Question Answering
Transformers
Safetensors
English
doge
text-generation
trl
sft
dpo
custom_code
File size: 7,766 Bytes
6764cd0
 
2ee489a
 
 
 
 
 
 
 
 
8276331
 
 
 
 
6764cd0
 
 
2ee489a
6764cd0
2ee489a
 
 
 
 
fc13473
 
 
a012470
2ee489a
a012470
2ee489a
 
 
 
 
 
 
6764cd0
babd934
6764cd0
 
 
 
2ee489a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6764cd0
 
2ee489a
6764cd0
2ee489a
6764cd0
 
2ee489a
 
 
a012470
2efe10b
a012470
2efe10b
a012470
 
6764cd0
2ee489a
 
 
a012470
2efe10b
a012470
2efe10b
a012470
 
6764cd0
 
43e5506
 
66da0dc
43e5506
2efe10b
 
 
 
6f9cceb
a012470
43e5506
 
2ee489a
6764cd0
2ee489a
 
6764cd0
2ee489a
 
6764cd0
 
2ee489a
 
 
 
6764cd0
 
2ee489a
6764cd0
2ee489a
a012470
 
 
 
 
 
2ee489a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceTB/smoltalk
- HuggingFaceH4/ultrafeedback_binarized
base_model:
- SmallDoge/Doge-160M
language:
- en
pipeline_tag: question-answering
tags:
- trl
- sft
- dpo
- doge
---


# **Doge 160M Instruct**

<div align="center">
  <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
</div>
<hr>
<div align="center">
  <a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <!-- <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
    <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
  </a> -->
  <a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
    <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the [small-doge](https://github.com/SmallDoges/small-doge) repository.


## Uses

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-160M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-160M-Instruct", trust_remote_code=True)

generation_config = GenerationConfig(
      max_new_tokens=100, 
      use_cache=True, 
      do_sample=True, 
      temperature=0.8, 
      top_p=0.9,
      repetition_penalty=1.0
)
steamer = TextStreamer(
      tokenizer=tokenizer, 
      skip_prompt=True
)

prompt = "Hi, how are you doing today?"
conversation = [
      {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
    conversation=conversation,
    tokenize=True,
    return_tensors="pt",
)

outputs = model.generate(
    inputs, 
    tokenizer=tokenizer,
    generation_config=generation_config, 
    streamer=steamer
)
```


## Model Details

We build the Doge-Instruct by first SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) and then DPO on [UltraFeedback Binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).


**SFT**:
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|---|---|---|---|---|---|---|
| [Doge-20M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 8e-4 | 0.25M | bfloat16 |
| [Doge-20M-MoE-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-20M-MoE-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 8e-4 | 0.25M | bfloat16 |
| [Doge-60M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-60M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 6e-4 | 0.25M | bfloat16 |
| [Doge-120M-MoE-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-120M-MoE-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 6e-4 | 0.25M | bfloat16 |
| [Doge-160M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-160M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 4e-4 | 0.25M | bfloat16 |
| [Doge-320M-Instruct-SFT](https://huggingface.co/SmallDoge/Doge-320M-Instruct-SFT) | [smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 2048 | 2e-4 | 0.25M | bfloat16 |

**DPO**:
| Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
|---|---|---|---|---|---|---|
| [Doge-20M-Instruct](https://huggingface.co/SmallDoge/Doge-20M-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 8e-5 | 0.125M | bfloat16 |
| [Doge-20M-MoE-Instruct](https://huggingface.co/SmallDoge/Doge-20M-MoE-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 8e-5 | 0.125M | bfloat16 |
| [Doge-60M-Instruct](https://huggingface.co/SmallDoge/Doge-60M-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 6e-5 | 0.125M | bfloat16 |
| [Doge-120M-MoE-Instruct](https://huggingface.co/SmallDoge/Doge-120M-MoE-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 6e-5 | 0.125M | bfloat16 |
| [Doge-160M-Instruct](https://huggingface.co/SmallDoge/Doge-160M-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 4e-5 | 0.125M | bfloat16 |
| [Doge-320M-Instruct](https://huggingface.co/SmallDoge/Doge-320M-Instruct) | [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 2e-5 | 0.125M | bfloat16 |


**Evaluation**:

| Model | IFEval (Prompt Strict Acc) | MMLU | BBH | ARC | PIQA | HellaSwag | tokens / s on i7-11 CPU |
|---|---|---|---|---|---|---|---|
| [Doge-20M-Instruct](https://huggingface.co/SmallDoge/Doge-20M-Instruct) | 9.2 | 26.3 | 18.3 | 29.2 | 57.8 | 27.8 | 142 |
| [Doge-20M-MoE-Instruct](https://huggingface.co/SmallDoge/Doge-20M-MoE-Instruct) | 13.7 | 26.5 | 26.3 | 31.1 | 58.2 | 27.9 | 132 |
| [Doge-60M-Instruct](https://huggingface.co/SmallDoge/Doge-60M-Instruct) | 9.4 | 27.5 | 27.7 | 37.5 | 61.4 | 32.1 | 62 |
| [Doge-120M-MoE-Instruct](https://huggingface.co/SmallDoge/Doge-120M-MoE-Instruct) | 24.4 | 28.2 | 30.1 | 44.2 | 62.1 | 36.3 | 58 |
| [Doge-160M-Instruct](https://huggingface.co/SmallDoge/Doge-160M-Instruct) | 16.8 | 29.7 | 29.1 | 42.8 | 64.1 | 37.1 | 28 |
| [Doge-320M-Instruct](https://huggingface.co/SmallDoge/Doge-320M-Instruct) | 28.5 | 30.3 | 31.9 | 51.7 | 71.0 | 50.6 | 16 |


**Procedure**:

**SFT**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/0jht5dro) 

**DPO**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/m5onn07v)


**Environment**:
- Image: nvcr.io/nvidia/pytorch:24.12-py3
- Hardware: 1x NVIDIA RTX 4090
- Software: Transformers, TRL


## Citation

```bibtex
@misc{smalldoges,
  title={SmallDoges: A Family of Dynamic UltraFast Small Language Models}, 
  author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
  year={2025},
  month={March},
  url={https://github.com/SmallDoges/small-doge}
}
```