File size: 7,450 Bytes
04bbc7f b45aac5 2b93840 b45aac5 0f0d905 b45aac5 0f0d905 b45aac5 04bbc7f 1e960d7 04bbc7f 1e960d7 b45aac5 697ba4a b45aac5 7e92a26 b45aac5 9dc6e9e 8751991 9dc6e9e 8751991 9dc6e9e 8751991 9dc6e9e 8751991 8083de9 8751991 8083de9 8751991 8083de9 8751991 8083de9 8751991 8083de9 8751991 8083de9 8751991 9dc6e9e b45aac5 1e960d7 b45aac5 0f0d905 7e92a26 b45aac5 f6f6565 1e960d7 b45aac5 f6f6565 b45aac5 f6f6565 b45aac5 1e960d7 b45aac5 1e960d7 b45aac5 7252af8 b45aac5 197fed8 b45aac5 5dd3e96 b45aac5 1e960d7 b45aac5 1e960d7 b45aac5 0f0d905 b45aac5 7e92a26 2e12602 0f0d905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
datasets:
- Sweaterdog/Andy-4-base
- Sweaterdog/Andy-4-ft
- Sweaterdog/Andy-base-2
language:
- en
base_model:
- unsloth/DeepSeek-R1-Distill-Llama-8B-bnb-4bit
tags:
- gaming
- minecraft
- mindcraft
---
# 🧠 Andy‑4 ⛏️

**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
**The Current version of Andy-4 is** `Andy-4-0516`, this was the date training finished.
> ⚠️ **Certification:**
> Andy‑4 is **not yet certified** by the Mindcraft developers. Use in production at your own discretion.
---
# This is a general model repo, any other models will be listed below:
### Andy-4 models:
*(Good all around model for anyone with less than 16GB of VRAM)*
* [This Repo](https://huggingface.co/Sweaterdog/Andy-4)
### Andy-4-micro models:
*(Great model to fit inside of laptops or low-end PCs)*
* [Andy-4-micro *(Latest Version)*](https://huggingface.co/Sweaterdog/Andy-4-micro)
* [Andy-4-micro-0427](https://huggingface.co/Sweaterdog/Andy-4-micro-0427)
### Andy-4-tiny models:
*(Generally not recommended due to low performance, but great for edge-case scenarios like phones)*
* [Andy-4-tiny *(Not released)*](https://huggingface.co/Sweaterdog/Andy-4-tiny)
Andy-4-tiny has yet to be released, but is in training
---
## If you are downloading on Huggingface, follow these directions!
## DO NOT Use the `Use This Model` feature in Huggingface!
<details>
<summary>Andy-4 Huggingface Install Directions</summary>
Method One:
1. Select the model you would like to use
2. Download the Modelfile
3. Once downloaded, open Modelfile in a text editor, and change the `FROM` parameter from `YOUR/PATH/HERE` to the download location of the gguf file, this has to be exact!
4. When changed, save the file, and open command terminal
5. *(Optional if CMD isn't opened via file explorer)* Navigate to the correct directory using "cd"
6. Run the command `ollama create sweaterdog/Andy-4 -f Modelfile` If you want multiple models, include a tag afterwards. Example: sweaterdog/Andy-4:micro-fp16 or sweaterdog/Andy-4:q2_k
7. Go to a profile in MindCraft
8. Change the model to be `sweaterdog/Andy-4` *Or whatever you named your model*
9. Ensure you have the emdedding tag set to Ollama, like below
```
{
"name": "andy-4",
"model": "Sweaterdog/Andy-4",
"embedding": "ollama"
}
```
Method Two:
1. Download the Modelfile
2. Once downloaded, open Modelfile in a text editor, and change the `FROM` parameter from `YOUR/PATH/HERE` To one of the models listed here in the `Use This Model` tab under ollama, here are the options:
```
hf.co/Sweaterdog/Andy-4:Q2_K
hf.co/Sweaterdog/Andy-4:Q3_K_M
hf.co/Sweaterdog/Andy-4:Q4_K_M
hf.co/Sweaterdog/Andy-4:Q5_K_M
hf.co/Sweaterdog/Andy-4:Q8_0
hf.co/Sweaterdog/Andy-4:F16
3. When changed, save the file, and open command terminal
4. *(Optional if CMD isn't opened via file explorer)* Navigate to the correct directory using "cd"
5. Run the command `ollama create sweaterdog/Andy-4 -f Modelfile` If you want multiple models, include a tag afterwards. Example: sweaterdog/Andy-4:micro-fp16 or sweaterdog/Andy-4:q2_k
6. Go to a profile in MindCraft
7. Change the model to be `sweaterdog/Andy-4` *Or whatever you named your model*
8. Ensure you have the emdedding tag set to Ollama, like below
```
{
"name": "andy-4",
"model": "Sweaterdog/Andy-4",
"embedding": "ollama"
}
```
</details>
## DO NOT SKIP THIS SECTION IF YOU INTEND ON INSTALLING OFF OF HUGGINGFACE
---
## 🔍 Model Specifications
- **Parameters:** 8 B
- **Training Hardware:** 1 × NVIDIA RTX 3090
- **Duration:** ~3 weeks total
- **Data Volumes:**
- **Messages:** 179,384
- **Tokens:** 425,535,198
- **Conversations:** 62,149
- **Base Architecture:** Deepseek-R1-LLaMA
- **License:** [Andy 1.0 License](LICENSE)
- **Repository:** https://huggingface.co/Sweaterdog/Andy‑4
---
## 📊 Training Regimen
1. **Andy‑4‑base‑1** dataset
- **Epochs:** 2
- **Learning Rate:** 4e-5
- **Dataset Size:** 47.4k
2. **Andy‑4‑base-2** dataset
- **Epochs:** 2.5
- **Learning Rate:** 7e-5
- **Dataset Size:** 49.2k
3. **Fine‑tune (FT) dataset**
- **Epochs:** 1
- **Learning Rate:** 2e-5
- **Dataset Size:** 4.12k
- **Optimizer:** AdamW_8bit with cosine decay
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
- **Warm Up Steps:** 0.1% of each dataset
---
## 🚀 Installation
First, you need to choose your quantization, this chart is with the base of `8192` set as the context window
| Quantization | VRAM Required |
|--------------|---------------|
| F16 | 20 GB+ |
| Q8_0 | 12 GB |
| Q5_K_M | 8 GB+ |
| Q4_K_M | 6–8 GB |
| Q3_K_M | 6 GB (low) |
| Q2_K | 4–6 GB (ultra low)|
### 1. Installation directly on Ollama
1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
2. Copy the command after choosing model type / quantization
3. Run the command in the terminal
4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:latest`
### 2. Manual Download & Modelfile
1. **Download**
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
- Download the provided `Modelfile`.
2. **Edit**
Change
```text
FROM YOUR/PATH/HERE
```
to
```text
FROM /path/to/Andy-4.Q4_K_M.gguf
```
*Optional*:
Increase the parameter `num_ctx` to a higher value for longer conversations if you:
**A.** Have extra VRAM
**B.** Quantized the context window
**C.** Can use a smaller model
3. **Create**
```bash
ollama create andy-4 -f Modelfile
```
This registers the **Andy‑4** model locally.
---
If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
## 🔧 Context‑Window Quantization
To lower VRAM use for context windows:
#### **Windows**
1. Close Ollama.
2. In **System Properties → Environment Variables**, add:
```text
OLLAMA_FLASH_ATTENTION=1
OLLAMA_KV_CACHE_TYPE=q8_0 # or q4_0 for extra savings, but far more unstable
```
3. Restart Ollama.
#### **Linux/macOS**
```bash
export OLLAMA_FLASH_ATTENTION=1
export OLLAMA_KV_CACHE_TYPE="q8_0" # or "q4_0", but far more unstable
ollama serve
```
---
## 📌 Acknowledgments
<details>
<summary>Click to expand</summary>
- **Data & Models by:** @Sweaterdog
- **Framework:** Mindcraft (https://github.com/kolbytn/mindcraft)
- **LoRA Weights:** https://huggingface.co/Sweaterdog/Andy-4-LoRA
- *Explicit credit is not granted to Meta since this model was trained off of a slightly different architecture, from [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
</details>
---
## ⚖️ License
See [Andy 1.0 License](LICENSE).
*This work uses data and models created by @Sweaterdog.* |