Update README.md
Browse files
README.md
CHANGED
@@ -13,8 +13,10 @@ tags:
|
|
13 |
- mindcraft
|
14 |
---
|
15 |
|
16 |
-
# 🧠 Andy‑4
|
17 |
|
|
|
|
|
18 |
**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
|
19 |
|
20 |
> ⚠️ **Certification:**
|
@@ -28,9 +30,9 @@ tags:
|
|
28 |
- **Training Hardware:** 1 × NVIDIA RTX 3090
|
29 |
- **Duration:** ~3 weeks total
|
30 |
- **Data Volumes:**
|
31 |
-
- **Messages:** 179
|
32 |
-
- **Tokens:** 425
|
33 |
-
- **Conversations:** 62
|
34 |
|
35 |
- **Base Architecture:** Llama 3.1 8B
|
36 |
- **License:** [Andy 1.1 License](LICENSE)
|
@@ -43,14 +45,17 @@ tags:
|
|
43 |
1. **Andy‑4‑base‑1** dataset
|
44 |
- **Epochs:** 2
|
45 |
- **Learning Rate:** 7e-5
|
|
|
46 |
|
47 |
2. **Andy‑4‑base‑2** dataset
|
48 |
- **Epochs:** 4
|
49 |
- **Learning Rate:** 3e-7
|
|
|
50 |
|
51 |
3. **Fine‑tune (FT) dataset**
|
52 |
- **Epochs:** 2.5
|
53 |
- **Learning Rate:** 2e-5
|
|
|
54 |
|
55 |
- **Optimizer:** AdamW_8bit with cosine decay
|
56 |
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
|
@@ -60,11 +65,7 @@ tags:
|
|
60 |
|
61 |
## 🚀 Installation
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
1. On the HF model page, click **Use this model → Ollama**.
|
66 |
-
2. Choose your quantization (see table).
|
67 |
-
3. Copy and run the provided `ollama run` command.
|
68 |
|
69 |
| Quantization | VRAM Required |
|
70 |
|--------------|---------------|
|
@@ -74,9 +75,12 @@ tags:
|
|
74 |
| Q3_K_M | 6 GB (low) |
|
75 |
| Q2_K | 4–6 GB (ultra)|
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
### 2. Manual Download & Modelfile
|
82 |
|
@@ -84,15 +88,6 @@ If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/c
|
|
84 |
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
|
85 |
- Download the provided `Modelfile`.
|
86 |
|
87 |
-
Follow this table to choose your quantization, this is for a 8192 context window, the default, as well as a non-quantized context window.
|
88 |
-
|
89 |
-
| Quantization | VRAM Required |
|
90 |
-
|--------------|---------------|
|
91 |
-
| F16 | 16 GB+ |
|
92 |
-
| Q5_K_M | 8 GB+ |
|
93 |
-
| Q4_K_M | 6–8 GB |
|
94 |
-
| Q3_K_M | 6 GB (low) |
|
95 |
-
| Q2_K | 4–6 GB (ultra)|
|
96 |
|
97 |
2. **Edit**
|
98 |
|
@@ -122,6 +117,9 @@ This registers the **Andy‑4** model locally.
|
|
122 |
|
123 |
---
|
124 |
|
|
|
|
|
|
|
125 |
## 🔧 Context‑Window Quantization
|
126 |
|
127 |
To lower VRAM use for context windows:
|
|
|
13 |
- mindcraft
|
14 |
---
|
15 |
|
16 |
+
# 🧠 Andy‑4 ⛏️
|
17 |
|
18 |
+
|
19 |
+

|
20 |
**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
|
21 |
|
22 |
> ⚠️ **Certification:**
|
|
|
30 |
- **Training Hardware:** 1 × NVIDIA RTX 3090
|
31 |
- **Duration:** ~3 weeks total
|
32 |
- **Data Volumes:**
|
33 |
+
- **Messages:** 179,384
|
34 |
+
- **Tokens:** 425,535,198
|
35 |
+
- **Conversations:** 62,149
|
36 |
|
37 |
- **Base Architecture:** Llama 3.1 8B
|
38 |
- **License:** [Andy 1.1 License](LICENSE)
|
|
|
45 |
1. **Andy‑4‑base‑1** dataset
|
46 |
- **Epochs:** 2
|
47 |
- **Learning Rate:** 7e-5
|
48 |
+
- **Dataset Size:** 47.4k
|
49 |
|
50 |
2. **Andy‑4‑base‑2** dataset
|
51 |
- **Epochs:** 4
|
52 |
- **Learning Rate:** 3e-7
|
53 |
+
- **Dataset Size:** 48.9k
|
54 |
|
55 |
3. **Fine‑tune (FT) dataset**
|
56 |
- **Epochs:** 2.5
|
57 |
- **Learning Rate:** 2e-5
|
58 |
+
- **Dataset Size:** 4.12k
|
59 |
|
60 |
- **Optimizer:** AdamW_8bit with cosine decay
|
61 |
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
|
|
|
65 |
|
66 |
## 🚀 Installation
|
67 |
|
68 |
+
First, you need to choose your quantization, this chart is with the base of `8192` set as the context window
|
|
|
|
|
|
|
|
|
69 |
|
70 |
| Quantization | VRAM Required |
|
71 |
|--------------|---------------|
|
|
|
75 |
| Q3_K_M | 6 GB (low) |
|
76 |
| Q2_K | 4–6 GB (ultra)|
|
77 |
|
78 |
+
### 1. Installation directly on Ollama *(Fastest and easiest)*
|
79 |
|
80 |
+
1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
|
81 |
+
2. Copy the command after choosing model type / quantization
|
82 |
+
3. Run the command in the terminal
|
83 |
+
4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:latest`
|
84 |
|
85 |
### 2. Manual Download & Modelfile
|
86 |
|
|
|
88 |
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
|
89 |
- Download the provided `Modelfile`.
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
2. **Edit**
|
93 |
|
|
|
117 |
|
118 |
---
|
119 |
|
120 |
+
If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
|
121 |
+
|
122 |
+
|
123 |
## 🔧 Context‑Window Quantization
|
124 |
|
125 |
To lower VRAM use for context windows:
|