Ole-Christian Galbo Engstrøm
commited on
Commit
·
becf17e
1
Parent(s):
9e3752d
Cleanup and update README.
Browse files- README.md +9 -1
- config.json +0 -9
- requirements.txt +0 -1
- unet_config.py +0 -21
- unet_hf.py +0 -20
README.md
CHANGED
|
@@ -16,7 +16,7 @@ pipeline_tag: image-segmentation
|
|
| 16 |
This repository contains an implementation of U-Net [[1]](#references). [unet.py](./unet.py) implements the class UNet. The implementation has been tested with PyTorch 2.7.1 and CUDA 12.6.
|
| 17 |

|
| 18 |
|
| 19 |
-
You can
|
| 20 |
```python
|
| 21 |
import torch
|
| 22 |
|
|
@@ -32,6 +32,14 @@ model = torch.hub.load('sm00thix/unet', 'unet', pretrained=False, in_channels=3,
|
|
| 32 |
# model = torch.hub.load('sm00thix/unet', 'unet_transconv', **kwargs) # Convenience function equivalent to torch.hub.load('sm00thix/unet', 'unet', bilinear=False, **kwargs)
|
| 33 |
```
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
## Options
|
| 36 |
The UNet class provides the following options for customization.
|
| 37 |
|
|
|
|
| 16 |
This repository contains an implementation of U-Net [[1]](#references). [unet.py](./unet.py) implements the class UNet. The implementation has been tested with PyTorch 2.7.1 and CUDA 12.6.
|
| 17 |

|
| 18 |
|
| 19 |
+
You can load the U-Net from PyTorch Hub.
|
| 20 |
```python
|
| 21 |
import torch
|
| 22 |
|
|
|
|
| 32 |
# model = torch.hub.load('sm00thix/unet', 'unet_transconv', **kwargs) # Convenience function equivalent to torch.hub.load('sm00thix/unet', 'unet', bilinear=False, **kwargs)
|
| 33 |
```
|
| 34 |
|
| 35 |
+
You can also clone this repository to access the U-Net directly.
|
| 36 |
+
```python
|
| 37 |
+
import torch
|
| 38 |
+
from unet import UNet
|
| 39 |
+
|
| 40 |
+
model = UNet(in_channels=3, out_channels=1, pad=True, bilinear=True, normalization=None)
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
## Options
|
| 44 |
The UNet class provides the following options for customization.
|
| 45 |
|
config.json
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"model_type": "unet",
|
| 3 |
-
"architectures": ["UNet"],
|
| 4 |
-
"in_channels": 3,
|
| 5 |
-
"out_channels": 1,
|
| 6 |
-
"pad": true,
|
| 7 |
-
"bilinear": true,
|
| 8 |
-
"normalization": null
|
| 9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,2 +1 @@
|
|
| 1 |
torch >= 2.7.1
|
| 2 |
-
transformers >= 4.55.2
|
|
|
|
| 1 |
torch >= 2.7.1
|
|
|
unet_config.py
DELETED
|
@@ -1,21 +0,0 @@
|
|
| 1 |
-
from transformers import PretrainedConfig
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
class UNetConfig(PretrainedConfig):
|
| 5 |
-
model_type = "unet"
|
| 6 |
-
|
| 7 |
-
def __init__(
|
| 8 |
-
self,
|
| 9 |
-
in_channels=3,
|
| 10 |
-
out_channels=1,
|
| 11 |
-
pad=True,
|
| 12 |
-
bilinear=True,
|
| 13 |
-
normalization=None,
|
| 14 |
-
**kwargs,
|
| 15 |
-
):
|
| 16 |
-
super().__init__(**kwargs)
|
| 17 |
-
self.in_channels = in_channels
|
| 18 |
-
self.out_channels = out_channels
|
| 19 |
-
self.pad = pad
|
| 20 |
-
self.bilinear = bilinear
|
| 21 |
-
self.normalization = normalization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet_hf.py
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
from transformers import PreTrainedModel
|
| 2 |
-
from .unet import UNet
|
| 3 |
-
from .unet_config import UNetConfig
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class UNetModel(PreTrainedModel):
|
| 7 |
-
config_class = UNetConfig
|
| 8 |
-
|
| 9 |
-
def __init__(self, config: UNetConfig):
|
| 10 |
-
super().__init__(config)
|
| 11 |
-
self.model = UNet(
|
| 12 |
-
in_channels=config.in_channels,
|
| 13 |
-
out_channels=config.out_channels,
|
| 14 |
-
pad=config.pad,
|
| 15 |
-
bilinear=config.bilinear,
|
| 16 |
-
normalization=config.normalization,
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
def forward(self, x):
|
| 20 |
-
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|