GGUF
English
llama
gaming
minecraft
mindcraft
conversational
Sweaterdog commited on
Commit
1e960d7
·
verified ·
1 Parent(s): b45aac5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -20
README.md CHANGED
@@ -13,8 +13,10 @@ tags:
13
  - mindcraft
14
  ---
15
 
16
- # 🧠 Andy‑4 🧠
17
 
 
 
18
  **Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
19
 
20
  > ⚠️ **Certification:**
@@ -28,9 +30,9 @@ tags:
28
  - **Training Hardware:** 1 × NVIDIA RTX 3090
29
  - **Duration:** ~3 weeks total
30
  - **Data Volumes:**
31
- - **Messages:** 179 384
32
- - **Tokens:** 425 535 198
33
- - **Conversations:** 62 149
34
 
35
  - **Base Architecture:** Llama 3.1 8B
36
  - **License:** [Andy 1.1 License](LICENSE)
@@ -43,14 +45,17 @@ tags:
43
  1. **Andy‑4‑base‑1** dataset
44
  - **Epochs:** 2
45
  - **Learning Rate:** 7e-5
 
46
 
47
  2. **Andy‑4‑base‑2** dataset
48
  - **Epochs:** 4
49
  - **Learning Rate:** 3e-7
 
50
 
51
  3. **Fine‑tune (FT) dataset**
52
  - **Epochs:** 2.5
53
  - **Learning Rate:** 2e-5
 
54
 
55
  - **Optimizer:** AdamW_8bit with cosine decay
56
  - **Quantization:** 4‑bit (`bnb-4bit`) for inference
@@ -60,11 +65,7 @@ tags:
60
 
61
  ## 🚀 Installation
62
 
63
- ### 1. Quick Hugging Face + Ollama *(Not recommended)*
64
-
65
- 1. On the HF model page, click **Use this model → Ollama**.
66
- 2. Choose your quantization (see table).
67
- 3. Copy and run the provided `ollama run` command.
68
 
69
  | Quantization | VRAM Required |
70
  |--------------|---------------|
@@ -74,9 +75,12 @@ tags:
74
  | Q3_K_M | 6 GB (low) |
75
  | Q2_K | 4–6 GB (ultra)|
76
 
77
- If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
78
 
79
- ---
 
 
 
80
 
81
  ### 2. Manual Download & Modelfile
82
 
@@ -84,15 +88,6 @@ If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/c
84
  - From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
85
  - Download the provided `Modelfile`.
86
 
87
- Follow this table to choose your quantization, this is for a 8192 context window, the default, as well as a non-quantized context window.
88
-
89
- | Quantization | VRAM Required |
90
- |--------------|---------------|
91
- | F16 | 16 GB+ |
92
- | Q5_K_M | 8 GB+ |
93
- | Q4_K_M | 6–8 GB |
94
- | Q3_K_M | 6 GB (low) |
95
- | Q2_K | 4–6 GB (ultra)|
96
 
97
  2. **Edit**
98
 
@@ -122,6 +117,9 @@ This registers the **Andy‑4** model locally.
122
 
123
  ---
124
 
 
 
 
125
  ## 🔧 Context‑Window Quantization
126
 
127
  To lower VRAM use for context windows:
 
13
  - mindcraft
14
  ---
15
 
16
+ # 🧠 Andy‑4 ⛏️
17
 
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66960602f0ffd8e3a381106a/raWYEDo2An1biTLXd5PfN.png)
20
  **Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
21
 
22
  > ⚠️ **Certification:**
 
30
  - **Training Hardware:** 1 × NVIDIA RTX 3090
31
  - **Duration:** ~3 weeks total
32
  - **Data Volumes:**
33
+ - **Messages:** 179,384
34
+ - **Tokens:** 425,535,198
35
+ - **Conversations:** 62,149
36
 
37
  - **Base Architecture:** Llama 3.1 8B
38
  - **License:** [Andy 1.1 License](LICENSE)
 
45
  1. **Andy‑4‑base‑1** dataset
46
  - **Epochs:** 2
47
  - **Learning Rate:** 7e-5
48
+ - **Dataset Size:** 47.4k
49
 
50
  2. **Andy‑4‑base‑2** dataset
51
  - **Epochs:** 4
52
  - **Learning Rate:** 3e-7
53
+ - **Dataset Size:** 48.9k
54
 
55
  3. **Fine‑tune (FT) dataset**
56
  - **Epochs:** 2.5
57
  - **Learning Rate:** 2e-5
58
+ - **Dataset Size:** 4.12k
59
 
60
  - **Optimizer:** AdamW_8bit with cosine decay
61
  - **Quantization:** 4‑bit (`bnb-4bit`) for inference
 
65
 
66
  ## 🚀 Installation
67
 
68
+ First, you need to choose your quantization, this chart is with the base of `8192` set as the context window
 
 
 
 
69
 
70
  | Quantization | VRAM Required |
71
  |--------------|---------------|
 
75
  | Q3_K_M | 6 GB (low) |
76
  | Q2_K | 4–6 GB (ultra)|
77
 
78
+ ### 1. Installation directly on Ollama *(Fastest and easiest)*
79
 
80
+ 1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
81
+ 2. Copy the command after choosing model type / quantization
82
+ 3. Run the command in the terminal
83
+ 4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:latest`
84
 
85
  ### 2. Manual Download & Modelfile
86
 
 
88
  - From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
89
  - Download the provided `Modelfile`.
90
 
 
 
 
 
 
 
 
 
 
91
 
92
  2. **Edit**
93
 
 
117
 
118
  ---
119
 
120
+ If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
121
+
122
+
123
  ## 🔧 Context‑Window Quantization
124
 
125
  To lower VRAM use for context windows: