Add files using upload-large-folder tool
Browse files- .gitattributes +3 -0
- README.md +230 -3
- added_tokens.json +28 -0
- assets/Skywork_Reward_V2.pdf +3 -0
- assets/skywork_logo.png +3 -0
- chat_template.jinja +85 -0
- config.json +37 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +406 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/Skywork_Reward_V2.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/skywork_logo.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,230 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Skywork-Reward-V2
|
2 |
+
<!-- markdownlint-disable html -->
|
3 |
+
|
4 |
+
<div align="center">
|
5 |
+
<img src="assets/skywork_logo.png" width="60%" alt="Skywork-Reward-V2"/>
|
6 |
+
</div>
|
7 |
+
<hr>
|
8 |
+
<div align="center" style="line-height: 1;">
|
9 |
+
<a href="https://arxiv.org/abs/2410.18451" target="_blank">
|
10 |
+
<img alt="Paper" src="https://img.shields.io/badge/📖%20Paper-Skywork--Reward--V2-4D5EFF?style=flat-square&labelColor=202124"/>
|
11 |
+
</a>
|
12 |
+
<a href="https://huggingface.co/Skywork" target="_blank">
|
13 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/🤗_Hugging_Face-Skywork-4D5EFF?style=flat-square&labelColor=202124"/>
|
14 |
+
</a>
|
15 |
+
</div>
|
16 |
+
|
17 |
+
## 🔥 Highlights
|
18 |
+
|
19 |
+
**Skywork-Reward-V2** is a series of reward models designed for versatility across a wide range of tasks, trained on a mixture of 26 million carefully curated preference pairs. While the Skywork-Reward-V2 series remains based on the Bradley-Terry model, we push the boundaries of training data scale and quality to achieve superior performance. Compared to the first generation of Skywork-Reward, the Skywork-Reward-V2 series offers the following major improvements:
|
20 |
+
|
21 |
+
- **Trained on a significantly larger and higher-quality preference data mixture**, consisting of **26 million preference pairs** curated via a large-scale human-LLM synergistic pipeline.
|
22 |
+
- **State-of-the-art performance on seven major reward model benchmarks**, including RewardBench v1, RewardBench v2, PPE Preference, PPE Correctness, RMB, RM-Bench, and JudgeBench.
|
23 |
+
- **Available in eight models across multiple sizes**, with the smallest 0.6B variant, *Skywork-Reward-V2-Qwen3-0.6B*, nearly matching the average performance of our previous best model, Skywork-Reward-Gemma-2-27B-v0.2. The largest 8B version, *Skywork-Reward-V2-Llama-3.1-8B*, surpasses all existing reward models across all benchmarks on average. Our top experimental model, *Skywork-Reward-V2-Llama-3.1-8B-40M*, **outperforms all existing reward models on every benchmark**.
|
24 |
+
|
25 |
+
## 📊 Evaluation
|
26 |
+
|
27 |
+
In the following table, we categorize the models into two types: Bradley-Terry (BT) reward models and Generative reward models. The Skywork-Reward-V2 series outperforms models in both categories with much smaller model sizes.
|
28 |
+
|
29 |
+
| Category | Model | RewardBench v1 | RewardBench v2 | PPE Preference | PPE Correctness | RMB | RM-Bench | JudgeBench | Avg. |
|
30 |
+
|:------------------------:|:---------------------------------------|:--------------:|:--------------:|:--------------:|:---------------:|:--------:|:--------:|:----------:|:--------:|
|
31 |
+
| **Bradley-Terry** | Llama-3-OffsetBias-RM-8B | 89.0 | 64.8 | 59.2 | 64.1 | 57.8 | 71.3 | 63.5 | 67.1 |
|
32 |
+
| | ArmoRM-Llama3-8B-v0.1 | 90.4 | 66.5 | 60.6 | 60.6 | 64.6 | 69.3 | 59.7 | 67.4 |
|
33 |
+
| | Internlm2-20b-reward | 90.2 | 56.3 | 61.0 | 63.0 | 62.9 | 68.3 | 64.3 | 66.6 |
|
34 |
+
| | Skywork-Reward-Llama-3.1-8B-v0.2 | 93.1 | 71.8 | 62.2 | 62.5 | 66.6 | 72.1 | 62.9 | 70.2 |
|
35 |
+
| | LDL-Reward-Gemma-2-27B-v0.1 | 95.0 | 72.5 | 62.4 | 63.9 | 67.9 | 71.1 | 64.2 | 71.0 |
|
36 |
+
| | Skywork-Reward-Gemma-2-27B-v0.2 | 94.3 | 75.3 | 63.6 | 61.9 | 69.4 | 70.0 | 66.5 | 71.6 |
|
37 |
+
| | INF-ORM-Llama3.1-70B | 95.1 | 76.5 | 64.2 | 64.4 | 70.5 | 73.8 | 70.2 | 73.5 |
|
38 |
+
| **Generative** | GPT-4o | 86.7 | 64.9 | 67.7 | - | 73.8 | - | 59.8 | - |
|
39 |
+
| | Claude-3.5-Sonnet | 84.2 | 64.7 | 67.3 | - | 70.6 | - | 64.8 | - |
|
40 |
+
| | DeepSeek-GRM-27B | 88.5 | - | 65.3 | 60.4 | 69.0 | - | - | - |
|
41 |
+
| | DeepSeek-GRM-27B (w/ MetaRM) | 90.4 | - | 67.2 | 63.2 | 70.3 | - | - | - |
|
42 |
+
| | RM-R1-Qwen-Instruct-32B | 92.9 | - | - | - | 73.0 | 79.1 | - | - |
|
43 |
+
| | RM-R1-DeepSeek-Distill-Qwen-32B | 90.9 | - | - | - | 69.8 | 83.9 | - | - |
|
44 |
+
| | EvalPlanner (Llama-3.1-70B) | 93.9 | - | - | - | - | 80.0 | 50.9 | - |
|
45 |
+
| | EvalPlanner (Llama-3.3-70B) | 93.8 | - | - | - | - | 82.1 | 56.6 | - |
|
46 |
+
| | J1-Llama-8B | 85.7 | - | 60.3 | 59.2 | - | 73.4 | 42.0 | - |
|
47 |
+
| | J1-Llama-8B (Maj@32) | - | - | 60.6 | 61.9 | - | - | - | - |
|
48 |
+
| | J1-Llama-70B | 93.3 | - | 66.3 | 72.9 | - | 82.7 | 60.0 | - |
|
49 |
+
| | J1-Llama-70B (Maj@32) | - | - | 67.0 | 73.7 | - | - | - | - |
|
50 |
+
| Bradley-Terry** | **Skywork-Reward-V2-Qwen3-0.6B** | 85.2 | 61.3 | 65.3 | 68.3 | 74.5 | 74.4 | 67.6 | 70.9 |
|
51 |
+
| | **Skywork-Reward-V2-Qwen3-1.7B** | 90.3 | 68.3 | 67.6 | 70.5 | 78.1 | 78.7 | 72.9 | 75.2 |
|
52 |
+
| | **Skywork-Reward-V2-Qwen3-4B** | 93.4 | 75.5 | 69.5 | 74.7 | 80.6 | 81.6 | 69.3 | 77.8 |
|
53 |
+
| | **Skywork-Reward-V2-Qwen3-8B** | 93.7 | 78.2 | 70.6 | 75.1 | 81.2 | 82.6 | 73.4 | 79.3 |
|
54 |
+
| | **Skywork-Reward-V2-Llama-3.2-1B** | 89.9 | 64.3 | 66.6 | 67.4 | 76.7 | 76.4 | 65.0 | 72.3 |
|
55 |
+
| | **Skywork-Reward-V2-Llama-3.2-3B** | 93.0 | 74.7 | 69.1 | 72.1 | 80.5 | 81.1 | 69.2 | 77.1 |
|
56 |
+
| | **Skywork-Reward-V2-Llama-3.1-8B** | 96.4 | 84.1 | 77.3 | 83.4 | 86.4 | 92.8 | 80.0 | 85.8 |
|
57 |
+
| | **Skywork-Reward-V2-Llama-3.1-8B-40M** | **97.8** | **86.5** | **79.8** | **87.2** | **89.3** | **96.0** | **83.4** | **88.6** |
|
58 |
+
|
59 |
+
## 💡 Recommended Usage
|
60 |
+
|
61 |
+
We make the following recommendations for using the Skywork-Reward-V2 model series:
|
62 |
+
|
63 |
+
1. For most use cases, we recommend Skywork-Reward-V2-Llama-3.1-8B and consider smaller variants for low-resource settings.
|
64 |
+
2. All models are trained on preference data with a maximum length of 16,384 tokens. It is recommended to perform inference within this limit.
|
65 |
+
3. Do not include system prompts when using chat templates.
|
66 |
+
|
67 |
+
Special note on Skywork-Reward-V2-Llama-3.1-8B-40M:
|
68 |
+
|
69 |
+
> [!NOTE]
|
70 |
+
> Although Skywork-Reward-V2-Llama-3.1-8B-40M outperforms the original Skywork-Reward-V2-Llama-3.1-8B, we consider it an experimental variant. This model is trained on the complete set of 40 million preference pairs, with about one third of the chosen-rejected pairs flipped. We recommend using this model solely for research or non-production purposes.
|
71 |
+
|
72 |
+
## 📦 Model Usage
|
73 |
+
|
74 |
+
### 📝 Simple Example in `transformers`
|
75 |
+
|
76 |
+
The example below shows how to perform inference in Hugging Face Transformers to get the reward score for conversations. For better data parallelization and throughput, we recommend using it along with [Accelerate](https://github.com/huggingface/accelerate) if multiple GPUs are available.
|
77 |
+
|
78 |
+
```python
|
79 |
+
import torch
|
80 |
+
|
81 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
82 |
+
|
83 |
+
# Load model and tokenizer
|
84 |
+
device = "cuda:0"
|
85 |
+
model_name = "Skywork/Skywork-Reward-V2-Llama-3.1-8B"
|
86 |
+
rm = AutoModelForSequenceClassification.from_pretrained(
|
87 |
+
model_name,
|
88 |
+
torch_dtype=torch.bfloat16,
|
89 |
+
device_map=device,
|
90 |
+
attn_implementation="flash_attention_2",
|
91 |
+
num_labels=1,
|
92 |
+
)
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
94 |
+
|
95 |
+
prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
|
96 |
+
response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
|
97 |
+
response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
|
98 |
+
|
99 |
+
conv1 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}]
|
100 |
+
conv2 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}]
|
101 |
+
|
102 |
+
# Format and tokenize the conversations
|
103 |
+
conv1_formatted = tokenizer.apply_chat_template(conv1, tokenize=False)
|
104 |
+
conv2_formatted = tokenizer.apply_chat_template(conv2, tokenize=False)
|
105 |
+
# These two lines remove the potential duplicate bos token
|
106 |
+
if tokenizer.bos_token is not None and conv1_formatted.startswith(tokenizer.bos_token):
|
107 |
+
conv1_formatted = conv1_formatted[len(tokenizer.bos_token):]
|
108 |
+
if tokenizer.bos_token is not None and conv2_formatted.startswith(tokenizer.bos_token):
|
109 |
+
conv2_formatted = conv2_formatted[len(tokenizer.bos_token):]
|
110 |
+
conv1_tokenized = tokenizer(conv1_formatted, return_tensors="pt").to(device)
|
111 |
+
conv2_tokenized = tokenizer(conv2_formatted, return_tensors="pt").to(device)
|
112 |
+
|
113 |
+
# Get the reward scores
|
114 |
+
with torch.no_grad():
|
115 |
+
score1 = rm(**conv1_tokenized).logits[0][0].item()
|
116 |
+
score2 = rm(**conv2_tokenized).logits[0][0].item()
|
117 |
+
print(f"Score for response 1: {score1}")
|
118 |
+
print(f"Score for response 2: {score2}")
|
119 |
+
|
120 |
+
# Expected output:
|
121 |
+
# Score for response 1: 23.0
|
122 |
+
# Score for response 2: 3.59375
|
123 |
+
```
|
124 |
+
|
125 |
+
### ⚡ Distributed Inference via SGLang
|
126 |
+
|
127 |
+
For the optimal throughput under a large number (e.g., millions) of conversations, we recommend the following distributed method via SGLang.
|
128 |
+
|
129 |
+
Install the latest version of [SGLang](https://docs.sglang.ai/index.html):
|
130 |
+
|
131 |
+
```bash
|
132 |
+
pip install "sglang[all]>=0.4.7.post1"
|
133 |
+
```
|
134 |
+
|
135 |
+
Launch model servers (assuming `NUM_GPUS` GPUs are available):
|
136 |
+
|
137 |
+
```bash
|
138 |
+
NUM_GPUS=8
|
139 |
+
for (( i=0; i<NUM_GPUS; i++ )); do
|
140 |
+
echo "Starting server on port $((8000+i)) with GPU: $i"
|
141 |
+
CUDA_VISIBLE_DEVICES=$i python -m sglang.launch_server \
|
142 |
+
--model-path Skywork/Skywork-Reward-V2-Llama-3.1-8B \
|
143 |
+
--mem-fraction-static 0.9 \
|
144 |
+
--tp 1 \
|
145 |
+
--host 127.0.0.1 \
|
146 |
+
--port $((8000+i)) \
|
147 |
+
--context-length 16384 \
|
148 |
+
--is-embedding \
|
149 |
+
&
|
150 |
+
done
|
151 |
+
```
|
152 |
+
|
153 |
+
After the servers are ready, we can get rewards from the servers. You should get reward values similar to those in the `transformers` example above.
|
154 |
+
|
155 |
+
```python
|
156 |
+
import requests
|
157 |
+
from transformers import AutoTokenizer
|
158 |
+
|
159 |
+
|
160 |
+
model_name_or_path = "Skywork/Skywork-Reward-V2-Llama-3.1-8B"
|
161 |
+
base_urls = [f"http://127.0.0.1:{8000 + i}/classify" for i in range(8)]
|
162 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
163 |
+
|
164 |
+
|
165 |
+
def process_convs(convs, base_url, tokenizer, model_name_or_path):
|
166 |
+
payload = {"model": model_name_or_path}
|
167 |
+
convs_formatted = []
|
168 |
+
for conv in convs:
|
169 |
+
conv = tokenizer.apply_chat_template(conv, tokenize=False)
|
170 |
+
if tokenizer.bos_token is not None and conv.startswith(tokenizer.bos_token):
|
171 |
+
conv = conv[len(tokenizer.bos_token) :]
|
172 |
+
convs_formatted.append(conv)
|
173 |
+
|
174 |
+
payload.update({"text": convs_formatted})
|
175 |
+
rewards = []
|
176 |
+
try:
|
177 |
+
responses = requests.post(base_url, json=payload).json()
|
178 |
+
for response in responses:
|
179 |
+
rewards.append(response["embedding"][0])
|
180 |
+
assert len(rewards) == len(
|
181 |
+
convs
|
182 |
+
), f"Expected {len(convs)} rewards, got {len(rewards)}"
|
183 |
+
return rewards
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error: {e}")
|
186 |
+
return [None] * len(convs)
|
187 |
+
|
188 |
+
|
189 |
+
prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
|
190 |
+
response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
|
191 |
+
response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
|
192 |
+
|
193 |
+
conv1 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}]
|
194 |
+
conv2 = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}]
|
195 |
+
|
196 |
+
rewards = process_convs([conv1, conv2], base_urls[0], tokenizer, model_name_or_path)
|
197 |
+
print(f"Score for response 1: {rewards[0]}")
|
198 |
+
print(f"Score for response 2: {rewards[1]}")
|
199 |
+
|
200 |
+
# Expected output:
|
201 |
+
# Score for response 1: 23.125
|
202 |
+
# Score for response 2: 3.578125
|
203 |
+
```
|
204 |
+
|
205 |
+
## 📃 License
|
206 |
+
|
207 |
+
This model repository, including the model weights and code, is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). Reward models in the Skywork-Reward-V2 series derived from Qwen3 support commercial use and permit modifications and the creation of derivative works, provided that all conditions of the Apache 2.0 License are met and proper attribution is given. Please note that:
|
208 |
+
|
209 |
+
- Skywork-Reward-V2-Qwen3-0.6B, Skywork-Reward-V2-Qwen3-1.7B, Skywork-Reward-V2-Qwen3-4B, and Skywork-Reward-V2-Qwen3-8B are derived from the Qwen3 model series of corresponding sizes, which are originally licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
|
210 |
+
- Skywork-Reward-V2-Llama-3.1-8B and Skywork-Reward-V2-Llama-3.1-8B-40M are both derived from Llama-3.1-8B-Instruct and follow the [Llama 3.1 community license](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE).
|
211 |
+
- Skywork-Reward-V2-Llama-3.2-1B and Skywork-Reward-V2-Llama-3.2-3B are derived from Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct, respectively, and follow the [Llama 3.2 community license](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct/blob/main/LICENSE.txt).
|
212 |
+
|
213 |
+
## 📧 Contact
|
214 |
+
|
215 |
+
If you have any questions, please feel free to reach us at `yuhao.liuu at kunlun-inc dot com` and `liang.zeng at kunlun-inc dot com`.
|
216 |
+
|
217 |
+
## 📚 Citation
|
218 |
+
|
219 |
+
If you find our work useful, please cite it as follows. Our technical report will be released soon.
|
220 |
+
|
221 |
+
```bibtex
|
222 |
+
@article{liu2025skywork-reward-v2,
|
223 |
+
title={Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy},
|
224 |
+
author = {Liu, Chris Yuhao and Zeng, Liang and Xiao, Yuzhen and He, Jujie and Liu, Jiacai and Wang, Chaojie and Yan, Rui and Shen, Wei and Zhang, Fuxiang and Xu, Jiacheng and Liu, Yang and Zhou, Yahui},
|
225 |
+
year={2025},
|
226 |
+
month={June},
|
227 |
+
howpublished={\url{https://huggingface.co/Skywork}},
|
228 |
+
url={https://huggingface.co/Skywork},
|
229 |
+
}
|
230 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
assets/Skywork_Reward_V2.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2dce867b64c651cfab46c14edc58af0912642d48568a2cb45751877a3cf149e
|
3 |
+
size 1023436
|
assets/skywork_logo.png
ADDED
![]() |
Git LFS Details
|
chat_template.jinja
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
28 |
+
{%- elif message.role == "assistant" %}
|
29 |
+
{%- set content = message.content %}
|
30 |
+
{%- set reasoning_content = '' %}
|
31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
33 |
+
{%- else %}
|
34 |
+
{%- if '</think>' in message.content %}
|
35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
37 |
+
{%- endif %}
|
38 |
+
{%- endif %}
|
39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
42 |
+
{%- else %}
|
43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- else %}
|
46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- if message.tool_calls %}
|
49 |
+
{%- for tool_call in message.tool_calls %}
|
50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
51 |
+
{{- '\n' }}
|
52 |
+
{%- endif %}
|
53 |
+
{%- if tool_call.function %}
|
54 |
+
{%- set tool_call = tool_call.function %}
|
55 |
+
{%- endif %}
|
56 |
+
{{- '<tool_call>\n{"name": "' }}
|
57 |
+
{{- tool_call.name }}
|
58 |
+
{{- '", "arguments": ' }}
|
59 |
+
{%- if tool_call.arguments is string %}
|
60 |
+
{{- tool_call.arguments }}
|
61 |
+
{%- else %}
|
62 |
+
{{- tool_call.arguments | tojson }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '}\n</tool_call>' }}
|
65 |
+
{%- endfor %}
|
66 |
+
{%- endif %}
|
67 |
+
{{- '<|im_end|>\n' }}
|
68 |
+
{%- elif message.role == "tool" %}
|
69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
70 |
+
{{- '<|im_start|>user' }}
|
71 |
+
{%- endif %}
|
72 |
+
{{- '\n<tool_response>\n' }}
|
73 |
+
{{- message.content }}
|
74 |
+
{{- '\n</tool_response>' }}
|
75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
76 |
+
{{- '<|im_end|>\n' }}
|
77 |
+
{%- endif %}
|
78 |
+
{%- endif %}
|
79 |
+
{%- endfor %}
|
80 |
+
{%- if add_generation_prompt %}
|
81 |
+
{{- '<|im_start|>assistant\n' }}
|
82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
84 |
+
{%- endif %}
|
85 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2560,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 9728,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"max_position_embeddings": 40960,
|
21 |
+
"max_window_layers": 36,
|
22 |
+
"model_type": "qwen3",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 36,
|
25 |
+
"num_key_value_heads": 8,
|
26 |
+
"pad_token_id": 151654,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 1000000,
|
30 |
+
"sliding_window": null,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.52.3",
|
34 |
+
"use_cache": false,
|
35 |
+
"use_sliding_window": false,
|
36 |
+
"vocab_size": 151936
|
37 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42342dd35b502b2c3fa9bfaaec82f3f080458a9b251292fcf2916c000771b898
|
3 |
+
size 4967215360
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d66e9f0a3e6fc2a22c03101c78cad6f1d407fd932f5e3207c4a0cfd46284488
|
3 |
+
size 3077771840
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8044941312
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
348 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
350 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
356 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.norm.weight": "model-00002-of-00002.safetensors",
|
404 |
+
"score.weight": "model-00002-of-00002.safetensors"
|
405 |
+
}
|
406 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<|vision_pad|>"
|
25 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|vision_pad|>",
|
236 |
+
"split_special_tokens": false,
|
237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|