File size: 2,384 Bytes
6ba863a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceba481
6ba863a
 
 
 
 
 
 
 
 
ceba481
 
6ba863a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804c535
6ba863a
 
 
 
 
ceba481
 
 
 
 
 
 
 
 
 
6ba863a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-mixed-bottoms
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9888682745825603
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-mixed-bottoms

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0272
- Accuracy: 0.9889

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1479        | 0.99  | 86   | 0.1040          | 0.9592   |
| 0.145         | 2.0   | 173  | 0.1033          | 0.9592   |
| 0.1248        | 2.99  | 259  | 0.0640          | 0.9777   |
| 0.0667        | 4.0   | 346  | 0.0378          | 0.9907   |
| 0.0826        | 4.99  | 432  | 0.0400          | 0.9814   |
| 0.0635        | 6.0   | 519  | 0.0331          | 0.9907   |
| 0.0688        | 7.0   | 606  | 0.0461          | 0.9852   |
| 0.0549        | 7.99  | 692  | 0.0335          | 0.9889   |
| 0.0501        | 9.0   | 779  | 0.0241          | 0.9907   |
| 0.0434        | 9.93  | 860  | 0.0272          | 0.9889   |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3