SoybeanMilk commited on
Commit
f1fec35
·
verified ·
1 Parent(s): 94585f0

Delete processing_kimi_vl.py

Browse files
Files changed (1) hide show
  1. processing_kimi_vl.py +0 -170
processing_kimi_vl.py DELETED
@@ -1,170 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2025 The Moonshot Team and HuggingFace Inc. team. All rights reserved.
3
- #
4
- # The code is based on the Qwen2VL processor (qwen2_vl/processing_qwen2_vl.py), but modified for KimiVL.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- """
18
- Processor class for KimiVL.
19
- """
20
-
21
- from typing import List, Union
22
-
23
- from transformers.feature_extraction_utils import BatchFeature
24
- from transformers.image_utils import ImageInput
25
- from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
26
- from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
27
- from transformers.utils import logging
28
-
29
-
30
- logger = logging.get_logger(__name__)
31
-
32
-
33
- class KimiVLProcessorKwargs(ProcessingKwargs, total=False):
34
- _defaults = {
35
- "text_kwargs": {
36
- "padding": False,
37
- },
38
- "images_kwargs": {},
39
- }
40
-
41
-
42
- class KimiVLProcessor(ProcessorMixin):
43
- r"""
44
- Constructs a KimiVL processor which wraps a KimiVL image processor and a tokenizer into a single processor.
45
-
46
- [`KimiVLProcessor`] offers all the functionalities of [`KimiVLImageProcessor`] and [`TikTokenTokenizer`]. See the
47
- [`~KimiVLProcessor.__call__`] and [`~KimiVLProcessor.decode`] for more information.
48
-
49
- Args:
50
- image_processor ([`KimiVLImageProcessor`], *optional*):
51
- The image processor is a required input.
52
- tokenizer ([`TikTokenTokenizer`], *optional*):
53
- The tokenizer is a required input.
54
- chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
55
- in a chat into a tokenizable string.
56
- """
57
-
58
- attributes = ["image_processor", "tokenizer"]
59
- valid_kwargs = [ "chat_template"]
60
- image_processor_class = "AutoImageProcessor"
61
- tokenizer_class = "AutoTokenizer"
62
-
63
- def __init__(
64
- self,
65
- image_processor=None,
66
- tokenizer=None,
67
- chat_template=None,
68
- **kwargs,
69
- ):
70
- self.image_token = "<|media_pad|>"
71
- super().__init__(image_processor, tokenizer, chat_template=chat_template)
72
-
73
- def __call__(
74
- self,
75
- images: ImageInput = None,
76
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
77
- **kwargs: Unpack[KimiVLProcessorKwargs],
78
- ) -> BatchFeature:
79
- """
80
- Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
81
- and `kwargs` arguments to TikTokenTokenizer's [`~TikTokenTokenizer.__call__`] if `text` is not `None` to encode
82
- the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
83
- CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
84
- of the above two methods for more information.
85
-
86
- Args:
87
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
88
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
89
- tensor. Both channels-first and channels-last formats are supported.
90
- text (`str`, `List[str]`, `List[List[str]]`):
91
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
92
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
93
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
94
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
95
- If set, will return tensors of a particular framework. Acceptable values are:
96
- - `'tf'`: Return TensorFlow `tf.constant` objects.
97
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
98
- - `'np'`: Return NumPy `np.ndarray` objects.
99
- - `'jax'`: Return JAX `jnp.ndarray` objects.
100
-
101
- Returns:
102
- [`BatchFeature`]: A [`BatchFeature`] with the following fields:
103
-
104
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
105
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
106
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
107
- `None`).
108
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
109
- """
110
- if images is None and text is None:
111
- raise ValueError("You have to specify at least one of `images` or `text`.")
112
-
113
- # check if images and text inputs are reversed for BC
114
- images, text = _validate_images_text_input_order(images, text)
115
-
116
- output_kwargs = self._merge_kwargs(
117
- KimiVLProcessorKwargs,
118
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
119
- **kwargs,
120
- )
121
- if images is not None:
122
- image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
123
- image_grid_hws = image_inputs["image_grid_hws"]
124
- else:
125
- image_inputs = {}
126
- image_grid_hws = None
127
-
128
- if isinstance(text, str):
129
- text = [text]
130
- elif not isinstance(text, list) and not isinstance(text[0], str):
131
- raise ValueError("Invalid input text. Please provide a string, or a list of strings")
132
-
133
- if image_grid_hws is not None:
134
- merge_length = self.image_processor.merge_kernel_size[0] * self.image_processor.merge_kernel_size[1]
135
- index = 0
136
- for i in range(len(text)):
137
- while self.image_token in text[i]:
138
- text[i] = text[i].replace(
139
- self.image_token,
140
- "<|placeholder|>" * (image_grid_hws[index].prod() // merge_length),
141
- 1,
142
- )
143
- index += 1
144
- text[i] = text[i].replace("<|placeholder|>", self.image_token)
145
-
146
- text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
147
- return BatchFeature(data={**text_inputs, **image_inputs})
148
-
149
- def batch_decode(self, *args, **kwargs):
150
- """
151
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
152
- refer to the docstring of this method for more information.
153
- """
154
- return self.tokenizer.batch_decode(*args, **kwargs)
155
-
156
- def decode(self, *args, **kwargs):
157
- """
158
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
159
- the docstring of this method for more information.
160
- """
161
- return self.tokenizer.decode(*args, **kwargs)
162
-
163
- @property
164
- def model_input_names(self):
165
- tokenizer_input_names = self.tokenizer.model_input_names
166
- image_processor_input_names = self.image_processor.model_input_names
167
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
168
-
169
-
170
- __all__ = ["KimiVLProcessorKwargs"]