two lines remove the potential duplicate bos token
106
+ if tokenizer.bos_token is not None and conv1_formatted.startswith(tokenizer.bos_token):
107
+ conv1_formatted = conv1_formatted[len(tokenizer.bos_token):]
108
+ if tokenizer.bos_token is not None and conv2_formatted.startswith(tokenizer.bos_token):
109
+ conv2_formatted = conv2_formatted[len(tokenizer.bos_token):]
110
+ conv1_tokenized = tokenizer(conv1_formatted, return_tensors="pt").to(device)
111
+ conv2_tokenized = tokenizer(conv2_formatted, return_tensors="pt").to(device)
112
+
113
+ # Get the reward scores
114
+ with torch.no_grad():
115
+ score1 = rm(**conv1_tokenized).logits[0][0].item()
116
+ score2 = rm(**conv2_tokenized).logits[0][0].item()
117
+ print(f"Score for response 1: {score1}")
118
+ print(f"Score for response 2: {score2}")
119
+
120
+ # Expected output:
121
+ # Score for response 1: 23.0
122
+ # Score for response 2: 3.59375
123
+ ```
124
+
125
+ ### ⚡ Distributed Inference via SGLang
126
+
127
+ For the optimal throughput under a large number (e.g., millions) of conversations, we recommend the following distributed method via SGLang.
128
+
129
+ Install the latest version of [SGLang](https://docs.sglang.ai/index.html):
130
+
131
+ ```bash
132
+ pip install "sglang[all]>=0.4.7.post1"
133
+ ```
134
+
135
+ Launch model servers (assuming `NUM_GPUS` GPUs are available):
136
+
137
+ ```bash
138
+ NUM_GPUS=8
139
+ for (( i=0; i<NUM_GPUS; i++ )); do
140
+ echo "Starting server on port $((8000+i)) with GPU: $i"
141
+ CUDA_VISIBLE_DEVICES=$i python -m sglang.launch_server \
142
+ --model-path Skywork/Skywork-Reward-V2-Llama-3.1-8B \
143
+ --mem-fraction-static 0.9 \
144
+ --tp 1 \
145
+ --host 127.0.0.1 \
146
+ --port $((8000+i)) \
147
+ --context-length 16384 \
148
+ --is-embedding \
149
+ &
150
+ done
151
+ ```
152
+
153
+ After the servers are ready, we can get rewards from the servers. You should get reward values similar to those in the `transformers` example above.
154
+
155
+ ```python
156
+ import requests
157
+ from transformers import AutoTokenizer
158
+
159
+
160
+ model_name_or_path = "Skywork/Skywork-Reward-V2-Llama-3.1-8B"
161
+ base_urls = [f"http://127.0.0.1:{8000 + i}/classify" for i in range(8)]
162
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
163
+
164
+
165
+ def process_convs(convs, base_url, tokenizer, model_name_or_path):
166
+ payload = {"model": model_name_or_path}
167
+ convs_formatted = []
168
+ for conv in convs:
169
+ conv = tokenizer.apply_chat_template(conv, tokenize=False)
170
+ if tokenizer.bos_token is not None and conv.startswith(tokenizer.bos_token):
171
+ conv = conv[len(tokenizer.bos_token) :]
172
+ convs_formatted.append(conv)
173
+
174
+ payload.update({"text": convs_formatted})
175
+ rewards = []
176
+ try:
177
+ responses = requests.post(base_url, json=payload).json()
178
+ for response in responses:
179
+ rewards.append(response["embedding"][0])
180
+ assert len(rewards) == len(
181
+ convs
182
+ ), f"Expected {len(convs)} rewards, got {len(rewards)}"
183
+ return rewards
184
+ except Exception as e:
185
+ print(f"Error: {e}")
186
+ return [None] * len(convs)
187
+
188
+
189
+ prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
190
+ response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
191
+ response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
192
+
193
+ conv1 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}]
194
+ conv2 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}]
195
+
196
+ rewards = process_convs([conv1, conv2], base_urls[0], tokenizer, model_name_or_path)
197
+ print(f"Score for response 1: {rewards[0]}")
198
+ print(f"Score for response 2: {rewards[1]}")
199
+
200
+ # Expected output:
201
+ # Score for response 1: 23.125
202
+ # Score for response 2: 3.578125
203
+ ```
204
+
205
+ ## 📃 License
206
+
207
+ This model repository, including the model weights and code, is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). Reward models in the Skywork-Reward-V2 series derived from Qwen3 support commercial use and permit modifications and the creation of derivative works, provided that all conditions of the Apache 2.0 License are met and proper attribution is given. Please note that:
208
+
209
+ - Skywork-Reward-V2-Qwen3-0.6B, Skywork-Reward-V2-Qwen3-1.7B, Skywork-Reward-V2-Qwen3-4B, and Skywork-Reward-V2-Qwen3-8B are derived from the Qwen3 model series of corresponding sizes, which are originally licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
210
+ - Skywork-Reward-V2-Llama-3.1-8B and Skywork-Reward-V2-Llama-3.1-8B-40M are both derived from Llama-3.1-8B-Instruct and follow the [Llama 3.1 community license](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE).
211
+ - Skywork-Reward-V2-Llama-3.2-1B and Skywork-Reward-V2-Llama-3.2-3B are derived from Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct, respectively, and follow the [Llama 3.2 community license](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct/blob/main/LICENSE.txt).
212
+
213
+ ## 📧 Contact
214
+
215
+ If you have any questions, please feel free to reach us at `yuhao.liuu at kunlun-inc dot com` and `liang.zeng at kunlun-inc dot com`.
216
+
217
+ ## 📚 Citation
218
+
219
+ If you find our work useful, please cite it as follows. Our technical report will be released soon.
220
+
221
+ ```bibtex
222
+ @article{liu2025skywork-reward-v2,
223
+ title={Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy},
224
+ author = {Liu, Chris Yuhao and Zeng, Liang and Xiao, Yuzhen and He, Jujie and Liu, Jiacai and Wang, Chaojie and Yan, Rui and Shen, Wei and Zhang, Fuxiang and Xu, Jiacheng and Liu, Yang and Zhou, Yahui},
225
+ year={2025},
226
+ month={June},
227
+ howpublished={\url{https://huggingface.co/Skywork}},
228
+ url={https://huggingface.co/Skywork},
229
+ }
230
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
assets/Skywork_Reward_V2.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2dce867b64c651cfab46c14edc58af0912642d48568a2cb45751877a3cf149e
3
+ size 1023436
assets/skywork_logo.png ADDED

Git LFS Details

  • SHA256: bbd30750ec11120286b588940e8f33d045f56f00c97447880e88423518617fcc
  • Pointer size: 131 Bytes
  • Size of remote file: 119 kB
chat_template.jinja ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
27
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
28
+ {%- elif message.role == "assistant" %}
29
+ {%- set content = message.content %}
30
+ {%- set reasoning_content = '' %}
31
+ {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
32
+ {%- set reasoning_content = message.reasoning_content %}
33
+ {%- else %}
34
+ {%- if '</think>' in message.content %}
35
+ {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
36
+ {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
37
+ {%- endif %}
38
+ {%- endif %}
39
+ {%- if loop.index0 > ns.last_query_index %}
40
+ {%- if loop.last or (not loop.last and reasoning_content) %}
41
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
42
+ {%- else %}
43
+ {{- '<|im_start|>' + message.role + '\n' + content }}
44
+ {%- endif %}
45
+ {%- else %}
46
+ {{- '<|im_start|>' + message.role + '\n' + content }}
47
+ {%- endif %}
48
+ {%- if message.tool_calls %}
49
+ {%- for tool_call in message.tool_calls %}
50
+ {%- if (loop.first and content) or (not loop.first) %}
51
+ {{- '\n' }}
52
+ {%- endif %}
53
+ {%- if tool_call.function %}
54
+ {%- set tool_call = tool_call.function %}
55
+ {%- endif %}
56
+ {{- '<tool_call>\n{"name": "' }}
57
+ {{- tool_call.name }}
58
+ {{- '", "arguments": ' }}
59
+ {%- if tool_call.arguments is string %}
60
+ {{- tool_call.arguments }}
61
+ {%- else %}
62
+ {{- tool_call.arguments | tojson }}
63
+ {%- endif %}
64
+ {{- '}\n</tool_call>' }}
65
+ {%- endfor %}
66
+ {%- endif %}
67
+ {{- '<|im_end|>\n' }}
68
+ {%- elif message.role == "tool" %}
69
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
70
+ {{- '<|im_start|>user' }}
71
+ {%- endif %}
72
+ {{- '\n<tool_response>\n' }}
73
+ {{- message.content }}
74
+ {{- '\n</tool_response>' }}
75
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
76
+ {{- '<|im_end|>\n' }}
77
+ {%- endif %}
78
+ {%- endif %}
79
+ {%- endfor %}
80
+ {%- if add_generation_prompt %}
81
+ {{- '<|im_start|>assistant\n' }}
82
+ {%- if enable_thinking is defined and enable_thinking is false %}
83
+ {{- '<think>\n\n</think>\n\n' }}
84
+ {%- endif %}
85
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2560,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 9728,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "max_position_embeddings": 40960,
21
+ "max_window_layers": 36,
22
+ "model_type": "qwen3",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 36,
25
+ "num_key_value_heads": 8,
26
+ "pad_token_id": 151654,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_scaling": null,
29
+ "rope_theta": 1000000,
30
+ "sliding_window": null,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.52.3",
34
+ "use_cache": false,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42342dd35b502b2c3fa9bfaaec82f3f080458a9b251292fcf2916c000771b898
3
+ size 4967215360
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d66e9f0a3e6fc2a22c03101c78cad6f1d407fd932f5e3207c4a0cfd46284488
3
+ size 3077771840
model.safetensors.index.json ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8044941312
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
291
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
346
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
348
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
350
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
352
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
355
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
356
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
360
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
364
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
365
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.norm.weight": "model-00002-of-00002.safetensors",
404
+ "score.weight": "model-00002-of-00002.safetensors"
405
+ }
406
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|vision_pad|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|vision_pad|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff