Upload PEERForCausalLM
Browse files- README.md +199 -0
- config.json +39 -0
- configuration_peer.py +243 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modeling_peer.py +897 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"PEERForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_peer.PEERConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_peer.PEERForCausalLM"
|
10 |
+
},
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_dropout": 0.0,
|
13 |
+
"hidden_size": 256,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 768,
|
16 |
+
"is_moe": true,
|
17 |
+
"keep_window_size": 2048,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"mlp_bias": false,
|
20 |
+
"model_type": "peer",
|
21 |
+
"norm_topk_prob": false,
|
22 |
+
"num_attention_heads": 2,
|
23 |
+
"num_experts": 1024,
|
24 |
+
"num_experts_per_tok": 8,
|
25 |
+
"num_hidden_layers": 8,
|
26 |
+
"num_key_value_heads": 1,
|
27 |
+
"num_peer_heads": 2,
|
28 |
+
"output_router_logits": false,
|
29 |
+
"rms_norm_eps": 1e-06,
|
30 |
+
"rope_scaling": null,
|
31 |
+
"rope_theta": 10000.0,
|
32 |
+
"router_aux_loss_coef": 0.001,
|
33 |
+
"sliding_window": null,
|
34 |
+
"tie_word_embeddings": true,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.54.0.dev0",
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 128256
|
39 |
+
}
|
configuration_peer.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/peer/modular_peer.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_peer.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
# The PEER family of small language models is trained by SmallPEER Team.
|
11 |
+
#
|
12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
13 |
+
# you may not use this file except in compliance with the License.
|
14 |
+
# You may obtain a copy of the License at
|
15 |
+
#
|
16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
17 |
+
#
|
18 |
+
# Unless required by applicable law or agreed to in writing, software
|
19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21 |
+
# See the License for the specific language governing permissions and
|
22 |
+
# limitations under the License.
|
23 |
+
from transformers.configuration_utils import PretrainedConfig
|
24 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
25 |
+
|
26 |
+
|
27 |
+
class PEERConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`PEERModel`]. It is used to instantiate an PEER
|
30 |
+
model according to the specified arguments, defining the model architecture like [SmallPEER/PEER-320M](https://huggingface.co/SmallPEER/PEER-320M).
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 32768):
|
37 |
+
Vocabulary size of the PEER2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PEERModel`]
|
38 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
39 |
+
Dimension of the hidden representations.
|
40 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
41 |
+
Dimension of the MLP representations.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
43 |
+
Number of hidden layers in the Transformer decoder.
|
44 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
45 |
+
Dropout probability for each sequence transformation and state transformation module.
|
46 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
47 |
+
The non-linear activation function (function or string) in the decoder.
|
48 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
49 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
50 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
51 |
+
The epsilon used by the rms normalization layers.
|
52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
54 |
+
relevant if `config.is_decoder=True`.
|
55 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether the model's input and output word embeddings should be tied.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
58 |
+
The maximum sequence length that this model might ever be used with.
|
59 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
60 |
+
The base period of the RoPE embeddings.
|
61 |
+
rope_scaling (`Dict`, *optional*):
|
62 |
+
Dictionary containing the scaling configuration for the RoPE embeddings.
|
63 |
+
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
|
64 |
+
PEER family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
|
65 |
+
Expected contents:
|
66 |
+
`rope_type` (`str`):
|
67 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
|
68 |
+
`factor` (`float`, *optional*):
|
69 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
70 |
+
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
|
71 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
72 |
+
Used with 'dynamic', 'longrope' and 'llama3'.
|
73 |
+
The original max position embeddings used during pretraining.
|
74 |
+
`attention_factor` (`float`, *optional*):
|
75 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
76 |
+
computation.
|
77 |
+
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
78 |
+
`beta_fast` (`float`, *optional*):
|
79 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
80 |
+
ramp function. If unspecified, it defaults to 32.
|
81 |
+
`beta_slow` (`float`, *optional*):
|
82 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
83 |
+
ramp function. If unspecified, it defaults to 1.
|
84 |
+
`short_factor` (`List[float]`, *optional*):
|
85 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
|
86 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
87 |
+
`long_factor` (`List[float]`, *optional*):
|
88 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
|
89 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
90 |
+
`low_freq_factor` (`float`, *optional*):
|
91 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
92 |
+
`high_freq_factor` (`float`, *optional*):
|
93 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
94 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
95 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
96 |
+
num_key_value_heads (`int`, *optional*):
|
97 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention.
|
98 |
+
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
99 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
|
100 |
+
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
|
101 |
+
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
102 |
+
If it is not specified, will default to `num_attention_heads`.
|
103 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
104 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
105 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
106 |
+
The dropout ratio for the attention probabilities.
|
107 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
108 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
109 |
+
sliding_window (`int`, *optional*):
|
110 |
+
Sliding window attention window size. If not specified, will default to `None`.
|
111 |
+
keep_window_size (`int`, *optional*, defaults to 2048):
|
112 |
+
The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
|
113 |
+
is_moe (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize.
|
115 |
+
num_experts (`int`, *optional*, defaults to 16384):
|
116 |
+
Number of routed experts in the model. This is only used when `is_moe=True`.
|
117 |
+
num_experts_per_tok (`int`, *optional*, defaults to 64):
|
118 |
+
Number of selected experts to route per-token.
|
119 |
+
norm_topk_prob (`bool`, *optional*, defaults to `False`):
|
120 |
+
Whether to normalize the topk probabilities.
|
121 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
122 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
123 |
+
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
124 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
125 |
+
The aux loss factor for the total loss.
|
126 |
+
|
127 |
+
```python
|
128 |
+
>>> from transformers import PEERConfig, PEERModel
|
129 |
+
|
130 |
+
>>> # Initializing a PEER-320M style configuration
|
131 |
+
>>> configuration = PEERConfig()
|
132 |
+
|
133 |
+
>>> # Initializing a model from the PEER-320M style configuration
|
134 |
+
>>> model = PEERModel(configuration)
|
135 |
+
|
136 |
+
>>> # Accessing the model configuration
|
137 |
+
>>> configuration = model.config
|
138 |
+
```"""
|
139 |
+
|
140 |
+
model_type = "peer"
|
141 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
142 |
+
# Default tensor parallel plan for base model `PEERModel`
|
143 |
+
base_model_tp_plan = {
|
144 |
+
"layers.*.self_attn.q_proj": "colwise",
|
145 |
+
"layers.*.self_attn.k_proj": "colwise",
|
146 |
+
"layers.*.self_attn.v_proj": "colwise",
|
147 |
+
"layers.*.self_attn.dt_proj": "rowwise",
|
148 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
149 |
+
"layers.*.input_layernorm.weight": "sequence_parallel",
|
150 |
+
"layers.*.input_residual.weight": "sequence_parallel",
|
151 |
+
"layers.*.post_attention_layernorm.weight": "sequence_parallel",
|
152 |
+
"layers.*.post_attention_residual.weight": "sequence_parallel",
|
153 |
+
"norm.weight": "sequence_parallel",
|
154 |
+
"layers.*.mlp.gate_proj": "colwise",
|
155 |
+
"layers.*.mlp.up_proj": "colwise",
|
156 |
+
"layers.*.mlp.down_proj": "rowwise",
|
157 |
+
"layers.*.mlp.router_gate": "colwise_rep",
|
158 |
+
"layers.*.mlp.down_embed": "rowwise_rep",
|
159 |
+
"layers.*.mlp.up_embed": "rowwise_rep",
|
160 |
+
}
|
161 |
+
base_model_pp_plan = {
|
162 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
163 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
164 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
165 |
+
}
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
vocab_size=32768,
|
170 |
+
hidden_size=1024,
|
171 |
+
intermediate_size=2048,
|
172 |
+
num_hidden_layers=32,
|
173 |
+
hidden_dropout=0.0,
|
174 |
+
hidden_act="silu",
|
175 |
+
initializer_range=0.02,
|
176 |
+
rms_norm_eps=1e-06,
|
177 |
+
use_cache=True,
|
178 |
+
tie_word_embeddings=False,
|
179 |
+
max_position_embeddings=2048,
|
180 |
+
rope_theta=10000.0,
|
181 |
+
rope_scaling=None,
|
182 |
+
num_attention_heads=8,
|
183 |
+
num_key_value_heads=None,
|
184 |
+
attention_bias=False,
|
185 |
+
attention_dropout=0.0,
|
186 |
+
mlp_bias=False,
|
187 |
+
sliding_window=None,
|
188 |
+
keep_window_size=2048,
|
189 |
+
is_moe=False,
|
190 |
+
num_experts=16384,
|
191 |
+
num_experts_per_tok=64,
|
192 |
+
num_peer_heads=16,
|
193 |
+
norm_topk_prob=False,
|
194 |
+
output_router_logits=False,
|
195 |
+
router_aux_loss_coef=0.001,
|
196 |
+
**kwargs,
|
197 |
+
):
|
198 |
+
self.vocab_size = vocab_size
|
199 |
+
self.hidden_size = hidden_size
|
200 |
+
self.intermediate_size = intermediate_size
|
201 |
+
self.num_hidden_layers = num_hidden_layers
|
202 |
+
|
203 |
+
self.hidden_dropout = hidden_dropout
|
204 |
+
self.hidden_act = hidden_act
|
205 |
+
self.initializer_range = initializer_range
|
206 |
+
self.rms_norm_eps = rms_norm_eps
|
207 |
+
self.use_cache = use_cache
|
208 |
+
|
209 |
+
self.max_position_embeddings = max_position_embeddings
|
210 |
+
self.rope_theta = rope_theta
|
211 |
+
self.rope_scaling = rope_scaling
|
212 |
+
self.num_attention_heads = num_attention_heads
|
213 |
+
self.num_key_value_heads = num_key_value_heads
|
214 |
+
self.attention_bias = attention_bias
|
215 |
+
self.attention_dropout = attention_dropout
|
216 |
+
self.mlp_bias = mlp_bias
|
217 |
+
self.sliding_window = sliding_window
|
218 |
+
self.keep_window_size = keep_window_size
|
219 |
+
self.is_moe = is_moe
|
220 |
+
self.num_experts = num_experts
|
221 |
+
self.num_experts_per_tok = num_experts_per_tok
|
222 |
+
self.num_peer_heads = num_peer_heads
|
223 |
+
self.norm_topk_prob = norm_topk_prob
|
224 |
+
self.output_router_logits = output_router_logits
|
225 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
226 |
+
|
227 |
+
# Validate the correctness of rotary position embeddings parameters
|
228 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
229 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
230 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
231 |
+
rope_config_validation(self)
|
232 |
+
|
233 |
+
# for backward compatibility
|
234 |
+
if num_key_value_heads is None:
|
235 |
+
self.num_key_value_heads = num_attention_heads
|
236 |
+
|
237 |
+
super().__init__(
|
238 |
+
tie_word_embeddings=tie_word_embeddings,
|
239 |
+
**kwargs,
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
__all__ = ["PEERConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.54.0.dev0"
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b83baf3d099a2d2cecd0945231334ebc80088b80e2da570d240c6b4e9c82942
|
3 |
+
size 87982624
|
modeling_peer.py
ADDED
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/peer/modular_peer.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_peer.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
# The PEER family of small language models is trained by SmallPEER Team.
|
11 |
+
#
|
12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
13 |
+
# you may not use this file except in compliance with the License.
|
14 |
+
# You may obtain a copy of the License at
|
15 |
+
#
|
16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
17 |
+
#
|
18 |
+
# Unless required by applicable law or agreed to in writing, software
|
19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21 |
+
# See the License for the specific language governing permissions and
|
22 |
+
# limitations under the License.
|
23 |
+
|
24 |
+
import math
|
25 |
+
from typing import Callable, Optional, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from torch import nn
|
30 |
+
from einops.layers.torch import Rearrange
|
31 |
+
from einops import einsum
|
32 |
+
import einx
|
33 |
+
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.cache_utils import Cache, DynamicCache
|
36 |
+
from transformers.generation import GenerationMixin
|
37 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
38 |
+
from transformers.integrations.flex_attention import compile_friendly_flex_attention
|
39 |
+
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
40 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
41 |
+
from transformers.modeling_outputs import (
|
42 |
+
BaseModelOutputWithPast,
|
43 |
+
MoeCausalLMOutputWithPast,
|
44 |
+
MoeModelOutputWithPast,
|
45 |
+
SequenceClassifierOutputWithPast,
|
46 |
+
)
|
47 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
48 |
+
from transformers.modeling_utils import AttentionInterface, PreTrainedModel
|
49 |
+
from transformers.processing_utils import Unpack
|
50 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
51 |
+
from transformers.utils.generic import OutputRecorder, check_model_inputs
|
52 |
+
from .configuration_peer import PEERConfig
|
53 |
+
|
54 |
+
|
55 |
+
if is_torch_flex_attn_available():
|
56 |
+
from torch.nn.attention.flex_attention import BlockMask
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
63 |
+
class PEERRMSNorm(nn.Module):
|
64 |
+
def __init__(self, hidden_size, eps=1e-6):
|
65 |
+
"""
|
66 |
+
PEERRMSNorm is equivalent to T5LayerNorm
|
67 |
+
"""
|
68 |
+
super().__init__()
|
69 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
70 |
+
self.variance_epsilon = eps
|
71 |
+
|
72 |
+
def forward(self, hidden_states):
|
73 |
+
input_dtype = hidden_states.dtype
|
74 |
+
hidden_states = hidden_states.to(torch.float32)
|
75 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
76 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
77 |
+
return self.weight * hidden_states.to(input_dtype)
|
78 |
+
|
79 |
+
def extra_repr(self):
|
80 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
81 |
+
|
82 |
+
|
83 |
+
class PEERRotaryEmbedding(nn.Module):
|
84 |
+
def __init__(self, config: PEERConfig, device=None):
|
85 |
+
super().__init__()
|
86 |
+
# BC: "rope_type" was originally "type"
|
87 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
88 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
89 |
+
else:
|
90 |
+
self.rope_type = "default"
|
91 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
92 |
+
self.original_max_seq_len = config.max_position_embeddings
|
93 |
+
|
94 |
+
self.config = config
|
95 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
96 |
+
|
97 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
98 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
99 |
+
self.original_inv_freq = self.inv_freq
|
100 |
+
|
101 |
+
@torch.no_grad()
|
102 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
103 |
+
def forward(self, x, position_ids):
|
104 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
105 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
106 |
+
|
107 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
108 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
109 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
110 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
111 |
+
cos = emb.cos() * self.attention_scaling
|
112 |
+
sin = emb.sin() * self.attention_scaling
|
113 |
+
|
114 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
115 |
+
|
116 |
+
|
117 |
+
def rotate_half(x):
|
118 |
+
"""Rotates half the hidden dims of the input."""
|
119 |
+
x1 = x[..., : x.shape[-1] // 2]
|
120 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
121 |
+
return torch.cat((-x2, x1), dim=-1)
|
122 |
+
|
123 |
+
|
124 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
125 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
q (`torch.Tensor`): The query tensor.
|
129 |
+
k (`torch.Tensor`): The key tensor.
|
130 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
131 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
132 |
+
position_ids (`torch.Tensor`, *optional*):
|
133 |
+
Deprecated and unused.
|
134 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
135 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
136 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
137 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
138 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
139 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
140 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
141 |
+
Returns:
|
142 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
143 |
+
"""
|
144 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
145 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
146 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
147 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
148 |
+
return q_embed, k_embed
|
149 |
+
|
150 |
+
|
151 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
152 |
+
"""
|
153 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
154 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
155 |
+
"""
|
156 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
157 |
+
if n_rep == 1:
|
158 |
+
return hidden_states
|
159 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
160 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
161 |
+
|
162 |
+
|
163 |
+
def eager_attention_forward(
|
164 |
+
module: nn.Module,
|
165 |
+
query: torch.Tensor,
|
166 |
+
key: torch.Tensor,
|
167 |
+
value: torch.Tensor,
|
168 |
+
attention_mask: Optional[torch.Tensor],
|
169 |
+
scaling: float,
|
170 |
+
dropout: float = 0.0,
|
171 |
+
**kwargs: Unpack[TransformersKwargs],
|
172 |
+
):
|
173 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
174 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
175 |
+
|
176 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
177 |
+
if attention_mask is not None:
|
178 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
179 |
+
attn_weights = attn_weights + causal_mask
|
180 |
+
|
181 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
182 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
183 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
184 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
185 |
+
|
186 |
+
return attn_output, attn_weights
|
187 |
+
|
188 |
+
|
189 |
+
def flex_attention_forward(
|
190 |
+
module: nn.Module,
|
191 |
+
query: torch.Tensor,
|
192 |
+
key: torch.Tensor,
|
193 |
+
value: torch.Tensor,
|
194 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
195 |
+
scaling: Optional[float] = None,
|
196 |
+
softcap: Optional[float] = None,
|
197 |
+
head_mask: Optional[torch.Tensor] = None,
|
198 |
+
**kwargs,
|
199 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
200 |
+
block_mask = None
|
201 |
+
causal_mask = None
|
202 |
+
if isinstance(attention_mask, BlockMask):
|
203 |
+
block_mask = attention_mask
|
204 |
+
else:
|
205 |
+
causal_mask = attention_mask
|
206 |
+
|
207 |
+
if causal_mask is not None:
|
208 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
209 |
+
|
210 |
+
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
|
211 |
+
if softcap is not None:
|
212 |
+
score = softcap * torch.tanh(score / softcap)
|
213 |
+
if causal_mask is not None:
|
214 |
+
score = score + causal_mask[batch_idx][head_idx][q_idx][kv_idx]
|
215 |
+
if head_mask is not None:
|
216 |
+
score = score + head_mask[batch_idx][head_idx][0][0]
|
217 |
+
return score
|
218 |
+
|
219 |
+
attn_output, attention_weights = compile_friendly_flex_attention(
|
220 |
+
query,
|
221 |
+
key,
|
222 |
+
value,
|
223 |
+
score_mod=score_mod,
|
224 |
+
block_mask=block_mask,
|
225 |
+
enable_gqa=True,
|
226 |
+
scale=scaling,
|
227 |
+
# Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
|
228 |
+
# For simplification, we thus always return it as no additional computations are introduced.
|
229 |
+
return_lse=True,
|
230 |
+
)
|
231 |
+
# lse is returned in float32
|
232 |
+
attention_weights = attention_weights.to(value.dtype)
|
233 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
234 |
+
|
235 |
+
return attn_output, attention_weights
|
236 |
+
|
237 |
+
|
238 |
+
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
|
239 |
+
ALL_ATTENTION_FUNCTIONS["peer_flex_attention"] = flex_attention_forward
|
240 |
+
|
241 |
+
|
242 |
+
class PEERAttention(nn.Module):
|
243 |
+
def __init__(self, config: PEERConfig, layer_idx: Optional[int] = None):
|
244 |
+
super().__init__()
|
245 |
+
self.config = config
|
246 |
+
self.layer_idx = layer_idx
|
247 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
248 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
249 |
+
self.scaling = self.head_dim**-0.5
|
250 |
+
self.attention_dropout = config.attention_dropout
|
251 |
+
self.keep_window_size = config.keep_window_size
|
252 |
+
|
253 |
+
self.q_proj = nn.Linear(
|
254 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
255 |
+
)
|
256 |
+
self.k_proj = nn.Linear(
|
257 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
258 |
+
)
|
259 |
+
self.v_proj = nn.Linear(
|
260 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
261 |
+
)
|
262 |
+
self.o_proj = nn.Linear(
|
263 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
264 |
+
)
|
265 |
+
self.q_norm = PEERRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
266 |
+
self.k_norm = PEERRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
hidden_states: torch.Tensor,
|
271 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
273 |
+
past_key_value: Optional[Cache] = None,
|
274 |
+
cache_position: Optional[torch.LongTensor] = None,
|
275 |
+
**kwargs,
|
276 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
277 |
+
input_shape = hidden_states.shape[:-1]
|
278 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
279 |
+
|
280 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
281 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
282 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
283 |
+
|
284 |
+
cos, sin = position_embeddings
|
285 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
286 |
+
|
287 |
+
if past_key_value is not None:
|
288 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
289 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
290 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
291 |
+
|
292 |
+
attn_mask = attention_mask
|
293 |
+
attention_interface: Callable = eager_attention_forward
|
294 |
+
if self.config._attn_implementation != "eager":
|
295 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
296 |
+
|
297 |
+
attn_output, attn_weights = attention_interface(
|
298 |
+
self,
|
299 |
+
query_states,
|
300 |
+
key_states,
|
301 |
+
value_states,
|
302 |
+
attention_mask=attn_mask,
|
303 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
304 |
+
scaling=self.scaling,
|
305 |
+
**kwargs,
|
306 |
+
)
|
307 |
+
|
308 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
309 |
+
attn_output = self.o_proj(attn_output)
|
310 |
+
return attn_output, attn_weights
|
311 |
+
|
312 |
+
|
313 |
+
class PEERMLP(nn.Module):
|
314 |
+
def __init__(self, config):
|
315 |
+
super().__init__()
|
316 |
+
self.config = config
|
317 |
+
self.hidden_size = config.hidden_size
|
318 |
+
self.intermediate_size = config.intermediate_size
|
319 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
320 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
321 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
322 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
326 |
+
return down_proj
|
327 |
+
|
328 |
+
|
329 |
+
class PEERCDMoE(nn.Module):
|
330 |
+
def __init__(self, config: PEERConfig):
|
331 |
+
super().__init__()
|
332 |
+
self.hidden_size = config.hidden_size
|
333 |
+
self.intermediate_size = config.intermediate_size
|
334 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
335 |
+
self.num_heads = config.num_peer_heads
|
336 |
+
|
337 |
+
self.num_experts = config.num_experts
|
338 |
+
self.num_keys = math.floor(math.sqrt(self.num_experts))
|
339 |
+
self.top_k = config.num_experts_per_tok
|
340 |
+
self.norm_topk_prob = config.norm_topk_prob
|
341 |
+
|
342 |
+
# router gate for retrieval experts
|
343 |
+
self.to_queries = nn.Sequential(
|
344 |
+
nn.Linear(self.hidden_size, self.hidden_size * self.num_heads, bias = False),
|
345 |
+
Rearrange('b n (p h d) -> p b n h d', p = 2, h = self.num_heads)
|
346 |
+
)
|
347 |
+
self.keys = nn.Parameter(torch.zeros(self.num_heads, self.num_keys, 2, self.hidden_size // 2))
|
348 |
+
|
349 |
+
# routed experts
|
350 |
+
self.down_embed = nn.Embedding(self.num_experts * self.num_heads, self.hidden_size)
|
351 |
+
self.up_embed = nn.Embedding(self.num_experts * self.num_heads, self.hidden_size)
|
352 |
+
|
353 |
+
def forward(
|
354 |
+
self,
|
355 |
+
hidden_states: torch.Tensor,
|
356 |
+
**kwargs,
|
357 |
+
) -> torch.Tensor:
|
358 |
+
|
359 |
+
queries = self.to_queries(hidden_states)
|
360 |
+
sim = einsum(queries, self.keys, 'p b n h d, h k p d -> p b n h k')
|
361 |
+
(scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_keys, dim = -1)
|
362 |
+
all_scores = einx.add('... i, ... j -> ... (i j)', scores_x, scores_y)
|
363 |
+
all_indices = einx.add('... i, ... j -> ... (i j)', indices_x * self.num_keys, indices_y)
|
364 |
+
scores, pk_indices = all_scores.topk(self.top_k, dim = -1)
|
365 |
+
indices = all_indices.gather(-1, pk_indices)
|
366 |
+
weights_down = self.down_embed(indices)
|
367 |
+
weights_up = self.up_embed(indices)
|
368 |
+
hidden_states = einsum(hidden_states, weights_down, 'b n d, b n h k d -> b n h k')
|
369 |
+
hidden_states = self.act_fn(hidden_states) * scores.softmax(dim=-1)
|
370 |
+
hidden_states = einsum(hidden_states, weights_up, 'b n h k, b n h k d -> b n d')
|
371 |
+
|
372 |
+
return hidden_states, None
|
373 |
+
|
374 |
+
|
375 |
+
class PEERDecoderLayer(GradientCheckpointingLayer):
|
376 |
+
def __init__(self, config: PEERConfig, layer_idx: Optional[int] = None):
|
377 |
+
super().__init__()
|
378 |
+
self.hidden_dropout = config.hidden_dropout
|
379 |
+
|
380 |
+
self.input_layernorm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
381 |
+
self.self_attn = PEERAttention(config=config, layer_idx=layer_idx)
|
382 |
+
self.input_residual = nn.Parameter(torch.ones(config.hidden_size))
|
383 |
+
|
384 |
+
self.post_attention_layernorm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
385 |
+
self.mlp = PEERMLP(config) if not config.is_moe else PEERCDMoE(config)
|
386 |
+
self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size))
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states: torch.Tensor,
|
391 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
392 |
+
attention_mask: Optional[torch.Tensor] = None,
|
393 |
+
position_ids: Optional[torch.LongTensor] = None,
|
394 |
+
past_key_value: Optional[tuple[torch.Tensor]] = None,
|
395 |
+
use_cache: Optional[bool] = False,
|
396 |
+
cache_position: Optional[torch.LongTensor] = None,
|
397 |
+
**kwargs: Unpack[TransformersKwargs],
|
398 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
399 |
+
# sequence transformation
|
400 |
+
residual = hidden_states
|
401 |
+
hidden_states = self.input_layernorm(hidden_states)
|
402 |
+
hidden_states, self_attn_weights = self.self_attn(
|
403 |
+
hidden_states=hidden_states,
|
404 |
+
position_embeddings=position_embeddings,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
position_ids=position_ids,
|
407 |
+
past_key_value=past_key_value,
|
408 |
+
use_cache=use_cache,
|
409 |
+
cache_position=cache_position,
|
410 |
+
**kwargs,
|
411 |
+
)
|
412 |
+
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
413 |
+
hidden_states = self.input_residual * residual + hidden_states
|
414 |
+
|
415 |
+
# state transformation
|
416 |
+
residual = hidden_states
|
417 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
418 |
+
hidden_states = self.mlp(hidden_states)
|
419 |
+
if isinstance(hidden_states, tuple):
|
420 |
+
hidden_states, router_logits = hidden_states
|
421 |
+
else:
|
422 |
+
router_logits = None
|
423 |
+
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
424 |
+
hidden_states = self.post_attention_residual * residual + hidden_states
|
425 |
+
|
426 |
+
return hidden_states, router_logits
|
427 |
+
|
428 |
+
|
429 |
+
@auto_docstring
|
430 |
+
class PEERPreTrainedModel(PreTrainedModel):
|
431 |
+
config_class = PEERConfig
|
432 |
+
base_model_prefix = "model"
|
433 |
+
supports_gradient_checkpointing = True
|
434 |
+
_no_split_modules = ["PEERDecoderLayer"]
|
435 |
+
_skip_keys_device_placement = ["past_key_values"]
|
436 |
+
_supports_flash_attn_2 = False
|
437 |
+
_supports_flash_attn_3 = False
|
438 |
+
_supports_sdpa = True
|
439 |
+
_supports_flex_attn = True
|
440 |
+
_supports_cache_class = True
|
441 |
+
_supports_quantized_cache = True
|
442 |
+
_supports_static_cache = False
|
443 |
+
_supports_attention_backend = True
|
444 |
+
_can_record_outputs = {
|
445 |
+
"router_logits": OutputRecorder(PEERCDMoE, index=1),
|
446 |
+
"hidden_states": PEERDecoderLayer,
|
447 |
+
"attentions": PEERAttention,
|
448 |
+
}
|
449 |
+
|
450 |
+
def _init_weights(self, module):
|
451 |
+
"""Initialize the weights"""
|
452 |
+
std = self.config.initializer_range
|
453 |
+
if isinstance(module, nn.Linear):
|
454 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
455 |
+
if module.bias is not None:
|
456 |
+
module.bias.data.zero_()
|
457 |
+
elif isinstance(module, nn.Embedding):
|
458 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
459 |
+
if module.padding_idx is not None:
|
460 |
+
module.weight.data[module.padding_idx].zero_()
|
461 |
+
elif isinstance(module, PEERRMSNorm):
|
462 |
+
module.weight.data.fill_(1.0)
|
463 |
+
|
464 |
+
if isinstance(module, PEERAttention):
|
465 |
+
if hasattr(module, "A"):
|
466 |
+
module.A.data.zero_()
|
467 |
+
elif isinstance(module, PEERDecoderLayer):
|
468 |
+
if hasattr(module, "input_residual"):
|
469 |
+
module.input_residual.data.fill_(1.0)
|
470 |
+
if hasattr(module, "post_attention_residual"):
|
471 |
+
module.post_attention_residual.data.fill_(1.0)
|
472 |
+
|
473 |
+
|
474 |
+
@auto_docstring
|
475 |
+
class PEERModel(PEERPreTrainedModel):
|
476 |
+
def __init__(self, config: PEERConfig):
|
477 |
+
super().__init__(config)
|
478 |
+
self.padding_idx = config.pad_token_id
|
479 |
+
self.vocab_size = config.vocab_size
|
480 |
+
|
481 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
482 |
+
self.layers = nn.ModuleList(
|
483 |
+
[PEERDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
484 |
+
)
|
485 |
+
self.norm = PEERRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
486 |
+
self.rotary_emb = PEERRotaryEmbedding(config=config)
|
487 |
+
self.gradient_checkpointing = False
|
488 |
+
|
489 |
+
# Initialize weights and apply final processing
|
490 |
+
self.post_init()
|
491 |
+
|
492 |
+
def get_input_embeddings(self):
|
493 |
+
return self.embed_tokens
|
494 |
+
|
495 |
+
def set_input_embeddings(self, value):
|
496 |
+
self.embed_tokens = value
|
497 |
+
|
498 |
+
@check_model_inputs
|
499 |
+
@auto_docstring
|
500 |
+
def forward(
|
501 |
+
self,
|
502 |
+
input_ids: Optional[torch.LongTensor] = None,
|
503 |
+
attention_mask: Optional[torch.Tensor] = None,
|
504 |
+
position_ids: Optional[torch.LongTensor] = None,
|
505 |
+
past_key_values: Optional[Cache] = None,
|
506 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
507 |
+
use_cache: Optional[bool] = None,
|
508 |
+
cache_position: Optional[torch.LongTensor] = None,
|
509 |
+
**kwargs: Unpack[TransformersKwargs],
|
510 |
+
) -> MoeModelOutputWithPast:
|
511 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
512 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
513 |
+
|
514 |
+
if use_cache and past_key_values is None:
|
515 |
+
past_key_values = DynamicCache()
|
516 |
+
|
517 |
+
if inputs_embeds is None:
|
518 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
519 |
+
|
520 |
+
if cache_position is None:
|
521 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
522 |
+
cache_position = torch.arange(
|
523 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
524 |
+
)
|
525 |
+
if position_ids is None:
|
526 |
+
position_ids = cache_position.unsqueeze(0)
|
527 |
+
|
528 |
+
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
|
529 |
+
causal_mask = mask_function(
|
530 |
+
config=self.config,
|
531 |
+
input_embeds=inputs_embeds,
|
532 |
+
attention_mask=attention_mask,
|
533 |
+
cache_position=cache_position,
|
534 |
+
past_key_values=past_key_values,
|
535 |
+
position_ids=position_ids,
|
536 |
+
)
|
537 |
+
|
538 |
+
hidden_states = inputs_embeds
|
539 |
+
|
540 |
+
# create position embeddings to be shared across the decoder layers
|
541 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
542 |
+
|
543 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
544 |
+
hidden_states, router_logits = decoder_layer(
|
545 |
+
hidden_states,
|
546 |
+
position_embeddings=position_embeddings,
|
547 |
+
attention_mask=causal_mask,
|
548 |
+
position_ids=position_ids,
|
549 |
+
past_key_value=past_key_values,
|
550 |
+
use_cache=use_cache,
|
551 |
+
cache_position=cache_position,
|
552 |
+
**kwargs,
|
553 |
+
)
|
554 |
+
|
555 |
+
hidden_states = self.norm(hidden_states)
|
556 |
+
|
557 |
+
return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
|
558 |
+
last_hidden_state=hidden_states,
|
559 |
+
past_key_values=past_key_values,
|
560 |
+
router_logits=router_logits,
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
def load_balancing_loss_func(
|
565 |
+
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
|
566 |
+
num_experts: Optional[int] = None,
|
567 |
+
num_keys: Optional[int] = None,
|
568 |
+
top_k: int = 2,
|
569 |
+
attention_mask: Optional[torch.Tensor] = None,
|
570 |
+
) -> Union[torch.Tensor, int]:
|
571 |
+
r"""
|
572 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
573 |
+
|
574 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
575 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
576 |
+
experts is too unbalanced.
|
577 |
+
|
578 |
+
Args:
|
579 |
+
gate_logits:
|
580 |
+
Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
581 |
+
shape [2, batch_size * sequence_length, num_keys].
|
582 |
+
num_experts:
|
583 |
+
Number of experts
|
584 |
+
num_keys:
|
585 |
+
Number of keys
|
586 |
+
top_k:
|
587 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
588 |
+
parameter.
|
589 |
+
attention_mask (`torch.Tensor`, *optional*):
|
590 |
+
The attention_mask used in forward function
|
591 |
+
shape [batch_size X sequence_length] if not None.
|
592 |
+
|
593 |
+
Returns:
|
594 |
+
The auxiliary loss.
|
595 |
+
"""
|
596 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
597 |
+
return 0
|
598 |
+
|
599 |
+
compute_dtype = gate_logits[0].dtype
|
600 |
+
compute_device = gate_logits[0].device
|
601 |
+
all_expert_indices = []
|
602 |
+
all_routing_weights = []
|
603 |
+
|
604 |
+
for layer_gate_logits in gate_logits:
|
605 |
+
layer_gate_logits = layer_gate_logits.to(compute_device)
|
606 |
+
|
607 |
+
(scores_x, scores_y), (indices_x, indices_y) = layer_gate_logits.topk(num_keys, dim=-1)
|
608 |
+
|
609 |
+
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
610 |
+
all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2)
|
611 |
+
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
612 |
+
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
613 |
+
|
614 |
+
_, position_indices = all_scores.topk(top_k, dim=-1)
|
615 |
+
expert_indices = all_indices.gather(-1, position_indices)
|
616 |
+
|
617 |
+
routing_weights = F.softmax(all_scores, dim=-1)
|
618 |
+
|
619 |
+
all_expert_indices.append(expert_indices)
|
620 |
+
all_routing_weights.append(routing_weights)
|
621 |
+
all_expert_indices = torch.cat(all_expert_indices, dim=0)
|
622 |
+
all_routing_weights = torch.cat(all_routing_weights, dim=0)
|
623 |
+
|
624 |
+
if attention_mask is None:
|
625 |
+
# Compute the percentage of tokens routed to each experts
|
626 |
+
all_expert_indices = all_expert_indices.view(-1)
|
627 |
+
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
|
628 |
+
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
|
629 |
+
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0]
|
630 |
+
|
631 |
+
# Compute the average probability of routing to these experts
|
632 |
+
router_prob_per_expert = torch.mean(all_routing_weights, dim=0)
|
633 |
+
else:
|
634 |
+
batch_size, sequence_length = attention_mask.shape
|
635 |
+
num_hidden_layers = len(gate_logits)
|
636 |
+
|
637 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
638 |
+
expert_attention_mask = (
|
639 |
+
attention_mask[None, :, :, None]
|
640 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k))
|
641 |
+
.reshape(-1)
|
642 |
+
.to(compute_device)
|
643 |
+
)
|
644 |
+
all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()]
|
645 |
+
|
646 |
+
# Compute the percentage of tokens routed to each experts
|
647 |
+
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
|
648 |
+
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
|
649 |
+
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(
|
650 |
+
expert_attention_mask
|
651 |
+
)
|
652 |
+
|
653 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
654 |
+
router_per_expert_attention_mask = (
|
655 |
+
attention_mask[None, :, :, None]
|
656 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
657 |
+
.reshape(-1, num_experts)
|
658 |
+
.to(compute_device)
|
659 |
+
)
|
660 |
+
|
661 |
+
# Compute the average probability of routing to these experts
|
662 |
+
router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
663 |
+
router_per_expert_attention_mask, dim=0
|
664 |
+
)
|
665 |
+
|
666 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert)
|
667 |
+
return overall_loss * num_experts
|
668 |
+
|
669 |
+
|
670 |
+
@auto_docstring
|
671 |
+
class PEERForCausalLM(PEERPreTrainedModel, GenerationMixin):
|
672 |
+
_tied_weights_keys = ["lm_head.weight"]
|
673 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
674 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
675 |
+
|
676 |
+
def __init__(self, config):
|
677 |
+
super().__init__(config)
|
678 |
+
self.model = PEERModel(config)
|
679 |
+
self.vocab_size = config.vocab_size
|
680 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
681 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
682 |
+
self.num_experts = config.num_experts
|
683 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
684 |
+
|
685 |
+
# Initialize weights and apply final processing
|
686 |
+
self.post_init()
|
687 |
+
|
688 |
+
def get_input_embeddings(self):
|
689 |
+
return self.model.embed_tokens
|
690 |
+
|
691 |
+
def set_input_embeddings(self, value):
|
692 |
+
self.model.embed_tokens = value
|
693 |
+
|
694 |
+
def get_output_embeddings(self):
|
695 |
+
return self.lm_head
|
696 |
+
|
697 |
+
def set_output_embeddings(self, new_embeddings):
|
698 |
+
self.lm_head = new_embeddings
|
699 |
+
|
700 |
+
def set_decoder(self, decoder):
|
701 |
+
self.model = decoder
|
702 |
+
|
703 |
+
def get_decoder(self):
|
704 |
+
return self.model
|
705 |
+
|
706 |
+
@can_return_tuple
|
707 |
+
@auto_docstring
|
708 |
+
def forward(
|
709 |
+
self,
|
710 |
+
input_ids: Optional[torch.LongTensor] = None,
|
711 |
+
attention_mask: Optional[torch.Tensor] = None,
|
712 |
+
position_ids: Optional[torch.LongTensor] = None,
|
713 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
714 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
715 |
+
labels: Optional[torch.LongTensor] = None,
|
716 |
+
use_cache: Optional[bool] = None,
|
717 |
+
cache_position: Optional[torch.LongTensor] = None,
|
718 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
719 |
+
output_router_logits: Optional[bool] = None,
|
720 |
+
**kwargs: Unpack[TransformersKwargs],
|
721 |
+
) -> MoeCausalLMOutputWithPast:
|
722 |
+
r"""
|
723 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
724 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
725 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
726 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
727 |
+
|
728 |
+
Example:
|
729 |
+
|
730 |
+
```python
|
731 |
+
>>> from transformers import AutoTokenizer, PEERForCausalLM
|
732 |
+
|
733 |
+
>>> model = PEERForCausalLM.from_pretrained("SmallPEER/PEER-320M")
|
734 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("SmallPEER/PEER-320M")
|
735 |
+
|
736 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
737 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
738 |
+
|
739 |
+
>>> # Generate
|
740 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
741 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
742 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
743 |
+
```"""
|
744 |
+
output_router_logits = (
|
745 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
746 |
+
)
|
747 |
+
|
748 |
+
# if input_ids is not None:
|
749 |
+
# input_ids = torch.where(
|
750 |
+
# input_ids == torch.tensor([128256], device=input_ids.device, dtype=torch.long),
|
751 |
+
# torch.tensor([128001], device=input_ids.device, dtype=torch.long),
|
752 |
+
# input_ids
|
753 |
+
# )
|
754 |
+
|
755 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
756 |
+
outputs: MoeModelOutputWithPast = self.model(
|
757 |
+
input_ids=input_ids,
|
758 |
+
attention_mask=attention_mask,
|
759 |
+
position_ids=position_ids,
|
760 |
+
past_key_values=past_key_values,
|
761 |
+
inputs_embeds=inputs_embeds,
|
762 |
+
use_cache=use_cache,
|
763 |
+
cache_position=cache_position,
|
764 |
+
**kwargs,
|
765 |
+
)
|
766 |
+
|
767 |
+
hidden_states = outputs.last_hidden_state
|
768 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
769 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
770 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
771 |
+
|
772 |
+
loss = None
|
773 |
+
if labels is not None:
|
774 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
775 |
+
|
776 |
+
aux_loss = None
|
777 |
+
if output_router_logits:
|
778 |
+
aux_loss = load_balancing_loss_func(
|
779 |
+
outputs.router_logits,
|
780 |
+
self.num_experts,
|
781 |
+
math.floor(math.sqrt(self.num_experts)),
|
782 |
+
self.num_experts_per_tok,
|
783 |
+
attention_mask,
|
784 |
+
)
|
785 |
+
if labels is not None:
|
786 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
787 |
+
|
788 |
+
return MoeCausalLMOutputWithPast(
|
789 |
+
loss=loss,
|
790 |
+
aux_loss=aux_loss,
|
791 |
+
logits=logits,
|
792 |
+
past_key_values=outputs.past_key_values,
|
793 |
+
hidden_states=outputs.hidden_states,
|
794 |
+
attentions=outputs.attentions,
|
795 |
+
router_logits=outputs.router_logits,
|
796 |
+
)
|
797 |
+
|
798 |
+
|
799 |
+
@auto_docstring(
|
800 |
+
custom_intro="""
|
801 |
+
The PEER Model transformer with a sequence classification head on top (linear layer).
|
802 |
+
|
803 |
+
[`PEERForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
804 |
+
(e.g. GPT-2) do.
|
805 |
+
|
806 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
807 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
808 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
809 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
810 |
+
each row of the batch).
|
811 |
+
"""
|
812 |
+
)
|
813 |
+
class PEERForSequenceClassification(PEERPreTrainedModel):
|
814 |
+
def __init__(self, config):
|
815 |
+
super().__init__(config)
|
816 |
+
self.num_labels = config.num_labels
|
817 |
+
self.model = PEERModel(config)
|
818 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
819 |
+
|
820 |
+
# Initialize weights and apply final processing
|
821 |
+
self.post_init()
|
822 |
+
|
823 |
+
def get_input_embeddings(self):
|
824 |
+
return self.model.embed_tokens
|
825 |
+
|
826 |
+
def set_input_embeddings(self, value):
|
827 |
+
self.model.embed_tokens = value
|
828 |
+
|
829 |
+
@can_return_tuple
|
830 |
+
@auto_docstring
|
831 |
+
def forward(
|
832 |
+
self,
|
833 |
+
input_ids: Optional[torch.LongTensor] = None,
|
834 |
+
attention_mask: Optional[torch.Tensor] = None,
|
835 |
+
position_ids: Optional[torch.LongTensor] = None,
|
836 |
+
past_key_values: Optional[Cache] = None,
|
837 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
838 |
+
labels: Optional[torch.LongTensor] = None,
|
839 |
+
use_cache: Optional[bool] = None,
|
840 |
+
**kwargs: Unpack[TransformersKwargs],
|
841 |
+
) -> SequenceClassifierOutputWithPast:
|
842 |
+
r"""
|
843 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
844 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
845 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
846 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
847 |
+
"""
|
848 |
+
|
849 |
+
transformer_outputs: BaseModelOutputWithPast = self.model(
|
850 |
+
input_ids,
|
851 |
+
attention_mask=attention_mask,
|
852 |
+
position_ids=position_ids,
|
853 |
+
past_key_values=past_key_values,
|
854 |
+
inputs_embeds=inputs_embeds,
|
855 |
+
use_cache=use_cache,
|
856 |
+
**kwargs,
|
857 |
+
)
|
858 |
+
hidden_states = transformer_outputs.last_hidden_state
|
859 |
+
logits = self.score(hidden_states)
|
860 |
+
|
861 |
+
if input_ids is not None:
|
862 |
+
batch_size = input_ids.shape[0]
|
863 |
+
else:
|
864 |
+
batch_size = inputs_embeds.shape[0]
|
865 |
+
|
866 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
867 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
868 |
+
if self.config.pad_token_id is None:
|
869 |
+
last_non_pad_token = -1
|
870 |
+
elif input_ids is not None:
|
871 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
872 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
873 |
+
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
|
874 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
875 |
+
else:
|
876 |
+
last_non_pad_token = -1
|
877 |
+
logger.warning_once(
|
878 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
879 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
880 |
+
)
|
881 |
+
|
882 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
883 |
+
|
884 |
+
loss = None
|
885 |
+
if labels is not None:
|
886 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
887 |
+
|
888 |
+
return SequenceClassifierOutputWithPast(
|
889 |
+
loss=loss,
|
890 |
+
logits=pooled_logits,
|
891 |
+
past_key_values=transformer_outputs.past_key_values,
|
892 |
+
hidden_states=transformer_outputs.hidden_states,
|
893 |
+
attentions=transformer_outputs.attentions,
|
894 |
+
)
|
895 |
+
|
896 |
+
|
897 |
+
__all__ = ["PEERForCausalLM", "PEERModel", "PEERPreTrainedModel", "PEERForSequenceClassification"]
|