Update video_processing.py
Browse files- video_processing.py +223 -223
video_processing.py
CHANGED
|
@@ -1,224 +1,224 @@
|
|
| 1 |
-
# pip install -q rfdetr==1.2.1 supervision==0.26.1
|
| 2 |
-
|
| 3 |
-
# RF-DETR video processing for threat detection.
|
| 4 |
-
# Inference time depends on frame resolution (e.g., ~50 ms/frame on GPU for 640×640).
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
import numpy as np
|
| 8 |
-
import supervision as sv
|
| 9 |
-
import torch
|
| 10 |
-
import requests
|
| 11 |
-
from PIL import Image
|
| 12 |
-
import os
|
| 13 |
-
import cv2
|
| 14 |
-
from tqdm import tqdm
|
| 15 |
-
import time
|
| 16 |
-
|
| 17 |
-
from rfdetr import RFDETRNano
|
| 18 |
-
|
| 19 |
-
THREAT_CLASSES = {
|
| 20 |
-
1: "Gun",
|
| 21 |
-
2: "Explosive",
|
| 22 |
-
3: "Grenade",
|
| 23 |
-
4: "Knife"
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
# Enable GPU if available
|
| 27 |
-
if torch.cuda.is_available():
|
| 28 |
-
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 29 |
-
# print(f"CUDA Version: {torch.version.cuda}")
|
| 30 |
-
# print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
| 31 |
-
|
| 32 |
-
# Optimize for batch processing
|
| 33 |
-
torch.backends.cudnn.benchmark = True
|
| 34 |
-
torch.backends.cudnn.deterministic = False
|
| 35 |
-
else:
|
| 36 |
-
print("CUDA not available, using CPU")
|
| 37 |
-
|
| 38 |
-
# Configuration
|
| 39 |
-
INPUT_VIDEO = "test_video.mp4"
|
| 40 |
-
|
| 41 |
-
base, ext = os.path.splitext(INPUT_VIDEO)
|
| 42 |
-
OUTPUT_VIDEO = f"{base}_detr{ext}"
|
| 43 |
-
|
| 44 |
-
THRESHOLD = 0.5
|
| 45 |
-
BATCH_SIZE = 32
|
| 46 |
-
|
| 47 |
-
# Auto-adjust batch size based on GPU memory
|
| 48 |
-
if torch.cuda.is_available():
|
| 49 |
-
gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 50 |
-
|
| 51 |
-
print(f"Using batch size: {BATCH_SIZE}")
|
| 52 |
-
|
| 53 |
-
# Download weights
|
| 54 |
-
weights_url = "https://huggingface.co/Subh775/Threat-Detection-
|
| 55 |
-
weights_filename = "checkpoint_best_total.pth"
|
| 56 |
-
|
| 57 |
-
if not os.path.exists(weights_filename):
|
| 58 |
-
print(f"Downloading weights from {weights_url}")
|
| 59 |
-
response = requests.get(weights_url, stream=True)
|
| 60 |
-
response.raise_for_status()
|
| 61 |
-
with open(weights_filename, 'wb') as f:
|
| 62 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 63 |
-
f.write(chunk)
|
| 64 |
-
print("Download complete.")
|
| 65 |
-
|
| 66 |
-
print("Loading model...")
|
| 67 |
-
model = RFDETRNano(resolution=640, pretrain_weights=weights_filename)
|
| 68 |
-
model.optimize_for_inference()
|
| 69 |
-
|
| 70 |
-
# Setup annotators
|
| 71 |
-
color = sv.ColorPalette.from_hex([
|
| 72 |
-
"#1E90FF", "#32CD32", "#FF0000", "#FF8C00"
|
| 73 |
-
])
|
| 74 |
-
|
| 75 |
-
bbox_annotator = sv.BoxAnnotator(color=color, thickness=3)
|
| 76 |
-
label_annotator = sv.LabelAnnotator(
|
| 77 |
-
color=color,
|
| 78 |
-
text_color=sv.Color.BLACK,
|
| 79 |
-
text_scale=1.0,
|
| 80 |
-
text_thickness=2,
|
| 81 |
-
smart_position=True
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
def process_frame_batch(frames):
|
| 85 |
-
"""Process a batch of frames for better GPU utilization"""
|
| 86 |
-
batch_results = []
|
| 87 |
-
|
| 88 |
-
# Convert all frames to PIL images
|
| 89 |
-
pil_images = []
|
| 90 |
-
for frame in frames:
|
| 91 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 92 |
-
pil_image = Image.fromarray(rgb_frame)
|
| 93 |
-
pil_images.append(pil_image)
|
| 94 |
-
|
| 95 |
-
# Process each image in the batch (RF-DETR processes them efficiently)
|
| 96 |
-
batch_detections = []
|
| 97 |
-
for pil_image in pil_images:
|
| 98 |
-
detections = model.predict(pil_image, threshold=THRESHOLD)
|
| 99 |
-
batch_detections.append(detections)
|
| 100 |
-
|
| 101 |
-
# Annotate all images in the batch
|
| 102 |
-
annotated_frames = []
|
| 103 |
-
for pil_image, detections in zip(pil_images, batch_detections):
|
| 104 |
-
# Create labels
|
| 105 |
-
labels = []
|
| 106 |
-
for class_id, confidence in zip(detections.class_id, detections.confidence):
|
| 107 |
-
class_name = THREAT_CLASSES.get(class_id, f"unknown_class_{class_id}")
|
| 108 |
-
labels.append(f"{class_name} {confidence:.2f}")
|
| 109 |
-
|
| 110 |
-
# Annotate
|
| 111 |
-
annotated_pil = pil_image.copy()
|
| 112 |
-
annotated_pil = bbox_annotator.annotate(annotated_pil, detections)
|
| 113 |
-
annotated_pil = label_annotator.annotate(annotated_pil, detections, labels)
|
| 114 |
-
|
| 115 |
-
# Convert back to BGR
|
| 116 |
-
annotated_frame = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
|
| 117 |
-
annotated_frames.append(annotated_frame)
|
| 118 |
-
|
| 119 |
-
return annotated_frames, batch_detections
|
| 120 |
-
|
| 121 |
-
# Open video
|
| 122 |
-
cap = cv2.VideoCapture(INPUT_VIDEO)
|
| 123 |
-
if not cap.isOpened():
|
| 124 |
-
print(f"Error: Could not open video file {INPUT_VIDEO}")
|
| 125 |
-
exit()
|
| 126 |
-
|
| 127 |
-
# Get video properties
|
| 128 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 129 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 130 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 131 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 132 |
-
|
| 133 |
-
print(f"Video: {width}x{height}, {fps} FPS, {total_frames} frames")
|
| 134 |
-
print(f"Processing in batches of {BATCH_SIZE} frames")
|
| 135 |
-
|
| 136 |
-
# Setup video writer
|
| 137 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 138 |
-
out = cv2.VideoWriter(OUTPUT_VIDEO, fourcc, fps, (width, height))
|
| 139 |
-
|
| 140 |
-
# Batch processing
|
| 141 |
-
print("Processing video with batch inference...")
|
| 142 |
-
frame_buffer = []
|
| 143 |
-
total_detections = 0
|
| 144 |
-
processed_frames = 0
|
| 145 |
-
processing_times = []
|
| 146 |
-
|
| 147 |
-
with tqdm(total=total_frames, desc="Batch processing") as pbar:
|
| 148 |
-
while True:
|
| 149 |
-
ret, frame = cap.read()
|
| 150 |
-
if not ret:
|
| 151 |
-
# Process remaining frames in buffer
|
| 152 |
-
if frame_buffer:
|
| 153 |
-
start_time = time.time()
|
| 154 |
-
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
|
| 155 |
-
processing_time = time.time() - start_time
|
| 156 |
-
processing_times.append(processing_time)
|
| 157 |
-
|
| 158 |
-
# Write remaining frames
|
| 159 |
-
for annotated_frame, detections in zip(annotated_frames, batch_detections):
|
| 160 |
-
out.write(annotated_frame)
|
| 161 |
-
total_detections += len(detections)
|
| 162 |
-
|
| 163 |
-
processed_frames += len(frame_buffer)
|
| 164 |
-
pbar.update(len(frame_buffer))
|
| 165 |
-
break
|
| 166 |
-
|
| 167 |
-
# Add frame to buffer
|
| 168 |
-
frame_buffer.append(frame)
|
| 169 |
-
|
| 170 |
-
# Process when buffer is full
|
| 171 |
-
if len(frame_buffer) >= BATCH_SIZE:
|
| 172 |
-
start_time = time.time()
|
| 173 |
-
|
| 174 |
-
# Process batch
|
| 175 |
-
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
|
| 176 |
-
|
| 177 |
-
processing_time = time.time() - start_time
|
| 178 |
-
processing_times.append(processing_time)
|
| 179 |
-
|
| 180 |
-
# Write frames
|
| 181 |
-
batch_threats = 0
|
| 182 |
-
for annotated_frame, detections in zip(annotated_frames, batch_detections):
|
| 183 |
-
out.write(annotated_frame)
|
| 184 |
-
batch_threats += len(detections)
|
| 185 |
-
total_detections += len(detections)
|
| 186 |
-
|
| 187 |
-
processed_frames += len(frame_buffer)
|
| 188 |
-
|
| 189 |
-
# Update progress
|
| 190 |
-
batch_fps = len(frame_buffer) / processing_time if processing_time > 0 else 0
|
| 191 |
-
pbar.set_postfix({
|
| 192 |
-
'Batch FPS': f"{batch_fps:.1f}",
|
| 193 |
-
'Threats': batch_threats,
|
| 194 |
-
'Total': total_detections
|
| 195 |
-
})
|
| 196 |
-
pbar.update(len(frame_buffer))
|
| 197 |
-
|
| 198 |
-
# Clear buffer
|
| 199 |
-
frame_buffer = []
|
| 200 |
-
|
| 201 |
-
# Clear GPU cache every 10 batches
|
| 202 |
-
if torch.cuda.is_available() and processed_frames % (BATCH_SIZE * 10) == 0:
|
| 203 |
-
torch.cuda.empty_cache()
|
| 204 |
-
|
| 205 |
-
# Cleanup
|
| 206 |
-
cap.release()
|
| 207 |
-
out.release()
|
| 208 |
-
|
| 209 |
-
if torch.cuda.is_available():
|
| 210 |
-
torch.cuda.empty_cache()
|
| 211 |
-
|
| 212 |
-
# Performance summary
|
| 213 |
-
total_time = sum(processing_times)
|
| 214 |
-
avg_fps = processed_frames / total_time if total_time > 0 else 0
|
| 215 |
-
speedup = avg_fps / fps if fps > 0 else 0
|
| 216 |
-
|
| 217 |
-
print(f"Output: {OUTPUT_VIDEO}")
|
| 218 |
-
print(f"Stats:")
|
| 219 |
-
print(f" • Processed: {processed_frames} frames")
|
| 220 |
-
print(f" • Detections: {total_detections}")
|
| 221 |
-
print(f" • Batch size: {BATCH_SIZE}")
|
| 222 |
-
print(f" • Average speed: {avg_fps:.1f} FPS")
|
| 223 |
-
print(f" • Speedup: {speedup:.1f}x real-time")
|
| 224 |
print(f" • Processing time: {total_time:.1f}s")
|
|
|
|
| 1 |
+
# pip install -q rfdetr==1.2.1 supervision==0.26.1
|
| 2 |
+
|
| 3 |
+
# RF-DETR video processing for threat detection.
|
| 4 |
+
# Inference time depends on frame resolution (e.g., ~50 ms/frame on GPU for 640×640).
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import supervision as sv
|
| 9 |
+
import torch
|
| 10 |
+
import requests
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import os
|
| 13 |
+
import cv2
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import time
|
| 16 |
+
|
| 17 |
+
from rfdetr import RFDETRNano
|
| 18 |
+
|
| 19 |
+
THREAT_CLASSES = {
|
| 20 |
+
1: "Gun",
|
| 21 |
+
2: "Explosive",
|
| 22 |
+
3: "Grenade",
|
| 23 |
+
4: "Knife"
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
# Enable GPU if available
|
| 27 |
+
if torch.cuda.is_available():
|
| 28 |
+
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 29 |
+
# print(f"CUDA Version: {torch.version.cuda}")
|
| 30 |
+
# print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
| 31 |
+
|
| 32 |
+
# Optimize for batch processing
|
| 33 |
+
torch.backends.cudnn.benchmark = True
|
| 34 |
+
torch.backends.cudnn.deterministic = False
|
| 35 |
+
else:
|
| 36 |
+
print("CUDA not available, using CPU")
|
| 37 |
+
|
| 38 |
+
# Configuration
|
| 39 |
+
INPUT_VIDEO = "test_video.mp4"
|
| 40 |
+
|
| 41 |
+
base, ext = os.path.splitext(INPUT_VIDEO)
|
| 42 |
+
OUTPUT_VIDEO = f"{base}_detr{ext}"
|
| 43 |
+
|
| 44 |
+
THRESHOLD = 0.5
|
| 45 |
+
BATCH_SIZE = 32
|
| 46 |
+
|
| 47 |
+
# Auto-adjust batch size based on GPU memory
|
| 48 |
+
if torch.cuda.is_available():
|
| 49 |
+
gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 50 |
+
|
| 51 |
+
print(f"Using batch size: {BATCH_SIZE}")
|
| 52 |
+
|
| 53 |
+
# Download weights
|
| 54 |
+
weights_url = "https://huggingface.co/Subh775/Threat-Detection-RFDETR/resolve/main/checkpoint_best_total.pth"
|
| 55 |
+
weights_filename = "checkpoint_best_total.pth"
|
| 56 |
+
|
| 57 |
+
if not os.path.exists(weights_filename):
|
| 58 |
+
print(f"Downloading weights from {weights_url}")
|
| 59 |
+
response = requests.get(weights_url, stream=True)
|
| 60 |
+
response.raise_for_status()
|
| 61 |
+
with open(weights_filename, 'wb') as f:
|
| 62 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 63 |
+
f.write(chunk)
|
| 64 |
+
print("Download complete.")
|
| 65 |
+
|
| 66 |
+
print("Loading model...")
|
| 67 |
+
model = RFDETRNano(resolution=640, pretrain_weights=weights_filename)
|
| 68 |
+
model.optimize_for_inference()
|
| 69 |
+
|
| 70 |
+
# Setup annotators
|
| 71 |
+
color = sv.ColorPalette.from_hex([
|
| 72 |
+
"#1E90FF", "#32CD32", "#FF0000", "#FF8C00"
|
| 73 |
+
])
|
| 74 |
+
|
| 75 |
+
bbox_annotator = sv.BoxAnnotator(color=color, thickness=3)
|
| 76 |
+
label_annotator = sv.LabelAnnotator(
|
| 77 |
+
color=color,
|
| 78 |
+
text_color=sv.Color.BLACK,
|
| 79 |
+
text_scale=1.0,
|
| 80 |
+
text_thickness=2,
|
| 81 |
+
smart_position=True
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def process_frame_batch(frames):
|
| 85 |
+
"""Process a batch of frames for better GPU utilization"""
|
| 86 |
+
batch_results = []
|
| 87 |
+
|
| 88 |
+
# Convert all frames to PIL images
|
| 89 |
+
pil_images = []
|
| 90 |
+
for frame in frames:
|
| 91 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 92 |
+
pil_image = Image.fromarray(rgb_frame)
|
| 93 |
+
pil_images.append(pil_image)
|
| 94 |
+
|
| 95 |
+
# Process each image in the batch (RF-DETR processes them efficiently)
|
| 96 |
+
batch_detections = []
|
| 97 |
+
for pil_image in pil_images:
|
| 98 |
+
detections = model.predict(pil_image, threshold=THRESHOLD)
|
| 99 |
+
batch_detections.append(detections)
|
| 100 |
+
|
| 101 |
+
# Annotate all images in the batch
|
| 102 |
+
annotated_frames = []
|
| 103 |
+
for pil_image, detections in zip(pil_images, batch_detections):
|
| 104 |
+
# Create labels
|
| 105 |
+
labels = []
|
| 106 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence):
|
| 107 |
+
class_name = THREAT_CLASSES.get(class_id, f"unknown_class_{class_id}")
|
| 108 |
+
labels.append(f"{class_name} {confidence:.2f}")
|
| 109 |
+
|
| 110 |
+
# Annotate
|
| 111 |
+
annotated_pil = pil_image.copy()
|
| 112 |
+
annotated_pil = bbox_annotator.annotate(annotated_pil, detections)
|
| 113 |
+
annotated_pil = label_annotator.annotate(annotated_pil, detections, labels)
|
| 114 |
+
|
| 115 |
+
# Convert back to BGR
|
| 116 |
+
annotated_frame = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
|
| 117 |
+
annotated_frames.append(annotated_frame)
|
| 118 |
+
|
| 119 |
+
return annotated_frames, batch_detections
|
| 120 |
+
|
| 121 |
+
# Open video
|
| 122 |
+
cap = cv2.VideoCapture(INPUT_VIDEO)
|
| 123 |
+
if not cap.isOpened():
|
| 124 |
+
print(f"Error: Could not open video file {INPUT_VIDEO}")
|
| 125 |
+
exit()
|
| 126 |
+
|
| 127 |
+
# Get video properties
|
| 128 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 129 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 130 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 131 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 132 |
+
|
| 133 |
+
print(f"Video: {width}x{height}, {fps} FPS, {total_frames} frames")
|
| 134 |
+
print(f"Processing in batches of {BATCH_SIZE} frames")
|
| 135 |
+
|
| 136 |
+
# Setup video writer
|
| 137 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 138 |
+
out = cv2.VideoWriter(OUTPUT_VIDEO, fourcc, fps, (width, height))
|
| 139 |
+
|
| 140 |
+
# Batch processing
|
| 141 |
+
print("Processing video with batch inference...")
|
| 142 |
+
frame_buffer = []
|
| 143 |
+
total_detections = 0
|
| 144 |
+
processed_frames = 0
|
| 145 |
+
processing_times = []
|
| 146 |
+
|
| 147 |
+
with tqdm(total=total_frames, desc="Batch processing") as pbar:
|
| 148 |
+
while True:
|
| 149 |
+
ret, frame = cap.read()
|
| 150 |
+
if not ret:
|
| 151 |
+
# Process remaining frames in buffer
|
| 152 |
+
if frame_buffer:
|
| 153 |
+
start_time = time.time()
|
| 154 |
+
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
|
| 155 |
+
processing_time = time.time() - start_time
|
| 156 |
+
processing_times.append(processing_time)
|
| 157 |
+
|
| 158 |
+
# Write remaining frames
|
| 159 |
+
for annotated_frame, detections in zip(annotated_frames, batch_detections):
|
| 160 |
+
out.write(annotated_frame)
|
| 161 |
+
total_detections += len(detections)
|
| 162 |
+
|
| 163 |
+
processed_frames += len(frame_buffer)
|
| 164 |
+
pbar.update(len(frame_buffer))
|
| 165 |
+
break
|
| 166 |
+
|
| 167 |
+
# Add frame to buffer
|
| 168 |
+
frame_buffer.append(frame)
|
| 169 |
+
|
| 170 |
+
# Process when buffer is full
|
| 171 |
+
if len(frame_buffer) >= BATCH_SIZE:
|
| 172 |
+
start_time = time.time()
|
| 173 |
+
|
| 174 |
+
# Process batch
|
| 175 |
+
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
|
| 176 |
+
|
| 177 |
+
processing_time = time.time() - start_time
|
| 178 |
+
processing_times.append(processing_time)
|
| 179 |
+
|
| 180 |
+
# Write frames
|
| 181 |
+
batch_threats = 0
|
| 182 |
+
for annotated_frame, detections in zip(annotated_frames, batch_detections):
|
| 183 |
+
out.write(annotated_frame)
|
| 184 |
+
batch_threats += len(detections)
|
| 185 |
+
total_detections += len(detections)
|
| 186 |
+
|
| 187 |
+
processed_frames += len(frame_buffer)
|
| 188 |
+
|
| 189 |
+
# Update progress
|
| 190 |
+
batch_fps = len(frame_buffer) / processing_time if processing_time > 0 else 0
|
| 191 |
+
pbar.set_postfix({
|
| 192 |
+
'Batch FPS': f"{batch_fps:.1f}",
|
| 193 |
+
'Threats': batch_threats,
|
| 194 |
+
'Total': total_detections
|
| 195 |
+
})
|
| 196 |
+
pbar.update(len(frame_buffer))
|
| 197 |
+
|
| 198 |
+
# Clear buffer
|
| 199 |
+
frame_buffer = []
|
| 200 |
+
|
| 201 |
+
# Clear GPU cache every 10 batches
|
| 202 |
+
if torch.cuda.is_available() and processed_frames % (BATCH_SIZE * 10) == 0:
|
| 203 |
+
torch.cuda.empty_cache()
|
| 204 |
+
|
| 205 |
+
# Cleanup
|
| 206 |
+
cap.release()
|
| 207 |
+
out.release()
|
| 208 |
+
|
| 209 |
+
if torch.cuda.is_available():
|
| 210 |
+
torch.cuda.empty_cache()
|
| 211 |
+
|
| 212 |
+
# Performance summary
|
| 213 |
+
total_time = sum(processing_times)
|
| 214 |
+
avg_fps = processed_frames / total_time if total_time > 0 else 0
|
| 215 |
+
speedup = avg_fps / fps if fps > 0 else 0
|
| 216 |
+
|
| 217 |
+
print(f"Output: {OUTPUT_VIDEO}")
|
| 218 |
+
print(f"Stats:")
|
| 219 |
+
print(f" • Processed: {processed_frames} frames")
|
| 220 |
+
print(f" • Detections: {total_detections}")
|
| 221 |
+
print(f" • Batch size: {BATCH_SIZE}")
|
| 222 |
+
print(f" • Average speed: {avg_fps:.1f} FPS")
|
| 223 |
+
print(f" • Speedup: {speedup:.1f}x real-time")
|
| 224 |
print(f" • Processing time: {total_time:.1f}s")
|