Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,165 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- Sweaterdog/Andy-4-base-1
|
4 |
+
- Sweaterdog/Andy-4-base-2
|
5 |
+
- Sweaterdog/Andy-4-ft
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- unsloth/Llama3.1-8B
|
10 |
+
tags:
|
11 |
+
- gaming
|
12 |
+
- minecraft
|
13 |
+
- mindcraft
|
14 |
---
|
15 |
|
16 |
+
# 🧠 Andy‑4 🧠
|
17 |
|
18 |
+
**Andy‑4** is an 8 billion‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework. Trained on a single RTX 3090 over **three weeks**, Andy‑4 delivers advanced reasoning, multi‑step planning, and robust in‑game decision‑making.
|
19 |
+
|
20 |
+
> ⚠️ **Certification:**
|
21 |
+
> Andy‑4 is **not yet certified** by the Mindcraft developers. Use in production at your own discretion.
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## 🔍 Model Specifications
|
26 |
+
|
27 |
+
- **Parameters:** 8 B
|
28 |
+
- **Training Hardware:** 1 × NVIDIA RTX 3090
|
29 |
+
- **Duration:** ~3 weeks total
|
30 |
+
- **Data Volumes:**
|
31 |
+
- **Messages:** 179 384
|
32 |
+
- **Tokens:** 425 535 198
|
33 |
+
- **Conversations:** 62 149
|
34 |
+
|
35 |
+
- **Base Architecture:** Llama 3.1 8B
|
36 |
+
- **License:** [Andy 1.1 License](LICENSE)
|
37 |
+
- **Repository:** https://huggingface.co/Sweaterdog/Andy‑4
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## 📊 Training Regimen
|
42 |
+
|
43 |
+
1. **Andy‑4‑base‑1** dataset
|
44 |
+
- **Epochs:** 2
|
45 |
+
- **Learning Rate:** 7e-5
|
46 |
+
|
47 |
+
2. **Andy‑4‑base‑2** dataset
|
48 |
+
- **Epochs:** 4
|
49 |
+
- **Learning Rate:** 3e-7
|
50 |
+
|
51 |
+
3. **Fine‑tune (FT) dataset**
|
52 |
+
- **Epochs:** 2.5
|
53 |
+
- **Learning Rate:** 2e-5
|
54 |
+
|
55 |
+
- **Optimizer:** AdamW_8bit with cosine decay
|
56 |
+
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
|
57 |
+
- **Warm Up Steps:** 0.1% of each dataset
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## 🚀 Installation
|
62 |
+
|
63 |
+
### 1. Quick Hugging Face + Ollama *(Not recommended)*
|
64 |
+
|
65 |
+
1. On the HF model page, click **Use this model → Ollama**.
|
66 |
+
2. Choose your quantization (see table).
|
67 |
+
3. Copy and run the provided `ollama run` command.
|
68 |
+
|
69 |
+
| Quantization | VRAM Required |
|
70 |
+
|--------------|---------------|
|
71 |
+
| F16 | 16 GB+ |
|
72 |
+
| Q5_K_M | 8 GB+ |
|
73 |
+
| Q4_K_M | 6–8 GB |
|
74 |
+
| Q3_K_M | 6 GB (low) |
|
75 |
+
| Q2_K | 4–6 GB (ultra)|
|
76 |
+
|
77 |
+
If you lack a GPU, check the [Mindcraft Discord guide](https://ptb.discord.com/channels/1303399789995626667/1347027684768878644/1347027684768878644) for free cloud setups.
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
### 2. Manual Download & Modelfile
|
82 |
+
|
83 |
+
1. **Download**
|
84 |
+
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4.Q4_K_M.gguf`).
|
85 |
+
- Download the provided `Modelfile`.
|
86 |
+
|
87 |
+
Follow this table to choose your quantization, this is for a 8192 context window, the default, as well as a non-quantized context window.
|
88 |
+
|
89 |
+
| Quantization | VRAM Required |
|
90 |
+
|--------------|---------------|
|
91 |
+
| F16 | 16 GB+ |
|
92 |
+
| Q5_K_M | 8 GB+ |
|
93 |
+
| Q4_K_M | 6–8 GB |
|
94 |
+
| Q3_K_M | 6 GB (low) |
|
95 |
+
| Q2_K | 4–6 GB (ultra)|
|
96 |
+
|
97 |
+
2. **Edit**
|
98 |
+
|
99 |
+
Change
|
100 |
+
```text
|
101 |
+
FROM YOUR/PATH/HERE
|
102 |
+
```
|
103 |
+
to
|
104 |
+
```text
|
105 |
+
FROM /path/to/Andy-4.Q4_K_M.gguf
|
106 |
+
```
|
107 |
+
*Optional*:
|
108 |
+
Increase the parameter `num_ctx` to a higher value for longer conversations if you:
|
109 |
+
|
110 |
+
**A.** Have extra VRAM
|
111 |
+
|
112 |
+
**B.** Quantized the context window
|
113 |
+
|
114 |
+
**C.** Can use a smaller model
|
115 |
+
|
116 |
+
3. **Create**
|
117 |
+
```bash
|
118 |
+
ollama create andy-4 -f Modelfile
|
119 |
+
```
|
120 |
+
|
121 |
+
This registers the **Andy‑4** model locally.
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
## 🔧 Context‑Window Quantization
|
126 |
+
|
127 |
+
To lower VRAM use for context windows:
|
128 |
+
|
129 |
+
#### **Windows**
|
130 |
+
|
131 |
+
1. Close Ollama.
|
132 |
+
2. In **System Properties → Environment Variables**, add:
|
133 |
+
```text
|
134 |
+
OLLAMA_FLASH_ATTENTION=1
|
135 |
+
OLLAMA_KV_CACHE_TYPE=q8_0 # or q4_0 for extra savings, but far more unstable
|
136 |
+
```
|
137 |
+
3. Restart Ollama.
|
138 |
+
|
139 |
+
#### **Linux/macOS**
|
140 |
+
|
141 |
+
```bash
|
142 |
+
export OLLAMA_FLASH_ATTENTION=1
|
143 |
+
export OLLAMA_KV_CACHE_TYPE="q8_0" # or "q4_0", but far more unstable
|
144 |
+
ollama serve
|
145 |
+
```
|
146 |
+
|
147 |
+
---
|
148 |
+
|
149 |
+
## 📌 Acknowledgments
|
150 |
+
|
151 |
+
<details>
|
152 |
+
<summary>Click to expand</summary>
|
153 |
+
|
154 |
+
- **Data & Models by:** @Sweaterdog
|
155 |
+
- **Framework:** Mindcraft (https://github.com/kolbytn/mindcraft)
|
156 |
+
- **LoRA Weights:** https://huggingface.co/Sweaterdog/Andy-4-LoRA
|
157 |
+
</details>
|
158 |
+
|
159 |
+
---
|
160 |
+
|
161 |
+
## ⚖️ License
|
162 |
+
|
163 |
+
See [Andy 1.1 License](LICENSE).
|
164 |
+
|
165 |
+
*This work uses data and models created by @Sweaterdog.*
|