HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-16_64_3

This model is a fine-tuned version of Bllossom/llama-3.2-Korean-Bllossom-AICA-5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.6786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 942
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.7538 0.2991 47 6.4144
5.7228 0.5982 94 5.7066
5.6895 0.8974 141 5.6889
5.6821 1.1965 188 5.6843
5.6823 1.4956 235 5.6830
5.683 1.7947 282 5.6813
5.6833 2.0939 329 5.6805
5.678 2.3930 376 5.6806
5.6776 2.6921 423 5.6796
5.6752 2.9912 470 5.6791
5.6757 3.2904 517 5.6791
5.6722 3.5895 564 5.6788
5.6735 3.8886 611 5.6786
5.6683 4.1877 658 5.6788
5.6744 4.4869 705 5.6786
5.6738 4.7860 752 5.6785
5.6734 5.0851 799 5.6785
5.6709 5.3842 846 5.6786
5.6698 5.6834 893 5.6786
5.6734 5.9825 940 5.6786

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.2
  • Pytorch 2.0.1+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TARARARAK/HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-16_64_3

Adapter
(9)
this model