Upload modeling_step1.py with huggingface_hub
Browse files- modeling_step1.py +414 -0
modeling_step1.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional, Tuple, Union, List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from torch import nn
|
| 7 |
+
from transformers.generation import GenerationMixin
|
| 8 |
+
|
| 9 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
from .configuration_step1 import Step1Config
|
| 12 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from transformers.modeling_outputs import (
|
| 15 |
+
BaseModelOutputWithPast,
|
| 16 |
+
CausalLMOutputWithPast,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
logger = logging.get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def build_alibi_cache(block_size, n_heads, dtype, device):
|
| 23 |
+
# get slopes
|
| 24 |
+
n = 2 ** math.floor(math.log2(n_heads)) # nearest 2**n to n_heads
|
| 25 |
+
m0 = 2.0 ** (-8.0 / n)
|
| 26 |
+
# 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
|
| 27 |
+
slopes = torch.pow(m0, torch.arange(1, n + 1))
|
| 28 |
+
if n < n_heads:
|
| 29 |
+
m1 = 2.0 ** (-4.0 / n)
|
| 30 |
+
# 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
|
| 31 |
+
mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
|
| 32 |
+
slopes = torch.cat([slopes, mm])
|
| 33 |
+
slopes = slopes.to(device)
|
| 34 |
+
|
| 35 |
+
tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
|
| 36 |
+
|
| 37 |
+
bias_rows = torch.arange(block_size, device=device).view(1, -1)
|
| 38 |
+
bias_cols = torch.arange(block_size, device=device).view(-1, 1)
|
| 39 |
+
bias = -torch.sqrt(bias_cols - bias_rows)
|
| 40 |
+
bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
|
| 41 |
+
bias = bias.masked_fill(tril == 0, float("-inf"))
|
| 42 |
+
|
| 43 |
+
return bias.type(dtype)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class StepRMSNorm(torch.nn.Module):
|
| 47 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
|
| 50 |
+
self.eps = eps
|
| 51 |
+
|
| 52 |
+
def forward(self, x: torch.Tensor):
|
| 53 |
+
var = x.float().pow(2).mean(-1, keepdim=True)
|
| 54 |
+
x = x * torch.rsqrt(var + self.eps).to(x.dtype)
|
| 55 |
+
x = x * self.weight
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class StepAttention(torch.nn.Module):
|
| 60 |
+
def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
|
| 61 |
+
super().__init__()
|
| 62 |
+
|
| 63 |
+
self.num_heads = num_heads
|
| 64 |
+
self.num_groups = num_groups
|
| 65 |
+
self.hidden_size = hidden_size
|
| 66 |
+
self.head_dim = hidden_size // num_heads
|
| 67 |
+
|
| 68 |
+
self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
|
| 69 |
+
self.k_proj = torch.nn.Linear(
|
| 70 |
+
hidden_size, num_groups * self.head_dim, bias=False
|
| 71 |
+
)
|
| 72 |
+
self.v_proj = torch.nn.Linear(
|
| 73 |
+
hidden_size, num_groups * self.head_dim, bias=False
|
| 74 |
+
)
|
| 75 |
+
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
|
| 76 |
+
|
| 77 |
+
self.layer_idx = layer_idx
|
| 78 |
+
|
| 79 |
+
def flash_attn_func(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=True,
|
| 80 |
+
return_attn_probs=False, tp_group_rank=0, tp_group_size=1):
|
| 81 |
+
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale
|
| 82 |
+
return torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0]
|
| 83 |
+
|
| 84 |
+
def forward(
|
| 85 |
+
self,
|
| 86 |
+
x: torch.Tensor,
|
| 87 |
+
past_key_value: Optional[Cache] = None,
|
| 88 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 89 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 90 |
+
):
|
| 91 |
+
|
| 92 |
+
q: torch.Tensor = self.q_proj(x)
|
| 93 |
+
k: torch.Tensor = self.k_proj(x)
|
| 94 |
+
v: torch.Tensor = self.v_proj(x)
|
| 95 |
+
if past_key_value is not None:
|
| 96 |
+
cache_kwargs = {"cache_position": cache_position}
|
| 97 |
+
k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
|
| 98 |
+
|
| 99 |
+
q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
|
| 100 |
+
k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
|
| 101 |
+
v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
if self.head_dim not in (64, 128):
|
| 105 |
+
raise ValueError("head_dim must be 64 or 128")
|
| 106 |
+
attn_output = self.flash_attn_func(q, k, v)
|
| 107 |
+
attn_output = attn_output.flatten(-2, -1)
|
| 108 |
+
except:
|
| 109 |
+
k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
|
| 110 |
+
v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
|
| 111 |
+
|
| 112 |
+
attention_mask = build_alibi_cache(
|
| 113 |
+
k.size(1), self.num_heads, dtype=q.dtype, device=q.device
|
| 114 |
+
)[:, :, -q.size(1) :, :].contiguous()
|
| 115 |
+
|
| 116 |
+
q = q.transpose(1, 2)
|
| 117 |
+
k = k.transpose(1, 2)
|
| 118 |
+
v = v.transpose(1, 2)
|
| 119 |
+
|
| 120 |
+
attn_output: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
|
| 121 |
+
q, k, v, attn_mask=attention_mask
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
attn_output = attn_output.transpose(1, 2).flatten(-2, -1)
|
| 125 |
+
|
| 126 |
+
out = self.o_proj(attn_output)
|
| 127 |
+
return out, None # attn weights are not returned
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class StepMLP(torch.nn.Module):
|
| 131 |
+
def __init__(self, hidden_size, intermediate_size):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 134 |
+
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 135 |
+
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 136 |
+
|
| 137 |
+
def forward(self, x):
|
| 138 |
+
gate = self.gate_proj(x)
|
| 139 |
+
up = self.up_proj(x)
|
| 140 |
+
x = torch.nn.functional.silu(gate) * up
|
| 141 |
+
x = self.down_proj(x)
|
| 142 |
+
return x
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class StepLayer(torch.nn.Module):
|
| 146 |
+
def __init__(self, config: Step1Config, layer_idx: int):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.layer_idx = layer_idx
|
| 149 |
+
self.self_attn = StepAttention(
|
| 150 |
+
hidden_size=config.hidden_size,
|
| 151 |
+
num_heads=config.num_attention_heads,
|
| 152 |
+
num_groups=config.num_attention_groups,
|
| 153 |
+
layer_idx=layer_idx,
|
| 154 |
+
)
|
| 155 |
+
self.mlp = StepMLP(
|
| 156 |
+
hidden_size=config.hidden_size,
|
| 157 |
+
intermediate_size=config.intermediate_size,
|
| 158 |
+
)
|
| 159 |
+
self.input_layernorm = StepRMSNorm(
|
| 160 |
+
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
| 161 |
+
)
|
| 162 |
+
self.post_attention_layernorm = StepRMSNorm(
|
| 163 |
+
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def forward(
|
| 167 |
+
self,
|
| 168 |
+
hidden_states: torch.Tensor,
|
| 169 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 170 |
+
past_key_value: Optional[Cache] = None,
|
| 171 |
+
output_attentions: Optional[bool] = False,
|
| 172 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 173 |
+
):
|
| 174 |
+
residual = hidden_states
|
| 175 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 176 |
+
hidden_states, self_attn_weights = self.self_attn(hidden_states, past_key_value, attention_mask, cache_position)
|
| 177 |
+
hidden_states = residual + hidden_states
|
| 178 |
+
|
| 179 |
+
residual = hidden_states
|
| 180 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 181 |
+
hidden_states = self.mlp(hidden_states)
|
| 182 |
+
hidden_states = residual + hidden_states
|
| 183 |
+
|
| 184 |
+
outputs = (hidden_states, )
|
| 185 |
+
if output_attentions:
|
| 186 |
+
outputs += (self_attn_weights,)
|
| 187 |
+
return outputs
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class StepPreTrainedModel(PreTrainedModel):
|
| 191 |
+
config_class = Step1Config
|
| 192 |
+
base_model_prefix = "model"
|
| 193 |
+
supports_gradient_checkpointing = True
|
| 194 |
+
_no_split_modules = ["StepLayer"]
|
| 195 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 196 |
+
_supports_cache_class = True
|
| 197 |
+
_supports_static_cache = True
|
| 198 |
+
|
| 199 |
+
def _init_weights(self, module):
|
| 200 |
+
std = self.config.initializer_range
|
| 201 |
+
if isinstance(module, nn.Linear):
|
| 202 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 203 |
+
if module.bias is not None:
|
| 204 |
+
module.bias.data.zero_()
|
| 205 |
+
elif isinstance(module, nn.Embedding):
|
| 206 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 207 |
+
if module.padding_idx is not None:
|
| 208 |
+
module.weight.data[module.padding_idx].zero_()
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class Step1Model(StepPreTrainedModel):
|
| 212 |
+
"""
|
| 213 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
config: Step1Config
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
def __init__(self, config: Step1Config):
|
| 220 |
+
super().__init__(config)
|
| 221 |
+
self.config = config
|
| 222 |
+
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
|
| 223 |
+
|
| 224 |
+
self.layers = torch.nn.Sequential(
|
| 225 |
+
*[
|
| 226 |
+
StepLayer(config, layer_idx)
|
| 227 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 228 |
+
]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
self.norm = StepRMSNorm(
|
| 232 |
+
hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Initialize weights and apply final processing
|
| 236 |
+
self.post_init()
|
| 237 |
+
|
| 238 |
+
def get_input_embeddings(self):
|
| 239 |
+
return self.embed_tokens
|
| 240 |
+
|
| 241 |
+
def set_input_embeddings(self, value):
|
| 242 |
+
self.embed_tokens = value
|
| 243 |
+
|
| 244 |
+
def forward(
|
| 245 |
+
self,
|
| 246 |
+
input_ids: torch.LongTensor = None,
|
| 247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 248 |
+
past_key_values: Optional[Cache] = None,
|
| 249 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 250 |
+
use_cache: Optional[bool] = None,
|
| 251 |
+
output_attentions: Optional[bool] = None,
|
| 252 |
+
output_hidden_states: Optional[bool] = None,
|
| 253 |
+
return_dict: Optional[bool] = None,
|
| 254 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 255 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 256 |
+
output_attentions = (
|
| 257 |
+
output_attentions
|
| 258 |
+
if output_attentions is not None
|
| 259 |
+
else self.config.output_attentions
|
| 260 |
+
)
|
| 261 |
+
output_hidden_states = (
|
| 262 |
+
output_hidden_states
|
| 263 |
+
if output_hidden_states is not None
|
| 264 |
+
else self.config.output_hidden_states
|
| 265 |
+
)
|
| 266 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 267 |
+
return_dict = (
|
| 268 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 272 |
+
raise ValueError(
|
| 273 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
if inputs_embeds is None:
|
| 277 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 278 |
+
|
| 279 |
+
if use_cache and past_key_values is None:
|
| 280 |
+
past_key_values = DynamicCache()
|
| 281 |
+
|
| 282 |
+
if cache_position is None:
|
| 283 |
+
past_seen_tokens = (
|
| 284 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 285 |
+
)
|
| 286 |
+
cache_position = torch.arange(
|
| 287 |
+
past_seen_tokens,
|
| 288 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 289 |
+
device=inputs_embeds.device,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
causal_mask = attention_mask
|
| 293 |
+
|
| 294 |
+
hidden_states = inputs_embeds
|
| 295 |
+
|
| 296 |
+
# decoder layers
|
| 297 |
+
all_hidden_states = () if output_hidden_states else None
|
| 298 |
+
all_self_attns = () if output_attentions else None
|
| 299 |
+
|
| 300 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 301 |
+
if output_hidden_states:
|
| 302 |
+
all_hidden_states += (hidden_states,)
|
| 303 |
+
|
| 304 |
+
layer_outputs = decoder_layer(
|
| 305 |
+
hidden_states,
|
| 306 |
+
attention_mask=causal_mask,
|
| 307 |
+
past_key_value=past_key_values,
|
| 308 |
+
cache_position=cache_position,
|
| 309 |
+
output_attentions=output_attentions,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
hidden_states = layer_outputs[0]
|
| 313 |
+
|
| 314 |
+
if output_attentions:
|
| 315 |
+
all_self_attns += (layer_outputs[1],)
|
| 316 |
+
|
| 317 |
+
hidden_states = self.norm(hidden_states)
|
| 318 |
+
|
| 319 |
+
# add hidden states from the last decoder layer
|
| 320 |
+
if output_hidden_states:
|
| 321 |
+
all_hidden_states += (hidden_states,)
|
| 322 |
+
|
| 323 |
+
output = BaseModelOutputWithPast(
|
| 324 |
+
last_hidden_state=hidden_states,
|
| 325 |
+
past_key_values=past_key_values if use_cache else None,
|
| 326 |
+
hidden_states=all_hidden_states,
|
| 327 |
+
attentions=None,
|
| 328 |
+
)
|
| 329 |
+
return output if return_dict else output.to_tuple()
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
|
| 333 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 334 |
+
|
| 335 |
+
def __init__(self, config):
|
| 336 |
+
super().__init__(config)
|
| 337 |
+
self.model = Step1Model(config)
|
| 338 |
+
self.vocab_size = config.vocab_size
|
| 339 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 340 |
+
|
| 341 |
+
# Initialize weights and apply final processing
|
| 342 |
+
self.post_init()
|
| 343 |
+
|
| 344 |
+
def get_input_embeddings(self):
|
| 345 |
+
return self.model.embed_tokens
|
| 346 |
+
|
| 347 |
+
def set_input_embeddings(self, value):
|
| 348 |
+
self.model.embed_tokens = value
|
| 349 |
+
|
| 350 |
+
def set_decoder(self, decoder):
|
| 351 |
+
self.model = decoder
|
| 352 |
+
|
| 353 |
+
def get_decoder(self):
|
| 354 |
+
return self.model
|
| 355 |
+
|
| 356 |
+
def forward(
|
| 357 |
+
self,
|
| 358 |
+
input_ids: torch.LongTensor = None,
|
| 359 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 360 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 361 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 363 |
+
labels: Optional[torch.LongTensor] = None,
|
| 364 |
+
use_cache: Optional[bool] = None,
|
| 365 |
+
output_attentions: Optional[bool] = None,
|
| 366 |
+
output_hidden_states: Optional[bool] = None,
|
| 367 |
+
return_dict: Optional[bool] = None,
|
| 368 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 369 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 370 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 371 |
+
output_hidden_states = (
|
| 372 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 373 |
+
)
|
| 374 |
+
return_dict = (
|
| 375 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 379 |
+
outputs = self.model(
|
| 380 |
+
input_ids=input_ids,
|
| 381 |
+
attention_mask=attention_mask,
|
| 382 |
+
past_key_values=past_key_values,
|
| 383 |
+
inputs_embeds=inputs_embeds,
|
| 384 |
+
use_cache=use_cache,
|
| 385 |
+
output_attentions=output_attentions,
|
| 386 |
+
output_hidden_states=output_hidden_states,
|
| 387 |
+
return_dict=return_dict,
|
| 388 |
+
cache_position=cache_position,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
hidden_states = outputs[0]
|
| 392 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 393 |
+
|
| 394 |
+
logits = self.lm_head(hidden_states)
|
| 395 |
+
|
| 396 |
+
loss = None
|
| 397 |
+
if labels is not None:
|
| 398 |
+
loss = self.loss_function(
|
| 399 |
+
logits=logits,
|
| 400 |
+
labels=labels,
|
| 401 |
+
vocab_size=self.config.vocab_size,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
if not return_dict:
|
| 405 |
+
output = (logits,) + outputs[1:]
|
| 406 |
+
return (loss,) + output if loss is not None else output
|
| 407 |
+
|
| 408 |
+
return CausalLMOutputWithPast(
|
| 409 |
+
loss=loss,
|
| 410 |
+
logits=logits,
|
| 411 |
+
past_key_values=outputs.past_key_values,
|
| 412 |
+
hidden_states=outputs.hidden_states,
|
| 413 |
+
attentions=outputs.attentions,
|
| 414 |
+
)
|