--- license: mit base_model: flaubert/flaubert_base_cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: question_classification results: [] --- # question_classification This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0442 - Accuracy: 0.9054 - F1: 0.9045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 204 | 1.2496 | 0.6132 | 0.6098 | | No log | 2.0 | 408 | 0.7790 | 0.7249 | 0.7231 | | 1.2508 | 3.0 | 612 | 0.6412 | 0.8023 | 0.8038 | | 1.2508 | 4.0 | 816 | 0.5420 | 0.8682 | 0.8681 | | 0.318 | 5.0 | 1020 | 0.7027 | 0.8453 | 0.8428 | | 0.318 | 6.0 | 1224 | 0.6174 | 0.8625 | 0.8629 | | 0.318 | 7.0 | 1428 | 0.6363 | 0.8768 | 0.8772 | | 0.121 | 8.0 | 1632 | 0.7726 | 0.8682 | 0.8695 | | 0.121 | 9.0 | 1836 | 1.0105 | 0.8739 | 0.8734 | | 0.043 | 10.0 | 2040 | 0.9210 | 0.8854 | 0.8855 | | 0.043 | 11.0 | 2244 | 0.9544 | 0.8825 | 0.8794 | | 0.043 | 12.0 | 2448 | 0.8467 | 0.8825 | 0.8825 | | 0.0287 | 13.0 | 2652 | 0.8958 | 0.8968 | 0.8963 | | 0.0287 | 14.0 | 2856 | 1.0431 | 0.8854 | 0.8844 | | 0.0244 | 15.0 | 3060 | 1.0537 | 0.8854 | 0.8844 | | 0.0244 | 16.0 | 3264 | 0.8005 | 0.9054 | 0.9052 | | 0.0244 | 17.0 | 3468 | 0.9819 | 0.8883 | 0.8893 | | 0.02 | 18.0 | 3672 | 1.0702 | 0.8940 | 0.8928 | | 0.02 | 19.0 | 3876 | 0.9675 | 0.8968 | 0.8957 | | 0.0067 | 20.0 | 4080 | 0.9127 | 0.8968 | 0.8965 | | 0.0067 | 21.0 | 4284 | 0.9818 | 0.9083 | 0.9075 | | 0.0067 | 22.0 | 4488 | 0.9895 | 0.8940 | 0.8934 | | 0.0074 | 23.0 | 4692 | 0.8589 | 0.9054 | 0.9054 | | 0.0074 | 24.0 | 4896 | 1.0275 | 0.8997 | 0.8992 | | 0.0139 | 25.0 | 5100 | 0.9546 | 0.9026 | 0.9021 | | 0.0139 | 26.0 | 5304 | 0.9809 | 0.9083 | 0.9077 | | 0.0074 | 27.0 | 5508 | 0.9914 | 0.9026 | 0.9020 | | 0.0074 | 28.0 | 5712 | 0.9072 | 0.9054 | 0.9052 | | 0.0074 | 29.0 | 5916 | 0.8984 | 0.9083 | 0.9081 | | 0.0081 | 30.0 | 6120 | 0.9815 | 0.9083 | 0.9074 | | 0.0081 | 31.0 | 6324 | 0.9143 | 0.8968 | 0.8969 | | 0.003 | 32.0 | 6528 | 0.9652 | 0.9054 | 0.9044 | | 0.003 | 33.0 | 6732 | 1.0522 | 0.9054 | 0.9045 | | 0.003 | 34.0 | 6936 | 1.0332 | 0.9054 | 0.9045 | | 0.0023 | 35.0 | 7140 | 1.0442 | 0.9054 | 0.9045 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.2