File size: 5,622 Bytes
8f874a6 03c4285 57ffdd0 8f874a6 03c4285 57ffdd0 03c4285 57ffdd0 03c4285 57ffdd0 03c4285 57ffdd0 03c4285 57ffdd0 03c4285 57ffdd0 03c4285 ae2fcda 8f874a6 0ba2b94 bfdedef 8f874a6 03c4285 64c9a2b 03c4285 64c9a2b 0ba2b94 64c9a2b dc1049f 64c9a2b 0ba2b94 c39427d 0ba2b94 64c9a2b ae2fcda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
- unsloth/Meta-Llama-3.1-8B-Instruct
model-index:
- name: ZEUS-8B-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 21.15
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.24
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
new_version: T145/ZEUS-8B-V17
---
# ZEUS 8B 🌩️ V2
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
* [Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.8
weight: 0.25
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.8
weight: 0.33
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.8
weight: 0.42
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_T145__ZEUS-8B-V2)!
Based on the listed rankings as of 4/12/24, is the top-rank 8B model.
| Metric |Value|
|-------------------|----:|
|Avg. |30.07|
|IFEval (0-Shot) |80.29|
|BBH (3-Shot) |31.61|
|MATH Lvl 5 (4-Shot)|21.15|
|GPQA (0-shot) | 6.94|
|MuSR (0-shot) | 8.24|
|MMLU-PRO (5-shot) |32.18|
# Inference Settings
Personal recommendations are to use a [i1-Q4_K_M](https://www.reddit.com/r/LocalLLaMA/comments/1ck76rk/weightedimatrix_vs_static_quants/) quant with these settings:
```
num_ctx = 4096
repeat_penalty = 1.2
temperature = 0.85
tfs_z = 1.4
top_k = 0 # Change to 40+ if you're roleplaying
top_p = 1 # Change to 0.9 if top_k > 0
```
Other recommendations can be found on [this paper on mobile LLMs](https://openreview.net/pdf?id=ahVsd1hy2W), [this paper on balancing model parameters](https://arxiv.org/html/2408.13586v1), and [this Reddit post about tweaking Llama 3.1 parameters](https://www.reddit.com/r/LocalLLaMA/comments/1ej1zrl/try_these_settings_for_llama_31_for_longer_or/). |