Upload DogeForCausalLM
Browse files- config.json +47 -37
- configuration_doge.py +83 -46
- generation_config.json +7 -7
- model.safetensors +2 -2
- modeling_doge.py +382 -256
config.json
CHANGED
|
@@ -1,37 +1,47 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "./results/Doge-60M-Instruct",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"DogeForCausalLM"
|
| 5 |
-
],
|
| 6 |
-
"attention_dropout": 0.0,
|
| 7 |
-
"auto_map": {
|
| 8 |
-
"AutoConfig": "configuration_doge.DogeConfig",
|
| 9 |
-
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
| 10 |
-
},
|
| 11 |
-
"bos_token_id":
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
-
"
|
| 36 |
-
"
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./results/Doge-60M-Instruct-DPO",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DogeForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_doge.DogeConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 0,
|
| 12 |
+
"dynamic_mask_ratio": 0.0,
|
| 13 |
+
"eos_token_id": 1,
|
| 14 |
+
"expert_retrieval_size": 256,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_bias": false,
|
| 17 |
+
"hidden_dropout": 0.0,
|
| 18 |
+
"hidden_size": 512,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 1024,
|
| 21 |
+
"is_moe": false,
|
| 22 |
+
"max_position_embeddings": 2048,
|
| 23 |
+
"model_type": "doge",
|
| 24 |
+
"num_attention_heads": 4,
|
| 25 |
+
"num_cdmmoe_experts": 2048,
|
| 26 |
+
"num_cdmmoe_experts_per_head": 8,
|
| 27 |
+
"num_cdmmoe_heads": 4,
|
| 28 |
+
"num_cdmoe_experts": 16348,
|
| 29 |
+
"num_cdmoe_experts_per_head": 8,
|
| 30 |
+
"num_cdmoe_heads": 4,
|
| 31 |
+
"num_channels": 3,
|
| 32 |
+
"num_hidden_layers": 16,
|
| 33 |
+
"num_key_value_heads": 2,
|
| 34 |
+
"pad_token_id": 2,
|
| 35 |
+
"patch_size": 16,
|
| 36 |
+
"rms_norm_eps": 1e-06,
|
| 37 |
+
"rope_scaling": {
|
| 38 |
+
"factor": 4.0,
|
| 39 |
+
"original_max_position_embeddings": 2048,
|
| 40 |
+
"rope_type": "dynamic"
|
| 41 |
+
},
|
| 42 |
+
"rope_theta": 10000.0,
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.49.0.dev0",
|
| 45 |
+
"use_cache": true,
|
| 46 |
+
"vocab_size": 32768
|
| 47 |
+
}
|
configuration_doge.py
CHANGED
|
@@ -25,20 +25,23 @@ from transformers.modeling_rope_utils import rope_config_validation
|
|
| 25 |
class DogeConfig(PretrainedConfig):
|
| 26 |
r"""
|
| 27 |
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
| 28 |
-
model according to the specified arguments, defining the model architecture like [
|
| 29 |
|
| 30 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
|
| 33 |
Args:
|
| 34 |
vocab_size (`int`, *optional*, defaults to 32768):
|
| 35 |
-
Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
hidden_size (`int`, *optional*, defaults to 1024):
|
| 38 |
Dimension of the hidden representations.
|
| 39 |
-
intermediate_size (`int`, *optional*, defaults to
|
| 40 |
-
Dimension of the
|
| 41 |
-
num_hidden_layers (`int`, *optional*, defaults to
|
| 42 |
Number of hidden layers in the Transformer decoder.
|
| 43 |
hidden_bias (`bool`, *optional*, defaults to `False`):
|
| 44 |
Whether to use bias in the hidden layers.
|
|
@@ -51,24 +54,21 @@ class DogeConfig(PretrainedConfig):
|
|
| 51 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 52 |
The base period of the RoPE embeddings.
|
| 53 |
rope_scaling (`Dict`, *optional*):
|
| 54 |
-
Dictionary containing the scaling configuration for the RoPE embeddings.
|
| 55 |
-
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 56 |
-
accordingly.
|
| 57 |
Expected contents:
|
| 58 |
`rope_type` (`str`):
|
| 59 |
-
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 60 |
-
'llama3'], with 'default' being the original RoPE implementation.
|
| 61 |
`factor` (`float`, *optional*):
|
| 62 |
-
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
| 63 |
-
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 64 |
-
original maximum pre-trained length.
|
| 65 |
`original_max_position_embeddings` (`int`, *optional*):
|
| 66 |
-
Used with 'dynamic', 'longrope' and 'llama3'.
|
| 67 |
-
pretraining.
|
| 68 |
`attention_factor` (`float`, *optional*):
|
| 69 |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 70 |
-
computation.
|
| 71 |
-
`factor` field to infer the suggested value.
|
| 72 |
`beta_fast` (`float`, *optional*):
|
| 73 |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 74 |
ramp function. If unspecified, it defaults to 32.
|
|
@@ -76,13 +76,11 @@ class DogeConfig(PretrainedConfig):
|
|
| 76 |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 77 |
ramp function. If unspecified, it defaults to 1.
|
| 78 |
`short_factor` (`List[float]`, *optional*):
|
| 79 |
-
Only used with 'longrope'. The scaling factor to be applied to short contexts (
|
| 80 |
-
|
| 81 |
-
size divided by the number of attention heads divided by 2
|
| 82 |
`long_factor` (`List[float]`, *optional*):
|
| 83 |
-
Only used with 'longrope'. The scaling factor to be applied to long contexts (
|
| 84 |
-
|
| 85 |
-
size divided by the number of attention heads divided by 2
|
| 86 |
`low_freq_factor` (`float`, *optional*):
|
| 87 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 88 |
`high_freq_factor` (`float`, *optional*):
|
|
@@ -100,56 +98,86 @@ class DogeConfig(PretrainedConfig):
|
|
| 100 |
Beginning of stream token id.
|
| 101 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 102 |
End of stream token id.
|
| 103 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `
|
| 104 |
Whether to tie weight embeddings
|
| 105 |
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 106 |
Number of attention heads for each attention layer in the Transformer decoder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 108 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
|
|
| 109 |
is_moe (`bool`, *optional*, defaults to `False`):
|
| 110 |
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
|
| 111 |
-
|
| 112 |
-
Number of Private Experts for the Cross Domain Mixture of Experts.
|
| 113 |
-
|
| 114 |
Number of heads of Private Experts for the Cross Domain Mixture of Experts.
|
| 115 |
-
|
| 116 |
Number of Private Experts per head for the Cross Domain Mixture of Experts.
|
| 117 |
-
expert_retrieval_size (`int`, *optional*, defaults to
|
| 118 |
Dimension of the Expert retrieval states for the Cross Domain Mixture of Experts.
|
| 119 |
"""
|
| 120 |
|
| 121 |
model_type = "doge"
|
| 122 |
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def __init__(
|
| 125 |
self,
|
| 126 |
vocab_size=32768,
|
|
|
|
|
|
|
| 127 |
hidden_size=1024,
|
| 128 |
-
intermediate_size=
|
| 129 |
-
num_hidden_layers=
|
| 130 |
hidden_bias=False,
|
| 131 |
hidden_dropout=0.0,
|
| 132 |
hidden_act="silu",
|
| 133 |
max_position_embeddings=2048,
|
| 134 |
rope_theta=10000.0,
|
| 135 |
-
rope_scaling=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
initializer_range=0.02,
|
| 137 |
rms_norm_eps=1e-06,
|
| 138 |
use_cache=True,
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
tie_word_embeddings=
|
| 143 |
num_attention_heads=8,
|
|
|
|
| 144 |
attention_dropout=0.0,
|
|
|
|
| 145 |
is_moe=False,
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
expert_retrieval_size=
|
| 150 |
**kwargs,
|
| 151 |
):
|
| 152 |
self.vocab_size = vocab_size
|
|
|
|
|
|
|
| 153 |
self.hidden_size = hidden_size
|
| 154 |
self.intermediate_size = intermediate_size
|
| 155 |
self.num_hidden_layers = num_hidden_layers
|
|
@@ -162,16 +190,18 @@ class DogeConfig(PretrainedConfig):
|
|
| 162 |
self.initializer_range = initializer_range
|
| 163 |
self.rms_norm_eps = rms_norm_eps
|
| 164 |
self.use_cache = use_cache
|
| 165 |
-
self.pad_token_id = pad_token_id
|
| 166 |
self.bos_token_id = bos_token_id
|
| 167 |
self.eos_token_id = eos_token_id
|
|
|
|
| 168 |
self.tie_word_embeddings = tie_word_embeddings
|
| 169 |
self.num_attention_heads = num_attention_heads
|
|
|
|
| 170 |
self.attention_dropout = attention_dropout
|
|
|
|
| 171 |
self.is_moe = is_moe
|
| 172 |
-
self.
|
| 173 |
-
self.
|
| 174 |
-
self.
|
| 175 |
self.expert_retrieval_size = expert_retrieval_size
|
| 176 |
|
| 177 |
# Validate the correctness of rotary position embeddings parameters
|
|
@@ -180,10 +210,17 @@ class DogeConfig(PretrainedConfig):
|
|
| 180 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 181 |
rope_config_validation(self)
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
super().__init__(
|
| 184 |
-
pad_token_id=pad_token_id,
|
| 185 |
bos_token_id=bos_token_id,
|
| 186 |
eos_token_id=eos_token_id,
|
|
|
|
| 187 |
tie_word_embeddings=tie_word_embeddings,
|
| 188 |
**kwargs,
|
| 189 |
)
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
class DogeConfig(PretrainedConfig):
|
| 26 |
r"""
|
| 27 |
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
| 28 |
+
model according to the specified arguments, defining the model architecture like [JingzeShi/Doge-20M](https://huggingface.co/JingzeShi/Doge-20M).
|
| 29 |
|
| 30 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
|
| 33 |
Args:
|
| 34 |
vocab_size (`int`, *optional*, defaults to 32768):
|
| 35 |
+
Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
|
| 36 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 37 |
+
Number of channels in the input image.
|
| 38 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 39 |
+
Patch size of Vision Transformer Embeddings.
|
| 40 |
hidden_size (`int`, *optional*, defaults to 1024):
|
| 41 |
Dimension of the hidden representations.
|
| 42 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
| 43 |
+
Dimension of the MLP representations.
|
| 44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 45 |
Number of hidden layers in the Transformer decoder.
|
| 46 |
hidden_bias (`bool`, *optional*, defaults to `False`):
|
| 47 |
Whether to use bias in the hidden layers.
|
|
|
|
| 54 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 55 |
The base period of the RoPE embeddings.
|
| 56 |
rope_scaling (`Dict`, *optional*):
|
| 57 |
+
Dictionary containing the scaling configuration for the RoPE embeddings.
|
| 58 |
+
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
|
|
|
|
| 59 |
Expected contents:
|
| 60 |
`rope_type` (`str`):
|
| 61 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
|
|
|
|
| 62 |
`factor` (`float`, *optional*):
|
| 63 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
| 64 |
+
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
|
|
|
|
| 65 |
`original_max_position_embeddings` (`int`, *optional*):
|
| 66 |
+
Used with 'dynamic', 'longrope' and 'llama3'.
|
| 67 |
+
The original max position embeddings used during pretraining.
|
| 68 |
`attention_factor` (`float`, *optional*):
|
| 69 |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 70 |
+
computation.
|
| 71 |
+
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
| 72 |
`beta_fast` (`float`, *optional*):
|
| 73 |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 74 |
ramp function. If unspecified, it defaults to 32.
|
|
|
|
| 76 |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 77 |
ramp function. If unspecified, it defaults to 1.
|
| 78 |
`short_factor` (`List[float]`, *optional*):
|
| 79 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
|
| 80 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
|
|
| 81 |
`long_factor` (`List[float]`, *optional*):
|
| 82 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
|
| 83 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
|
|
|
| 84 |
`low_freq_factor` (`float`, *optional*):
|
| 85 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 86 |
`high_freq_factor` (`float`, *optional*):
|
|
|
|
| 98 |
Beginning of stream token id.
|
| 99 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 100 |
End of stream token id.
|
| 101 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
| 102 |
Whether to tie weight embeddings
|
| 103 |
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 104 |
Number of attention heads for each attention layer in the Transformer decoder.
|
| 105 |
+
num_key_value_heads (`int`, *optional*, defaults to `None`):
|
| 106 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention.
|
| 107 |
+
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 108 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
|
| 109 |
+
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
|
| 110 |
+
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
| 111 |
+
If it is not specified, will default to `num_attention_heads`.
|
| 112 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 113 |
The dropout ratio for the attention probabilities.
|
| 114 |
+
dynamic_mask_ratio (`float`, *optional*, defaults to 0.0, range [0, 1]):
|
| 115 |
+
The ratio to control the proportion of the dynamic mask filled with the minimum value.
|
| 116 |
is_moe (`bool`, *optional*, defaults to `False`):
|
| 117 |
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
|
| 118 |
+
num_cdmoe_experts (`int`, *optional*, defaults to 16348):
|
| 119 |
+
Number of Private Experts for the Cross Domain Mixture of Experts. calculation formula: :math:`\text{num_cdmoe_experts} = (32 \times \text{num_cdmoe_heads})^2`
|
| 120 |
+
num_cdmoe_heads (`int`, *optional*, defaults to 4):
|
| 121 |
Number of heads of Private Experts for the Cross Domain Mixture of Experts.
|
| 122 |
+
num_cdmoe_experts_per_head (`int`, *optional*, defaults to 8):
|
| 123 |
Number of Private Experts per head for the Cross Domain Mixture of Experts.
|
| 124 |
+
expert_retrieval_size (`int`, *optional*, defaults to 64):
|
| 125 |
Dimension of the Expert retrieval states for the Cross Domain Mixture of Experts.
|
| 126 |
"""
|
| 127 |
|
| 128 |
model_type = "doge"
|
| 129 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 130 |
+
# Default tensor parallel plan for base model `DogeModel`
|
| 131 |
+
base_model_tp_plan = {
|
| 132 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 133 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 134 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 135 |
+
"layers.*.self_attn.dt_proj": "colwise",
|
| 136 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 137 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 138 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 139 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 140 |
+
}
|
| 141 |
|
| 142 |
def __init__(
|
| 143 |
self,
|
| 144 |
vocab_size=32768,
|
| 145 |
+
num_channels=3,
|
| 146 |
+
patch_size=16,
|
| 147 |
hidden_size=1024,
|
| 148 |
+
intermediate_size=2048,
|
| 149 |
+
num_hidden_layers=32,
|
| 150 |
hidden_bias=False,
|
| 151 |
hidden_dropout=0.0,
|
| 152 |
hidden_act="silu",
|
| 153 |
max_position_embeddings=2048,
|
| 154 |
rope_theta=10000.0,
|
| 155 |
+
rope_scaling={
|
| 156 |
+
"rope_type": "dynamic",
|
| 157 |
+
"factor": 4.0,
|
| 158 |
+
"original_max_position_embeddings": 2048,
|
| 159 |
+
},
|
| 160 |
initializer_range=0.02,
|
| 161 |
rms_norm_eps=1e-06,
|
| 162 |
use_cache=True,
|
| 163 |
+
bos_token_id=0,
|
| 164 |
+
eos_token_id=1,
|
| 165 |
+
pad_token_id=2,
|
| 166 |
+
tie_word_embeddings=True,
|
| 167 |
num_attention_heads=8,
|
| 168 |
+
num_key_value_heads=None,
|
| 169 |
attention_dropout=0.0,
|
| 170 |
+
dynamic_mask_ratio=0.0,
|
| 171 |
is_moe=False,
|
| 172 |
+
num_cdmoe_experts=16348,
|
| 173 |
+
num_cdmoe_heads=4,
|
| 174 |
+
num_cdmoe_experts_per_head=8,
|
| 175 |
+
expert_retrieval_size=64,
|
| 176 |
**kwargs,
|
| 177 |
):
|
| 178 |
self.vocab_size = vocab_size
|
| 179 |
+
self.num_channels = num_channels
|
| 180 |
+
self.patch_size = patch_size
|
| 181 |
self.hidden_size = hidden_size
|
| 182 |
self.intermediate_size = intermediate_size
|
| 183 |
self.num_hidden_layers = num_hidden_layers
|
|
|
|
| 190 |
self.initializer_range = initializer_range
|
| 191 |
self.rms_norm_eps = rms_norm_eps
|
| 192 |
self.use_cache = use_cache
|
|
|
|
| 193 |
self.bos_token_id = bos_token_id
|
| 194 |
self.eos_token_id = eos_token_id
|
| 195 |
+
self.pad_token_id = pad_token_id
|
| 196 |
self.tie_word_embeddings = tie_word_embeddings
|
| 197 |
self.num_attention_heads = num_attention_heads
|
| 198 |
+
self.num_key_value_heads = num_key_value_heads
|
| 199 |
self.attention_dropout = attention_dropout
|
| 200 |
+
self.dynamic_mask_ratio = dynamic_mask_ratio
|
| 201 |
self.is_moe = is_moe
|
| 202 |
+
self.num_cdmoe_experts = num_cdmoe_experts
|
| 203 |
+
self.num_cdmoe_heads = num_cdmoe_heads
|
| 204 |
+
self.num_cdmoe_experts_per_head = num_cdmoe_experts_per_head
|
| 205 |
self.expert_retrieval_size = expert_retrieval_size
|
| 206 |
|
| 207 |
# Validate the correctness of rotary position embeddings parameters
|
|
|
|
| 210 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 211 |
rope_config_validation(self)
|
| 212 |
|
| 213 |
+
# for backward compatibility
|
| 214 |
+
if num_key_value_heads is None:
|
| 215 |
+
self.num_key_value_heads = num_attention_heads
|
| 216 |
+
|
| 217 |
super().__init__(
|
|
|
|
| 218 |
bos_token_id=bos_token_id,
|
| 219 |
eos_token_id=eos_token_id,
|
| 220 |
+
pad_token_id=pad_token_id,
|
| 221 |
tie_word_embeddings=tie_word_embeddings,
|
| 222 |
**kwargs,
|
| 223 |
)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
__all__ = ["DogeConfig"]
|
generation_config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_from_model_config": true,
|
| 3 |
-
"bos_token_id":
|
| 4 |
-
"eos_token_id":
|
| 5 |
-
"pad_token_id":
|
| 6 |
-
"transformers_version": "4.
|
| 7 |
-
}
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 1,
|
| 5 |
+
"pad_token_id": 2,
|
| 6 |
+
"transformers_version": "4.49.0.dev0"
|
| 7 |
+
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d30a2a446050f4e9c26bb833e260e5479937577b280c16d1e39f8ce4e66aba1
|
| 3 |
+
size 218325576
|
modeling_doge.py
CHANGED
|
@@ -19,7 +19,7 @@
|
|
| 19 |
"""PyTorch Doge model."""
|
| 20 |
|
| 21 |
import math
|
| 22 |
-
from typing import List, Optional, Tuple, Union
|
| 23 |
|
| 24 |
import torch
|
| 25 |
import torch.nn.functional as F
|
|
@@ -36,9 +36,12 @@ from transformers.modeling_outputs import (
|
|
| 36 |
)
|
| 37 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 38 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 39 |
from transformers.utils import (
|
|
|
|
| 40 |
add_start_docstrings,
|
| 41 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 42 |
logging,
|
| 43 |
replace_return_docstrings,
|
| 44 |
)
|
|
@@ -49,6 +52,9 @@ try:
|
|
| 49 |
except ImportError:
|
| 50 |
einx_add = None
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
logger = logging.get_logger(__name__)
|
| 54 |
|
|
@@ -79,7 +85,7 @@ class Residual(nn.Module):
|
|
| 79 |
def __init__(self, hidden_size):
|
| 80 |
super().__init__()
|
| 81 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 82 |
-
|
| 83 |
def forward(self, residual_states, hidden_states):
|
| 84 |
return self.weight * residual_states + hidden_states
|
| 85 |
|
|
@@ -92,10 +98,10 @@ class RotaryEmbedding(nn.Module):
|
|
| 92 |
super().__init__()
|
| 93 |
self.rope_kwargs = {}
|
| 94 |
|
| 95 |
-
if config.rope_scaling is None:
|
| 96 |
-
self.rope_type = "
|
| 97 |
else:
|
| 98 |
-
self.rope_type =
|
| 99 |
self.max_seq_len_cached = config.max_position_embeddings
|
| 100 |
self.original_max_seq_len = config.max_position_embeddings
|
| 101 |
self.base = config.rope_theta
|
|
@@ -133,6 +139,7 @@ class RotaryEmbedding(nn.Module):
|
|
| 133 |
# core RoPE block
|
| 134 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 135 |
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
| 136 |
device_type = x.device.type
|
| 137 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 138 |
with torch.autocast(device_type=device_type, enabled=False):
|
|
@@ -141,6 +148,7 @@ class RotaryEmbedding(nn.Module):
|
|
| 141 |
cos = emb.cos()
|
| 142 |
sin = emb.sin()
|
| 143 |
|
|
|
|
| 144 |
cos = cos * self.attention_scaling
|
| 145 |
sin = sin * self.attention_scaling
|
| 146 |
|
|
@@ -168,11 +176,10 @@ def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
| 168 |
Deprecated and unused.
|
| 169 |
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 170 |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 171 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k.
|
| 172 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim].
|
| 173 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 174 |
-
|
| 175 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 176 |
Returns:
|
| 177 |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 178 |
"""
|
|
@@ -183,82 +190,83 @@ def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
| 183 |
return q_embed, k_embed
|
| 184 |
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
class DogeDynamicMaskAttention(nn.Module):
|
| 187 |
"""Dynamic Mask Attention from 'Wonderful Matrices' paper."""
|
| 188 |
|
| 189 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 190 |
super().__init__()
|
| 191 |
-
|
| 192 |
self.config = config
|
| 193 |
self.layer_idx = layer_idx
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 198 |
-
"when creating this class."
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
self.hidden_dim = config.hidden_size
|
| 202 |
-
self.num_attention_heads = config.num_attention_heads
|
| 203 |
self.attention_dropout = config.attention_dropout
|
| 204 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
# Q K V O projections
|
| 207 |
self.q_proj = nn.Linear(
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
bias=config.hidden_bias
|
| 211 |
)
|
| 212 |
self.k_proj = nn.Linear(
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
bias=config.hidden_bias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
# dynamic mask for the QK^T attention score matrix
|
| 218 |
self.A = nn.Parameter(
|
| 219 |
-
torch.ones(
|
| 220 |
)
|
| 221 |
self.dt_proj = nn.Linear(
|
| 222 |
-
self.
|
| 223 |
-
|
| 224 |
-
bias=config.hidden_bias
|
| 225 |
-
)
|
| 226 |
-
self.v_proj = nn.Linear(
|
| 227 |
-
self.hidden_dim,
|
| 228 |
-
self.num_attention_heads * self.attention_head_dim,
|
| 229 |
-
bias=config.hidden_bias,
|
| 230 |
)
|
| 231 |
self.o_proj = nn.Linear(
|
| 232 |
-
self.
|
| 233 |
-
|
| 234 |
-
bias=config.hidden_bias
|
| 235 |
)
|
| 236 |
|
| 237 |
def forward(
|
| 238 |
self,
|
| 239 |
hidden_states: torch.Tensor,
|
|
|
|
| 240 |
attention_mask: Optional[torch.Tensor] = None,
|
| 241 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 242 |
past_key_value: Optional[Cache] = None,
|
| 243 |
cache_position: Optional[torch.LongTensor] = None,
|
| 244 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 245 |
**kwargs,
|
| 246 |
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
query_states = self.q_proj(hidden_states)
|
| 250 |
-
key_states = self.k_proj(hidden_states)
|
| 251 |
-
value_states = self.v_proj(hidden_states)
|
| 252 |
|
| 253 |
-
query_states =
|
| 254 |
-
|
| 255 |
-
)
|
| 256 |
-
key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
|
| 257 |
-
1, 2
|
| 258 |
-
)
|
| 259 |
-
value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
|
| 260 |
-
1, 2
|
| 261 |
-
)
|
| 262 |
|
| 263 |
cos, sin = position_embeddings
|
| 264 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
@@ -268,90 +276,153 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 268 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 269 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 270 |
|
| 271 |
-
#
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
attn_weights = attn_weights + causal_mask
|
| 281 |
-
|
| 282 |
-
# upcast attention scores to fp32
|
| 283 |
-
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 284 |
-
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
attn_output = attn_output.
|
| 290 |
-
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 291 |
attn_output = self.o_proj(attn_output)
|
|
|
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
class DogeSdpaDynamicMaskAttn(DogeDynamicMaskAttention):
|
| 297 |
-
|
| 298 |
-
def forward(
|
| 299 |
self,
|
| 300 |
hidden_states: torch.Tensor,
|
|
|
|
|
|
|
| 301 |
attention_mask: Optional[torch.Tensor] = None,
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 306 |
-
**kwargs,
|
| 307 |
-
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
| 308 |
-
bsz, q_len, _ = hidden_states.shape
|
| 309 |
-
|
| 310 |
-
query_states = self.q_proj(hidden_states)
|
| 311 |
-
key_states = self.k_proj(hidden_states)
|
| 312 |
-
value_states = self.v_proj(hidden_states)
|
| 313 |
-
|
| 314 |
-
query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
|
| 315 |
-
key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
|
| 316 |
-
value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
if attention_mask is not None:
|
| 327 |
-
|
| 328 |
-
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 329 |
-
dynamic_mask = dynamic_mask < 1.0
|
| 330 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]].masked_fill(dynamic_mask[:, :, None, :], torch.finfo(hidden_states.dtype).min)
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
| 335 |
|
|
|
|
|
|
|
| 336 |
attn_output = F.scaled_dot_product_attention(
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
attn_mask=causal_mask,
|
| 341 |
-
dropout_p=
|
|
|
|
|
|
|
| 342 |
)
|
| 343 |
-
|
| 344 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
|
| 357 |
class DogeMLP(nn.Module):
|
|
@@ -362,21 +433,9 @@ class DogeMLP(nn.Module):
|
|
| 362 |
self.intermediate_dim = config.intermediate_size
|
| 363 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 364 |
|
| 365 |
-
self.gate_proj = nn.Linear(
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
bias=config.hidden_bias,
|
| 369 |
-
)
|
| 370 |
-
self.up_proj = nn.Linear(
|
| 371 |
-
self.hidden_dim,
|
| 372 |
-
self.intermediate_dim,
|
| 373 |
-
bias=config.hidden_bias,
|
| 374 |
-
)
|
| 375 |
-
self.down_proj = nn.Linear(
|
| 376 |
-
self.intermediate_dim,
|
| 377 |
-
self.hidden_dim,
|
| 378 |
-
bias=config.hidden_bias,
|
| 379 |
-
)
|
| 380 |
|
| 381 |
def forward(
|
| 382 |
self,
|
|
@@ -396,36 +455,18 @@ class DogeCDMoE(DogeMLP):
|
|
| 396 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 397 |
|
| 398 |
self.expert_retrieval_dim = config.expert_retrieval_size
|
| 399 |
-
self.
|
| 400 |
-
self.
|
| 401 |
-
self.
|
| 402 |
-
self.num_keys = int(math.sqrt(self.
|
| 403 |
|
| 404 |
# queries and keys for retrieval experts
|
| 405 |
-
self.queries = nn.Linear(
|
| 406 |
-
|
| 407 |
-
self.num_cdmmoe_heads * self.expert_retrieval_dim,
|
| 408 |
-
bias=False,
|
| 409 |
-
)
|
| 410 |
-
self.keys = nn.Parameter(
|
| 411 |
-
torch.zeros(
|
| 412 |
-
self.num_cdmmoe_heads,
|
| 413 |
-
self.num_keys,
|
| 414 |
-
2,
|
| 415 |
-
self.expert_retrieval_dim // 2,
|
| 416 |
-
)
|
| 417 |
-
)
|
| 418 |
|
| 419 |
# experts
|
| 420 |
-
self.down_embed = nn.Embedding(
|
| 421 |
-
|
| 422 |
-
self.hidden_dim,
|
| 423 |
-
)
|
| 424 |
-
self.up_embed = nn.Embedding(
|
| 425 |
-
self.num_cdmmoe_experts,
|
| 426 |
-
self.hidden_dim,
|
| 427 |
-
)
|
| 428 |
-
|
| 429 |
|
| 430 |
def forward(
|
| 431 |
self,
|
|
@@ -436,11 +477,11 @@ class DogeCDMoE(DogeMLP):
|
|
| 436 |
|
| 437 |
# get similarity with queries and keys
|
| 438 |
queries = self.queries(hidden_states)
|
| 439 |
-
queries = queries.view(bsz, seq_len, 2, self.
|
| 440 |
sim = torch.einsum("p b t h n, h k p n -> p b t h k", queries, self.keys)
|
| 441 |
|
| 442 |
# get experts with the highest similarity
|
| 443 |
-
(scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.
|
| 444 |
if einx_add is not None:
|
| 445 |
all_scores = einx_add("... i, ... j -> ... (i j)", scores_x, scores_y)
|
| 446 |
all_indices = einx_add("... i, ... j -> ... (i j)", indices_x * self.num_keys, indices_y)
|
|
@@ -449,7 +490,7 @@ class DogeCDMoE(DogeMLP):
|
|
| 449 |
all_scores = all_scores.view(*scores_x.shape[:-1], -1)
|
| 450 |
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
| 451 |
all_indices = all_indices.view(*indices_x.shape[:-1], -1)
|
| 452 |
-
scores, pk_indices = all_scores.topk(self.
|
| 453 |
indices = all_indices.gather(-1, pk_indices)
|
| 454 |
down_embed = self.down_embed(indices)
|
| 455 |
up_embed = self.up_embed(indices)
|
|
@@ -468,13 +509,13 @@ class DogeDecoderLayer(nn.Module):
|
|
| 468 |
super().__init__()
|
| 469 |
self.hidden_dropout = config.hidden_dropout
|
| 470 |
|
| 471 |
-
self.
|
| 472 |
-
self.
|
| 473 |
-
self.
|
| 474 |
|
| 475 |
-
self.
|
| 476 |
self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
|
| 477 |
-
self.
|
| 478 |
|
| 479 |
def forward(
|
| 480 |
self,
|
|
@@ -485,36 +526,14 @@ class DogeDecoderLayer(nn.Module):
|
|
| 485 |
output_attentions: Optional[bool] = False,
|
| 486 |
use_cache: Optional[bool] = False,
|
| 487 |
cache_position: Optional[torch.LongTensor] = None,
|
| 488 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 489 |
**kwargs,
|
| 490 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 491 |
-
"""
|
| 492 |
-
Args:
|
| 493 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 494 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
| 495 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 496 |
-
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 497 |
-
output_attentions (`bool`, *optional*):
|
| 498 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 499 |
-
returned tensors for more detail.
|
| 500 |
-
use_cache (`bool`, *optional*):
|
| 501 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 502 |
-
(see `past_key_values`).
|
| 503 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 504 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 505 |
-
Indices depicting the position of the input sequence tokens in the sequence
|
| 506 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 507 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 508 |
-
with `head_dim` being the embedding dimension of each attention head.
|
| 509 |
-
kwargs (`dict`, *optional*):
|
| 510 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 511 |
-
into the model
|
| 512 |
-
"""
|
| 513 |
|
| 514 |
# sequence transformation
|
| 515 |
residual = hidden_states
|
| 516 |
-
hidden_states = self.
|
| 517 |
-
hidden_states
|
| 518 |
hidden_states=hidden_states,
|
| 519 |
attention_mask=attention_mask,
|
| 520 |
position_ids=position_ids,
|
|
@@ -525,27 +544,41 @@ class DogeDecoderLayer(nn.Module):
|
|
| 525 |
)
|
| 526 |
self_attn_weights = None
|
| 527 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 528 |
-
hidden_states = self.
|
| 529 |
|
| 530 |
# state transformation
|
| 531 |
residual = hidden_states
|
| 532 |
-
hidden_states = self.
|
| 533 |
hidden_states = self.feed_forward(hidden_states)
|
| 534 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 535 |
-
hidden_states = self.
|
| 536 |
|
| 537 |
outputs = (hidden_states,)
|
| 538 |
-
|
| 539 |
if output_attentions:
|
| 540 |
outputs += (self_attn_weights,)
|
| 541 |
|
| 542 |
-
if use_cache:
|
| 543 |
-
outputs += (present_key_value,)
|
| 544 |
-
|
| 545 |
return outputs
|
| 546 |
|
| 547 |
|
| 548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
class DogePreTrainedModel(PreTrainedModel):
|
| 550 |
config_class = DogeConfig
|
| 551 |
base_model_prefix = "model"
|
|
@@ -553,6 +586,7 @@ class DogePreTrainedModel(PreTrainedModel):
|
|
| 553 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 554 |
_skip_keys_device_placement = ["past_key_values"]
|
| 555 |
_supports_sdpa = True
|
|
|
|
| 556 |
_supports_cache_class = True
|
| 557 |
_supports_quantized_cache = True
|
| 558 |
_supports_static_cache = True
|
|
@@ -644,8 +678,18 @@ DOGE_INPUTS_DOCSTRING = r"""
|
|
| 644 |
"""
|
| 645 |
|
| 646 |
|
| 647 |
-
@add_start_docstrings(
|
|
|
|
|
|
|
|
|
|
| 648 |
class DogeModel(DogePreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
def __init__(self, config: DogeConfig):
|
| 650 |
super().__init__(config)
|
| 651 |
self.config = config
|
|
@@ -682,6 +726,7 @@ class DogeModel(DogePreTrainedModel):
|
|
| 682 |
output_hidden_states: Optional[bool] = None,
|
| 683 |
return_dict: Optional[bool] = None,
|
| 684 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 685 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 686 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 687 |
output_hidden_states = (
|
|
@@ -702,33 +747,22 @@ class DogeModel(DogePreTrainedModel):
|
|
| 702 |
if inputs_embeds is None:
|
| 703 |
inputs_embeds = self.word_embed(input_ids)
|
| 704 |
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
if use_cache and not isinstance(past_key_values, Cache):
|
| 708 |
-
return_legacy_cache = True
|
| 709 |
-
if past_key_values is None:
|
| 710 |
-
past_key_values = DynamicCache()
|
| 711 |
-
else:
|
| 712 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 713 |
-
logger.warning_once(
|
| 714 |
-
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 715 |
-
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 716 |
-
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 717 |
-
)
|
| 718 |
|
| 719 |
if cache_position is None:
|
| 720 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 721 |
cache_position = torch.arange(
|
| 722 |
-
past_seen_tokens,
|
| 723 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
| 724 |
-
device=inputs_embeds.device,
|
| 725 |
)
|
|
|
|
| 726 |
if position_ids is None:
|
| 727 |
position_ids = cache_position.unsqueeze(0)
|
| 728 |
|
| 729 |
causal_mask = self._update_causal_mask(
|
| 730 |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 731 |
)
|
|
|
|
| 732 |
hidden_states = inputs_embeds
|
| 733 |
|
| 734 |
# create position embeddings to be shared across the decoder layers
|
|
@@ -737,9 +771,8 @@ class DogeModel(DogePreTrainedModel):
|
|
| 737 |
# decoder layers
|
| 738 |
all_hidden_states = () if output_hidden_states else None
|
| 739 |
all_self_attns = () if output_attentions else None
|
| 740 |
-
next_decoder_cache = None
|
| 741 |
|
| 742 |
-
for decoder_layer in self.layers:
|
| 743 |
if output_hidden_states:
|
| 744 |
all_hidden_states += (hidden_states,)
|
| 745 |
|
|
@@ -765,13 +798,11 @@ class DogeModel(DogePreTrainedModel):
|
|
| 765 |
use_cache=use_cache,
|
| 766 |
cache_position=cache_position,
|
| 767 |
position_embeddings=position_embeddings,
|
|
|
|
| 768 |
)
|
| 769 |
|
| 770 |
hidden_states = layer_outputs[0]
|
| 771 |
|
| 772 |
-
if use_cache:
|
| 773 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 774 |
-
|
| 775 |
if output_attentions:
|
| 776 |
all_self_attns += (layer_outputs[1],)
|
| 777 |
|
|
@@ -781,27 +812,21 @@ class DogeModel(DogePreTrainedModel):
|
|
| 781 |
if output_hidden_states:
|
| 782 |
all_hidden_states += (hidden_states,)
|
| 783 |
|
| 784 |
-
|
| 785 |
-
if return_legacy_cache:
|
| 786 |
-
next_cache = next_cache.to_legacy_cache()
|
| 787 |
-
|
| 788 |
-
if not return_dict:
|
| 789 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 790 |
-
|
| 791 |
-
return BaseModelOutputWithPast(
|
| 792 |
last_hidden_state=hidden_states,
|
| 793 |
-
past_key_values=
|
| 794 |
hidden_states=all_hidden_states,
|
| 795 |
attentions=all_self_attns,
|
| 796 |
)
|
|
|
|
| 797 |
|
| 798 |
def _update_causal_mask(
|
| 799 |
self,
|
| 800 |
-
attention_mask: torch.Tensor
|
| 801 |
-
input_tensor: torch.Tensor
|
| 802 |
-
cache_position: torch.Tensor
|
| 803 |
-
past_key_values: Cache
|
| 804 |
-
output_attentions: bool
|
| 805 |
):
|
| 806 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 807 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
@@ -888,8 +913,12 @@ class DogeModel(DogePreTrainedModel):
|
|
| 888 |
return causal_mask
|
| 889 |
|
| 890 |
|
|
|
|
|
|
|
|
|
|
| 891 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
| 892 |
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
| 893 |
|
| 894 |
def __init__(self, config: DogeConfig):
|
| 895 |
super().__init__(config)
|
|
@@ -912,13 +941,13 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 912 |
|
| 913 |
def set_output_embeddings(self, new_embeddings):
|
| 914 |
self.lm_head = new_embeddings
|
|
|
|
|
|
|
|
|
|
| 915 |
|
| 916 |
def set_decoder(self, decoder):
|
| 917 |
self.model = decoder
|
| 918 |
|
| 919 |
-
def get_decoder(self):
|
| 920 |
-
return self.model
|
| 921 |
-
|
| 922 |
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 923 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 924 |
def forward(
|
|
@@ -926,7 +955,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 926 |
input_ids: torch.LongTensor = None,
|
| 927 |
attention_mask: Optional[torch.Tensor] = None,
|
| 928 |
position_ids: Optional[torch.LongTensor] = None,
|
| 929 |
-
past_key_values: Optional[torch.
|
| 930 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 931 |
labels: Optional[torch.LongTensor] = None,
|
| 932 |
use_cache: Optional[bool] = None,
|
|
@@ -935,7 +964,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 935 |
return_dict: Optional[bool] = None,
|
| 936 |
cache_position: Optional[torch.LongTensor] = None,
|
| 937 |
num_logits_to_keep: int = 0,
|
| 938 |
-
**
|
| 939 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 940 |
r"""
|
| 941 |
Args:
|
|
@@ -950,7 +979,23 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 950 |
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 951 |
|
| 952 |
Returns:
|
| 953 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 954 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 955 |
output_hidden_states = (
|
| 956 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -969,6 +1014,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 969 |
output_hidden_states=output_hidden_states,
|
| 970 |
return_dict=return_dict,
|
| 971 |
cache_position=cache_position,
|
|
|
|
| 972 |
)
|
| 973 |
|
| 974 |
hidden_states = outputs[0]
|
|
@@ -978,7 +1024,7 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 978 |
|
| 979 |
loss = None
|
| 980 |
if labels is not None:
|
| 981 |
-
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **
|
| 982 |
|
| 983 |
if not return_dict:
|
| 984 |
output = (logits,) + outputs[1:]
|
|
@@ -993,18 +1039,98 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 993 |
)
|
| 994 |
|
| 995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
@add_start_docstrings(
|
| 997 |
"""
|
| 998 |
The Doge Model transformer with a sequence classification head on top (linear layer).
|
| 999 |
|
| 1000 |
-
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1001 |
-
(e.g. GPT-2) do.
|
| 1002 |
|
| 1003 |
-
Since it does classification on the last token, it requires to know the position of the last token.
|
| 1004 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
| 1005 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch.
|
| 1006 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1007 |
-
each row of the batch).
|
| 1008 |
"""
|
| 1009 |
)
|
| 1010 |
class DogeForSequenceClassification(DogePreTrainedModel):
|
|
@@ -1041,9 +1167,9 @@ class DogeForSequenceClassification(DogePreTrainedModel):
|
|
| 1041 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1042 |
r"""
|
| 1043 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1044 |
-
Labels for computing the sequence classification/regression loss.
|
| 1045 |
-
|
| 1046 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1047 |
"""
|
| 1048 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1049 |
|
|
|
|
| 19 |
"""PyTorch Doge model."""
|
| 20 |
|
| 21 |
import math
|
| 22 |
+
from typing import Callable, List, Optional, Tuple, Union
|
| 23 |
|
| 24 |
import torch
|
| 25 |
import torch.nn.functional as F
|
|
|
|
| 36 |
)
|
| 37 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 38 |
from transformers.modeling_utils import PreTrainedModel
|
| 39 |
+
from transformers.processing_utils import Unpack
|
| 40 |
from transformers.utils import (
|
| 41 |
+
LossKwargs,
|
| 42 |
add_start_docstrings,
|
| 43 |
add_start_docstrings_to_model_forward,
|
| 44 |
+
is_torch_greater_or_equal,
|
| 45 |
logging,
|
| 46 |
replace_return_docstrings,
|
| 47 |
)
|
|
|
|
| 52 |
except ImportError:
|
| 53 |
einx_add = None
|
| 54 |
|
| 55 |
+
if is_torch_greater_or_equal("2.5"):
|
| 56 |
+
from torch.nn.attention.flex_attention import flex_attention
|
| 57 |
+
|
| 58 |
|
| 59 |
logger = logging.get_logger(__name__)
|
| 60 |
|
|
|
|
| 85 |
def __init__(self, hidden_size):
|
| 86 |
super().__init__()
|
| 87 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 88 |
+
|
| 89 |
def forward(self, residual_states, hidden_states):
|
| 90 |
return self.weight * residual_states + hidden_states
|
| 91 |
|
|
|
|
| 98 |
super().__init__()
|
| 99 |
self.rope_kwargs = {}
|
| 100 |
|
| 101 |
+
if config.rope_scaling is not None:
|
| 102 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 103 |
else:
|
| 104 |
+
self.rope_type = "default"
|
| 105 |
self.max_seq_len_cached = config.max_position_embeddings
|
| 106 |
self.original_max_seq_len = config.max_position_embeddings
|
| 107 |
self.base = config.rope_theta
|
|
|
|
| 139 |
# core RoPE block
|
| 140 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 141 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 142 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 143 |
device_type = x.device.type
|
| 144 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 145 |
with torch.autocast(device_type=device_type, enabled=False):
|
|
|
|
| 148 |
cos = emb.cos()
|
| 149 |
sin = emb.sin()
|
| 150 |
|
| 151 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 152 |
cos = cos * self.attention_scaling
|
| 153 |
sin = sin * self.attention_scaling
|
| 154 |
|
|
|
|
| 176 |
Deprecated and unused.
|
| 177 |
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 178 |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 179 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k.
|
| 180 |
+
For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim].
|
| 181 |
+
Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
|
| 182 |
+
Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
|
|
| 183 |
Returns:
|
| 184 |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 185 |
"""
|
|
|
|
| 190 |
return q_embed, k_embed
|
| 191 |
|
| 192 |
|
| 193 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 194 |
+
"""
|
| 195 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
| 196 |
+
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 197 |
+
"""
|
| 198 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 199 |
+
if n_rep == 1:
|
| 200 |
+
return hidden_states
|
| 201 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 202 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
class DogeDynamicMaskAttention(nn.Module):
|
| 206 |
"""Dynamic Mask Attention from 'Wonderful Matrices' paper."""
|
| 207 |
|
| 208 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 209 |
super().__init__()
|
|
|
|
| 210 |
self.config = config
|
| 211 |
self.layer_idx = layer_idx
|
| 212 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 213 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 214 |
+
self.scaling = self.head_dim ** -0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
self.attention_dropout = config.attention_dropout
|
| 216 |
+
self.dynamic_mask_ratio = config.dynamic_mask_ratio
|
| 217 |
+
|
| 218 |
+
self.ALL_ATTENTION_FUNCTIONS = {
|
| 219 |
+
"eager": self.eager_attention_forward,
|
| 220 |
+
"sdpa": self.sdpa_attention_forward,
|
| 221 |
+
"flex_attention": self.flex_attention_forward,
|
| 222 |
+
}
|
| 223 |
|
| 224 |
# Q K V O projections
|
| 225 |
self.q_proj = nn.Linear(
|
| 226 |
+
config.hidden_size,
|
| 227 |
+
config.num_attention_heads * self.head_dim,
|
| 228 |
+
bias=config.hidden_bias
|
| 229 |
)
|
| 230 |
self.k_proj = nn.Linear(
|
| 231 |
+
config.hidden_size,
|
| 232 |
+
config.num_key_value_heads * self.head_dim,
|
| 233 |
+
bias=config.hidden_bias
|
| 234 |
+
)
|
| 235 |
+
self.v_proj = nn.Linear(
|
| 236 |
+
config.hidden_size,
|
| 237 |
+
config.num_key_value_heads * self.head_dim,
|
| 238 |
+
bias=config.hidden_bias
|
| 239 |
)
|
| 240 |
# dynamic mask for the QK^T attention score matrix
|
| 241 |
self.A = nn.Parameter(
|
| 242 |
+
torch.ones(config.num_attention_heads)
|
| 243 |
)
|
| 244 |
self.dt_proj = nn.Linear(
|
| 245 |
+
config.num_key_value_heads * self.head_dim,
|
| 246 |
+
config.num_attention_heads,
|
| 247 |
+
bias=config.hidden_bias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
)
|
| 249 |
self.o_proj = nn.Linear(
|
| 250 |
+
config.num_attention_heads * self.head_dim,
|
| 251 |
+
config.hidden_size,
|
| 252 |
+
bias=config.hidden_bias
|
| 253 |
)
|
| 254 |
|
| 255 |
def forward(
|
| 256 |
self,
|
| 257 |
hidden_states: torch.Tensor,
|
| 258 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 259 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
| 260 |
past_key_value: Optional[Cache] = None,
|
| 261 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
| 262 |
**kwargs,
|
| 263 |
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
| 264 |
+
input_shape = hidden_states.shape[:-1]
|
| 265 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 268 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 269 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
cos, sin = position_embeddings
|
| 272 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
| 276 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 277 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 278 |
|
| 279 |
+
# calculate dynamic mask from value_states
|
| 280 |
+
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1))
|
| 281 |
+
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 282 |
+
attn_mask = self.prepare_dynamic_mask(
|
| 283 |
+
hidden_states=hidden_states,
|
| 284 |
+
dynamic_mask=dynamic_mask,
|
| 285 |
+
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
| 286 |
+
attention_mask=attention_mask,
|
| 287 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
attention_interface: Callable = self.eager_attention_forward
|
| 290 |
+
if self.config._attn_implementation != "eager":
|
| 291 |
+
attention_interface = self.ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 292 |
+
|
| 293 |
+
attn_output = attention_interface(
|
| 294 |
+
query_states,
|
| 295 |
+
key_states,
|
| 296 |
+
value_states,
|
| 297 |
+
attention_mask=attn_mask,
|
| 298 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 299 |
+
scaling=self.scaling,
|
| 300 |
+
**kwargs,
|
| 301 |
+
)
|
| 302 |
|
| 303 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
|
|
| 304 |
attn_output = self.o_proj(attn_output)
|
| 305 |
+
return attn_output
|
| 306 |
|
| 307 |
+
def prepare_dynamic_mask(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
self,
|
| 309 |
hidden_states: torch.Tensor,
|
| 310 |
+
dynamic_mask: torch.Tensor,
|
| 311 |
+
dynamic_mask_ratio: float = 0.0,
|
| 312 |
attention_mask: Optional[torch.Tensor] = None,
|
| 313 |
+
):
|
| 314 |
+
"""
|
| 315 |
+
Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
+
Args:
|
| 318 |
+
hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
|
| 319 |
+
dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`.
|
| 320 |
+
dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value.
|
| 321 |
+
attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
|
| 322 |
+
"""
|
| 323 |
+
min_type = torch.finfo(hidden_states.dtype).min
|
| 324 |
+
attn_mask = dynamic_mask[:, :, None, :]
|
| 325 |
+
if 0.0 < dynamic_mask_ratio < 1.0:
|
| 326 |
+
num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio)
|
| 327 |
+
if num_dynamic_mask > 0:
|
| 328 |
+
rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values
|
| 329 |
+
attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type)
|
| 330 |
+
if attention_mask is not None:
|
| 331 |
+
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : hidden_states.shape[-2]] == min_type, min_type)
|
| 332 |
+
return attn_mask
|
| 333 |
+
|
| 334 |
+
def eager_attention_forward(
|
| 335 |
+
self,
|
| 336 |
+
query: torch.Tensor,
|
| 337 |
+
key: torch.Tensor,
|
| 338 |
+
value: torch.Tensor,
|
| 339 |
+
attention_mask: Optional[torch.Tensor],
|
| 340 |
+
scaling: float,
|
| 341 |
+
dropout: float = 0.0,
|
| 342 |
+
**kwargs,
|
| 343 |
+
) -> torch.Tensor:
|
| 344 |
+
key_states = repeat_kv(key, self.num_key_value_groups)
|
| 345 |
+
value_states = repeat_kv(value, self.num_key_value_groups)
|
| 346 |
|
| 347 |
+
# compute attention scores matrix
|
| 348 |
+
attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling
|
| 349 |
+
if attention_mask is not None:
|
| 350 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 351 |
+
attn_weights = attn_weights + causal_mask
|
| 352 |
+
|
| 353 |
+
# upcast attention scores to fp32
|
| 354 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 355 |
+
attn_weights = F.dropout(attn_weights, p=dropout, training=self.training)
|
| 356 |
|
| 357 |
+
# apply attention scores to value states
|
| 358 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 359 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 360 |
+
return attn_output
|
| 361 |
+
|
| 362 |
+
def sdpa_attention_forward(
|
| 363 |
+
self,
|
| 364 |
+
query: torch.Tensor,
|
| 365 |
+
key: torch.Tensor,
|
| 366 |
+
value: torch.Tensor,
|
| 367 |
+
attention_mask: Optional[torch.Tensor],
|
| 368 |
+
scaling: float,
|
| 369 |
+
dropout: float = 0.0,
|
| 370 |
+
**kwargs,
|
| 371 |
+
) -> torch.Tensor:
|
| 372 |
+
causal_mask = attention_mask
|
| 373 |
if attention_mask is not None:
|
| 374 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
+
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
|
| 377 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 378 |
+
query = query.contiguous()
|
| 379 |
+
key = key.contiguous()
|
| 380 |
+
value = value.contiguous()
|
| 381 |
|
| 382 |
+
# NOTE: As of pytorch 2.5.1, cuDNN's SDPA backward pass is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
|
| 383 |
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
| 384 |
attn_output = F.scaled_dot_product_attention(
|
| 385 |
+
query,
|
| 386 |
+
key,
|
| 387 |
+
value,
|
| 388 |
attn_mask=causal_mask,
|
| 389 |
+
dropout_p=dropout,
|
| 390 |
+
scale=scaling,
|
| 391 |
+
enable_gqa=True,
|
| 392 |
)
|
|
|
|
| 393 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 394 |
+
return attn_output
|
| 395 |
+
|
| 396 |
+
def flex_attention_forward(
|
| 397 |
+
self,
|
| 398 |
+
query: torch.Tensor,
|
| 399 |
+
key: torch.Tensor,
|
| 400 |
+
value: torch.Tensor,
|
| 401 |
+
attention_mask: Optional[torch.Tensor],
|
| 402 |
+
scaling: float,
|
| 403 |
+
dropout: float = 0.0,
|
| 404 |
+
**kwargs,
|
| 405 |
+
) -> torch.Tensor:
|
| 406 |
+
causal_mask = attention_mask
|
| 407 |
+
if attention_mask is not None:
|
| 408 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
| 409 |
|
| 410 |
+
# TODO: flex_attention: Captured buffers that require grad are not yet supported.
|
| 411 |
+
# NOTE: So we only use flex_attention in inference mode.
|
| 412 |
+
def mask_mod(score, batch, head, q_idx, kv_idx):
|
| 413 |
+
score = score + causal_mask[batch][head][q_idx][kv_idx]
|
| 414 |
+
return score
|
| 415 |
+
|
| 416 |
+
attn_output = flex_attention(
|
| 417 |
+
query,
|
| 418 |
+
key,
|
| 419 |
+
value,
|
| 420 |
+
score_mod=mask_mod,
|
| 421 |
+
scale=scaling,
|
| 422 |
+
enable_gqa=True,
|
| 423 |
+
)
|
| 424 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 425 |
+
return attn_output
|
| 426 |
|
| 427 |
|
| 428 |
class DogeMLP(nn.Module):
|
|
|
|
| 433 |
self.intermediate_dim = config.intermediate_size
|
| 434 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 435 |
|
| 436 |
+
self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
|
| 437 |
+
self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias)
|
| 438 |
+
self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
def forward(
|
| 441 |
self,
|
|
|
|
| 455 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 456 |
|
| 457 |
self.expert_retrieval_dim = config.expert_retrieval_size
|
| 458 |
+
self.num_cdmoe_experts = config.num_cdmoe_experts
|
| 459 |
+
self.num_cdmoe_heads = config.num_cdmoe_heads
|
| 460 |
+
self.num_cdmoe_experts_per_head = config.num_cdmoe_experts_per_head
|
| 461 |
+
self.num_keys = int(math.sqrt(self.num_cdmoe_experts))
|
| 462 |
|
| 463 |
# queries and keys for retrieval experts
|
| 464 |
+
self.queries = nn.Linear(self.hidden_dim, self.num_cdmoe_heads * self.expert_retrieval_dim, bias=False)
|
| 465 |
+
self.keys = nn.Parameter(torch.zeros(self.num_cdmoe_heads, self.num_keys, 2, self.expert_retrieval_dim // 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
# experts
|
| 468 |
+
self.down_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)
|
| 469 |
+
self.up_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
def forward(
|
| 472 |
self,
|
|
|
|
| 477 |
|
| 478 |
# get similarity with queries and keys
|
| 479 |
queries = self.queries(hidden_states)
|
| 480 |
+
queries = queries.view(bsz, seq_len, 2, self.num_cdmoe_heads, -1).permute(2, 0, 1, 3, 4)
|
| 481 |
sim = torch.einsum("p b t h n, h k p n -> p b t h k", queries, self.keys)
|
| 482 |
|
| 483 |
# get experts with the highest similarity
|
| 484 |
+
(scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_cdmoe_experts_per_head, dim=-1)
|
| 485 |
if einx_add is not None:
|
| 486 |
all_scores = einx_add("... i, ... j -> ... (i j)", scores_x, scores_y)
|
| 487 |
all_indices = einx_add("... i, ... j -> ... (i j)", indices_x * self.num_keys, indices_y)
|
|
|
|
| 490 |
all_scores = all_scores.view(*scores_x.shape[:-1], -1)
|
| 491 |
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
| 492 |
all_indices = all_indices.view(*indices_x.shape[:-1], -1)
|
| 493 |
+
scores, pk_indices = all_scores.topk(self.num_cdmoe_experts_per_head, dim=-1)
|
| 494 |
indices = all_indices.gather(-1, pk_indices)
|
| 495 |
down_embed = self.down_embed(indices)
|
| 496 |
up_embed = self.up_embed(indices)
|
|
|
|
| 509 |
super().__init__()
|
| 510 |
self.hidden_dropout = config.hidden_dropout
|
| 511 |
|
| 512 |
+
self.pre_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 513 |
+
self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx)
|
| 514 |
+
self.pre_residual = Residual(config.hidden_size)
|
| 515 |
|
| 516 |
+
self.post_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 517 |
self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
|
| 518 |
+
self.post_residual = Residual(config.hidden_size)
|
| 519 |
|
| 520 |
def forward(
|
| 521 |
self,
|
|
|
|
| 526 |
output_attentions: Optional[bool] = False,
|
| 527 |
use_cache: Optional[bool] = False,
|
| 528 |
cache_position: Optional[torch.LongTensor] = None,
|
| 529 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 530 |
**kwargs,
|
| 531 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
|
| 533 |
# sequence transformation
|
| 534 |
residual = hidden_states
|
| 535 |
+
hidden_states = self.pre_layernorm(hidden_states)
|
| 536 |
+
hidden_states = self.self_attn(
|
| 537 |
hidden_states=hidden_states,
|
| 538 |
attention_mask=attention_mask,
|
| 539 |
position_ids=position_ids,
|
|
|
|
| 544 |
)
|
| 545 |
self_attn_weights = None
|
| 546 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 547 |
+
hidden_states = self.pre_residual(residual, hidden_states)
|
| 548 |
|
| 549 |
# state transformation
|
| 550 |
residual = hidden_states
|
| 551 |
+
hidden_states = self.post_layernorm(hidden_states)
|
| 552 |
hidden_states = self.feed_forward(hidden_states)
|
| 553 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 554 |
+
hidden_states = self.post_residual(residual, hidden_states)
|
| 555 |
|
| 556 |
outputs = (hidden_states,)
|
|
|
|
| 557 |
if output_attentions:
|
| 558 |
outputs += (self_attn_weights,)
|
| 559 |
|
|
|
|
|
|
|
|
|
|
| 560 |
return outputs
|
| 561 |
|
| 562 |
|
| 563 |
+
DOGE_START_DOCSTRING = r"""
|
| 564 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 565 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 566 |
+
etc.)
|
| 567 |
+
|
| 568 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 569 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 570 |
+
and behavior.
|
| 571 |
+
|
| 572 |
+
Parameters:
|
| 573 |
+
config ([`DogeConfig`]):
|
| 574 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 575 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 576 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 577 |
+
"""
|
| 578 |
+
@add_start_docstrings(
|
| 579 |
+
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
| 580 |
+
DOGE_START_DOCSTRING,
|
| 581 |
+
)
|
| 582 |
class DogePreTrainedModel(PreTrainedModel):
|
| 583 |
config_class = DogeConfig
|
| 584 |
base_model_prefix = "model"
|
|
|
|
| 586 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 587 |
_skip_keys_device_placement = ["past_key_values"]
|
| 588 |
_supports_sdpa = True
|
| 589 |
+
_supports_flex_attn = True
|
| 590 |
_supports_cache_class = True
|
| 591 |
_supports_quantized_cache = True
|
| 592 |
_supports_static_cache = True
|
|
|
|
| 678 |
"""
|
| 679 |
|
| 680 |
|
| 681 |
+
@add_start_docstrings(
|
| 682 |
+
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
| 683 |
+
DOGE_START_DOCSTRING,
|
| 684 |
+
)
|
| 685 |
class DogeModel(DogePreTrainedModel):
|
| 686 |
+
"""
|
| 687 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`]
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
config: DogeConfig
|
| 691 |
+
"""
|
| 692 |
+
|
| 693 |
def __init__(self, config: DogeConfig):
|
| 694 |
super().__init__(config)
|
| 695 |
self.config = config
|
|
|
|
| 726 |
output_hidden_states: Optional[bool] = None,
|
| 727 |
return_dict: Optional[bool] = None,
|
| 728 |
cache_position: Optional[torch.LongTensor] = None,
|
| 729 |
+
**kwargs,
|
| 730 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 731 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 732 |
output_hidden_states = (
|
|
|
|
| 747 |
if inputs_embeds is None:
|
| 748 |
inputs_embeds = self.word_embed(input_ids)
|
| 749 |
|
| 750 |
+
if use_cache and past_key_values is None:
|
| 751 |
+
past_key_values = DynamicCache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
|
| 753 |
if cache_position is None:
|
| 754 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 755 |
cache_position = torch.arange(
|
| 756 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
|
|
|
| 757 |
)
|
| 758 |
+
|
| 759 |
if position_ids is None:
|
| 760 |
position_ids = cache_position.unsqueeze(0)
|
| 761 |
|
| 762 |
causal_mask = self._update_causal_mask(
|
| 763 |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 764 |
)
|
| 765 |
+
|
| 766 |
hidden_states = inputs_embeds
|
| 767 |
|
| 768 |
# create position embeddings to be shared across the decoder layers
|
|
|
|
| 771 |
# decoder layers
|
| 772 |
all_hidden_states = () if output_hidden_states else None
|
| 773 |
all_self_attns = () if output_attentions else None
|
|
|
|
| 774 |
|
| 775 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 776 |
if output_hidden_states:
|
| 777 |
all_hidden_states += (hidden_states,)
|
| 778 |
|
|
|
|
| 798 |
use_cache=use_cache,
|
| 799 |
cache_position=cache_position,
|
| 800 |
position_embeddings=position_embeddings,
|
| 801 |
+
**kwargs,
|
| 802 |
)
|
| 803 |
|
| 804 |
hidden_states = layer_outputs[0]
|
| 805 |
|
|
|
|
|
|
|
|
|
|
| 806 |
if output_attentions:
|
| 807 |
all_self_attns += (layer_outputs[1],)
|
| 808 |
|
|
|
|
| 812 |
if output_hidden_states:
|
| 813 |
all_hidden_states += (hidden_states,)
|
| 814 |
|
| 815 |
+
output = BaseModelOutputWithPast(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 816 |
last_hidden_state=hidden_states,
|
| 817 |
+
past_key_values=past_key_values if use_cache else None,
|
| 818 |
hidden_states=all_hidden_states,
|
| 819 |
attentions=all_self_attns,
|
| 820 |
)
|
| 821 |
+
return output if return_dict else output.to_tuple()
|
| 822 |
|
| 823 |
def _update_causal_mask(
|
| 824 |
self,
|
| 825 |
+
attention_mask: torch.Tensor,
|
| 826 |
+
input_tensor: torch.Tensor,
|
| 827 |
+
cache_position: torch.Tensor,
|
| 828 |
+
past_key_values: Cache,
|
| 829 |
+
output_attentions: bool,
|
| 830 |
):
|
| 831 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 832 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
|
| 913 |
return causal_mask
|
| 914 |
|
| 915 |
|
| 916 |
+
class KwargsForCausalLM(LossKwargs): ...
|
| 917 |
+
|
| 918 |
+
|
| 919 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
| 920 |
_tied_weights_keys = ["lm_head.weight"]
|
| 921 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 922 |
|
| 923 |
def __init__(self, config: DogeConfig):
|
| 924 |
super().__init__(config)
|
|
|
|
| 941 |
|
| 942 |
def set_output_embeddings(self, new_embeddings):
|
| 943 |
self.lm_head = new_embeddings
|
| 944 |
+
|
| 945 |
+
def get_decoder(self):
|
| 946 |
+
return self.model
|
| 947 |
|
| 948 |
def set_decoder(self, decoder):
|
| 949 |
self.model = decoder
|
| 950 |
|
|
|
|
|
|
|
|
|
|
| 951 |
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 952 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 953 |
def forward(
|
|
|
|
| 955 |
input_ids: torch.LongTensor = None,
|
| 956 |
attention_mask: Optional[torch.Tensor] = None,
|
| 957 |
position_ids: Optional[torch.LongTensor] = None,
|
| 958 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 959 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 960 |
labels: Optional[torch.LongTensor] = None,
|
| 961 |
use_cache: Optional[bool] = None,
|
|
|
|
| 964 |
return_dict: Optional[bool] = None,
|
| 965 |
cache_position: Optional[torch.LongTensor] = None,
|
| 966 |
num_logits_to_keep: int = 0,
|
| 967 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 968 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 969 |
r"""
|
| 970 |
Args:
|
|
|
|
| 979 |
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 980 |
|
| 981 |
Returns:
|
| 982 |
+
|
| 983 |
+
Example:
|
| 984 |
+
|
| 985 |
+
```python
|
| 986 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 987 |
+
|
| 988 |
+
>>> model = AutoModelForCausalLM.from_pretrained("JingzeShi/Doge-20M-Instruct")
|
| 989 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("JingzeShi/Doge-20M-Instruct")
|
| 990 |
+
|
| 991 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 992 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 993 |
+
|
| 994 |
+
>>> # Generate
|
| 995 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 996 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 997 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 998 |
+
```"""
|
| 999 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1000 |
output_hidden_states = (
|
| 1001 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 1014 |
output_hidden_states=output_hidden_states,
|
| 1015 |
return_dict=return_dict,
|
| 1016 |
cache_position=cache_position,
|
| 1017 |
+
**kwargs,
|
| 1018 |
)
|
| 1019 |
|
| 1020 |
hidden_states = outputs[0]
|
|
|
|
| 1024 |
|
| 1025 |
loss = None
|
| 1026 |
if labels is not None:
|
| 1027 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs)
|
| 1028 |
|
| 1029 |
if not return_dict:
|
| 1030 |
output = (logits,) + outputs[1:]
|
|
|
|
| 1039 |
)
|
| 1040 |
|
| 1041 |
|
| 1042 |
+
class DogePatchEmbedding(nn.Module):
|
| 1043 |
+
"""
|
| 1044 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` of shape `(batch_size, seq_len, hidden_size)` to be consumed by a Transformer.
|
| 1045 |
+
"""
|
| 1046 |
+
|
| 1047 |
+
def __init__(self, config: DogeConfig):
|
| 1048 |
+
super().__init__()
|
| 1049 |
+
|
| 1050 |
+
self.num_channels = config.num_channels
|
| 1051 |
+
self.patch_size = config.patch_size
|
| 1052 |
+
self.hidden_dim = config.hidden_size
|
| 1053 |
+
|
| 1054 |
+
self.sequence_proj = nn.Conv2d(self.num_channels, self.hidden_dim, kernel_size=self.patch_size, stride=self.patch_size)
|
| 1055 |
+
self.state_proj = nn.Linear(self.hidden_dim, self.hidden_dim, bias=config.hidden_bias)
|
| 1056 |
+
|
| 1057 |
+
def forward(
|
| 1058 |
+
self,
|
| 1059 |
+
pixel_values: torch.Tensor,
|
| 1060 |
+
) -> torch.Tensor:
|
| 1061 |
+
image_embedding = self.sequence_proj(pixel_values).flatten(2).transpose(1, 2)
|
| 1062 |
+
image_embedding = self.state_proj(image_embedding)
|
| 1063 |
+
return image_embedding
|
| 1064 |
+
|
| 1065 |
+
|
| 1066 |
+
class DogeForCausalVLM(DogeForCausalLM):
|
| 1067 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1068 |
+
|
| 1069 |
+
def __init__(self, config: DogeConfig):
|
| 1070 |
+
super().__init__(config)
|
| 1071 |
+
self.config = config
|
| 1072 |
+
self.pixel_embed = DogePatchEmbedding(config)
|
| 1073 |
+
|
| 1074 |
+
# Initialize weights and apply final processing
|
| 1075 |
+
self.post_init()
|
| 1076 |
+
|
| 1077 |
+
def forward(
|
| 1078 |
+
self,
|
| 1079 |
+
input_ids: torch.LongTensor = None,
|
| 1080 |
+
pixel_values: torch.FloatTensor = None,
|
| 1081 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1082 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1083 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 1084 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1085 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1086 |
+
use_cache: Optional[bool] = None,
|
| 1087 |
+
output_attentions: Optional[bool] = None,
|
| 1088 |
+
output_hidden_states: Optional[bool] = None,
|
| 1089 |
+
return_dict: Optional[bool] = None,
|
| 1090 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1091 |
+
num_logits_to_keep: int = 0,
|
| 1092 |
+
**loss_kwargs,
|
| 1093 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1094 |
+
# TODO: @wubingheng111: refer to Llava for implementating the forward method
|
| 1095 |
+
...
|
| 1096 |
+
|
| 1097 |
+
def prepare_inputs_for_generation(
|
| 1098 |
+
self,
|
| 1099 |
+
input_ids=None,
|
| 1100 |
+
pixel_values=None,
|
| 1101 |
+
past_key_values=None,
|
| 1102 |
+
input_embeds=None,
|
| 1103 |
+
attention_mask=None,
|
| 1104 |
+
cache_position=None,
|
| 1105 |
+
num_logits_to_keep=None,
|
| 1106 |
+
**kwargs,
|
| 1107 |
+
):
|
| 1108 |
+
model_inputs = self.model.prepare_inputs_for_generation(
|
| 1109 |
+
input_ids,
|
| 1110 |
+
past_key_values=past_key_values,
|
| 1111 |
+
inputs_embeds=input_embeds,
|
| 1112 |
+
attention_mask=attention_mask,
|
| 1113 |
+
cache_position=cache_position,
|
| 1114 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 1115 |
+
**kwargs,
|
| 1116 |
+
)
|
| 1117 |
+
|
| 1118 |
+
if cache_position[0] == 0:
|
| 1119 |
+
model_inputs["pixel_values"] = pixel_values
|
| 1120 |
+
|
| 1121 |
+
return model_inputs
|
| 1122 |
+
|
| 1123 |
+
|
| 1124 |
@add_start_docstrings(
|
| 1125 |
"""
|
| 1126 |
The Doge Model transformer with a sequence classification head on top (linear layer).
|
| 1127 |
|
| 1128 |
+
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
|
|
|
|
| 1129 |
|
| 1130 |
+
Since it does classification on the last token, it requires to know the position of the last token.
|
| 1131 |
+
If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
| 1132 |
+
If no `pad_token_id` is defined, it simply takes the last value in each row of the batch.
|
| 1133 |
+
Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch).
|
|
|
|
| 1134 |
"""
|
| 1135 |
)
|
| 1136 |
class DogeForSequenceClassification(DogePreTrainedModel):
|
|
|
|
| 1167 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1168 |
r"""
|
| 1169 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1170 |
+
Labels for computing the sequence classification/regression loss.
|
| 1171 |
+
Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1172 |
+
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1173 |
"""
|
| 1174 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1175 |
|