--- license: apache-2.0 tags: - pytorch - unet - chest-ct - survival-analysis - time-to-event - model-3d model-index: - name: UNet-TTE results: [] --- # SwinUNETR Checkpoint This is a PyTorch Lightning `.ckpt` checkpoint for a SwinUNETR model trained on chest CT images with TTE objective. ## Usage A quickstart script is below. ```python import torch from src.networks import SwinUNETRForClassification swin_unetr_params = { "img_size": (224, 224, 224), "in_channels": 1, "out_channels": 2, "feature_size": 48, "drop_rate": 0.0, "attn_drop_rate": 0.0, "dropout_path_rate": 0.0, "use_checkpoint": True, } model = SwinUNETRForClassification( swin_unetr_params=swin_unetr_params, num_classes=2 ).to(device) state_dict = torch.load( loadmodel_path, map_location=f"cuda:{torch.cuda.current_device()}" ) model.load_state_dict(state_dict) ``` For detailed instructions please follow the [README in Github repo](https://github.com/som-shahlab/tte-pretraining/tree/main?tab=readme-ov-file#evaluation).