Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- StepLaw
|
| 5 |
+
- causal-lm
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
library_name: transformers
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
model-index:
|
| 11 |
+
- name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr3.453e-04_bs512_ti19073_mlr1e-5
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Wandb Model Name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr3.453e-04_bs512_ti19073_mlr1e-5
|
| 16 |
+
|
| 17 |
+
This model is part of the [StepLaw-N_1.0B-D_19.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_1.0B-D_19.0B) collection.
|
| 18 |
+
|
| 19 |
+
## Model Specifications
|
| 20 |
+
|
| 21 |
+
### Architecture
|
| 22 |
+
- **Hidden size (H)**: 2048
|
| 23 |
+
- **Feed-forward network size (FFN)**: 8192
|
| 24 |
+
- **Attention heads**: 16
|
| 25 |
+
- **Layers**: 16
|
| 26 |
+
- **Parameter count**: 1.1BM
|
| 27 |
+
|
| 28 |
+
### Training Parameters
|
| 29 |
+
- **Learning rate (lr)**: 3.453e-04
|
| 30 |
+
- **Batch size (bs)**: 512
|
| 31 |
+
- **Training iterations**: 19073
|
| 32 |
+
- **Training tokens (D)**: 20.0B
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.453e-04 and batch size 512 for 19073 iterations, using a total of 20.0B training tokens.
|
| 37 |
+
|
| 38 |
+
## Usage Example
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 42 |
+
|
| 43 |
+
model_name = "StepLaw/StepLaw-N_1.0B-D_19.0B-LR3.453e-04-BS1048576"
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 46 |
+
|
| 47 |
+
# Generate text
|
| 48 |
+
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
| 49 |
+
outputs = model.generate(**inputs, max_length=100)
|
| 50 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 51 |
+
```## Part of StepLaw Project
|
| 52 |
+
|
| 53 |
+
StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
|
| 54 |
+
Visit [StepLaw Project](https://step-law.github.io/) for more information.
|