Upload README.md with huggingface_hub
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -23,17 +23,17 @@ This model is part of the [StepLaw-N_429M-D_39.0B](https://huggingface.co/collec 
     | 
|
| 23 | 
         
             
            - **Feed-forward network size (FFN)**: 9472
         
     | 
| 24 | 
         
             
            - **Attention heads**: 10
         
     | 
| 25 | 
         
             
            - **Layers**: 10
         
     | 
| 26 | 
         
            -
            - **Parameter count**:  
     | 
| 27 | 
         | 
| 28 | 
         
             
            ### Training Parameters
         
     | 
| 29 | 
         
             
            - **Learning rate (lr)**: 2.76E-03
         
     | 
| 30 | 
         
            -
            - **Batch size (bs)**:  
     | 
| 31 | 
         
             
            - **Training iterations**: 38146
         
     | 
| 32 | 
         
             
            - **Training tokens (D)**: 40.0B
         
     | 
| 33 | 
         | 
| 34 | 
         
             
            ## Model Description
         
     | 
| 35 | 
         | 
| 36 | 
         
            -
            StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 2.76E-03 and batch size  
     | 
| 37 | 
         | 
| 38 | 
         
             
            ## Usage Example
         
     | 
| 39 | 
         | 
| 
         @@ -48,7 +48,4 @@ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) 
     | 
|
| 48 | 
         
             
            inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
         
     | 
| 49 | 
         
             
            outputs = model.generate(**inputs, max_length=100)
         
     | 
| 50 | 
         
             
            print(tokenizer.decode(outputs[0], skip_special_tokens=True))
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
            StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
         
     | 
| 54 | 
         
            -
            Visit [StepLaw Project](https://step-law.github.io/) for more information.
         
     | 
| 
         | 
|
| 23 | 
         
             
            - **Feed-forward network size (FFN)**: 9472
         
     | 
| 24 | 
         
             
            - **Attention heads**: 10
         
     | 
| 25 | 
         
             
            - **Layers**: 10
         
     | 
| 26 | 
         
            +
            - **Parameter count**: 429M
         
     | 
| 27 | 
         | 
| 28 | 
         
             
            ### Training Parameters
         
     | 
| 29 | 
         
             
            - **Learning rate (lr)**: 2.76E-03
         
     | 
| 30 | 
         
            +
            - **Batch size (bs)**: 1048576
         
     | 
| 31 | 
         
             
            - **Training iterations**: 38146
         
     | 
| 32 | 
         
             
            - **Training tokens (D)**: 40.0B
         
     | 
| 33 | 
         | 
| 34 | 
         
             
            ## Model Description
         
     | 
| 35 | 
         | 
| 36 | 
         
            +
            StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 2.76E-03 and batch size 1048576 for 38146 iterations, using a total of 40.0B training tokens.
         
     | 
| 37 | 
         | 
| 38 | 
         
             
            ## Usage Example
         
     | 
| 39 | 
         | 
| 
         | 
|
| 48 | 
         
             
            inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
         
     | 
| 49 | 
         
             
            outputs = model.generate(**inputs, max_length=100)
         
     | 
| 50 | 
         
             
            print(tokenizer.decode(outputs[0], skip_special_tokens=True))
         
     | 
| 51 | 
         
            +
            ```
         
     | 
| 
         | 
|
| 
         | 
|
| 
         |