Upload folder using huggingface_hub
Browse files- config.json +0 -1
- enhancer.py +55 -1
- esrgan_model.py +305 -1
- inference.py +23 -19
- requirements.txt +0 -1
config.json
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
{
|
3 |
"pipeline_tag": "image-to-image",
|
4 |
"model_type": "esrgan",
|
|
|
|
|
1 |
{
|
2 |
"pipeline_tag": "image-to-image",
|
3 |
"model_type": "esrgan",
|
enhancer.py
CHANGED
@@ -1 +1,55 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
8 |
+
MultiUpscaler,
|
9 |
+
UpscalerCheckpoints,
|
10 |
+
)
|
11 |
+
|
12 |
+
from esrgan_model import UpscalerESRGAN
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass(kw_only=True)
|
16 |
+
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
17 |
+
"""Extends the SD-1.5 MultiUpscaler checkpoints to hold an extra ESRGAN file."""
|
18 |
+
esrgan: Path
|
19 |
+
|
20 |
+
|
21 |
+
class ESRGANUpscaler(MultiUpscaler):
|
22 |
+
"""
|
23 |
+
Multi-stage image enhancer that:
|
24 |
+
1. Runs ESRGAN 4× super-resolution first (tiling to avoid VRAM overflow),
|
25 |
+
2. Passes the up-scaled image to Stable-Diffusion 1.5 MultiUpscaler for refinement.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
checkpoints: ESRGANUpscalerCheckpoints,
|
31 |
+
device: torch.device,
|
32 |
+
dtype: torch.dtype,
|
33 |
+
) -> None:
|
34 |
+
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
35 |
+
self.esrgan = UpscalerESRGAN(
|
36 |
+
checkpoints.esrgan, device=self.device, dtype=self.dtype
|
37 |
+
)
|
38 |
+
|
39 |
+
# ---- automatically called by HF when the model is moved to another device ----
|
40 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
41 |
+
self.esrgan.to(device=device, dtype=dtype)
|
42 |
+
self.sd = self.sd.to(device=device, dtype=dtype)
|
43 |
+
self.device = device
|
44 |
+
self.dtype = dtype
|
45 |
+
|
46 |
+
# ---- hook that runs *before* SD-1.5 up-scaling ----
|
47 |
+
def pre_upscale(
|
48 |
+
self,
|
49 |
+
image: Image.Image,
|
50 |
+
upscale_factor: float,
|
51 |
+
**_: Any,
|
52 |
+
) -> Image.Image:
|
53 |
+
# 4× ESRGAN first, then the SD-1.5 stage handles the residual upscale
|
54 |
+
image = self.esrgan.upscale_with_tiling(image)
|
55 |
+
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
|
esrgan_model.py
CHANGED
@@ -1 +1,305 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Modified from https://github.com/philz1337x/clarity-upscaler
|
3 |
+
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
4 |
+
which is a copy of https://github.com/victorca25/iNNfer
|
5 |
+
which is a copy of https://github.com/xinntao/ESRGAN
|
6 |
+
"""
|
7 |
+
|
8 |
+
import math
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import NamedTuple
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import numpy.typing as npt
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
|
19 |
+
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
20 |
+
return nn.Sequential(
|
21 |
+
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
|
22 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class ResidualDenseBlock_5C(nn.Module):
|
27 |
+
"""
|
28 |
+
Residual Dense Block
|
29 |
+
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
30 |
+
Modified options that can be used:
|
31 |
+
- "Partial Convolution based Padding" arXiv:1811.11718
|
32 |
+
- "Spectral normalization" arXiv:1802.05957
|
33 |
+
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
34 |
+
{Rakotonirina} and A. {Rasoanaivo}
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, nf: int = 64, gc: int = 32) -> None:
|
38 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
39 |
+
|
40 |
+
self.conv1 = conv_block(nf, gc)
|
41 |
+
self.conv2 = conv_block(nf + gc, gc)
|
42 |
+
self.conv3 = conv_block(nf + 2 * gc, gc)
|
43 |
+
self.conv4 = conv_block(nf + 3 * gc, gc)
|
44 |
+
# Wrapped in Sequential because of key in state dict.
|
45 |
+
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
|
46 |
+
|
47 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
48 |
+
x1 = self.conv1(x)
|
49 |
+
x2 = self.conv2(torch.cat((x, x1), 1))
|
50 |
+
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
51 |
+
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
52 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
53 |
+
return x5 * 0.2 + x
|
54 |
+
|
55 |
+
|
56 |
+
class RRDB(nn.Module):
|
57 |
+
"""
|
58 |
+
Residual in Residual Dense Block
|
59 |
+
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, nf: int) -> None:
|
63 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
64 |
+
self.RDB1 = ResidualDenseBlock_5C(nf)
|
65 |
+
self.RDB2 = ResidualDenseBlock_5C(nf)
|
66 |
+
self.RDB3 = ResidualDenseBlock_5C(nf)
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
out = self.RDB1(x)
|
70 |
+
out = self.RDB2(out)
|
71 |
+
out = self.RDB3(out)
|
72 |
+
return out * 0.2 + x
|
73 |
+
|
74 |
+
|
75 |
+
class Upsample2x(nn.Module):
|
76 |
+
"""Upsample 2x."""
|
77 |
+
|
78 |
+
def __init__(self) -> None:
|
79 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
82 |
+
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
|
83 |
+
|
84 |
+
|
85 |
+
class ShortcutBlock(nn.Module):
|
86 |
+
"""Elementwise sum the output of a submodule to its input"""
|
87 |
+
|
88 |
+
def __init__(self, submodule: nn.Module) -> None:
|
89 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
90 |
+
self.sub = submodule
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
return x + self.sub(x)
|
94 |
+
|
95 |
+
|
96 |
+
class RRDBNet(nn.Module):
|
97 |
+
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
|
98 |
+
super().__init__() # type: ignore[reportUnknownMemberType]
|
99 |
+
assert in_nc % 4 != 0 # in_nc is 3
|
100 |
+
|
101 |
+
self.model = nn.Sequential(
|
102 |
+
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
|
103 |
+
ShortcutBlock(
|
104 |
+
nn.Sequential(
|
105 |
+
*(RRDB(nf) for _ in range(nb)),
|
106 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
107 |
+
)
|
108 |
+
),
|
109 |
+
Upsample2x(),
|
110 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
111 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
112 |
+
Upsample2x(),
|
113 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
114 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
115 |
+
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
|
116 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
117 |
+
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
|
118 |
+
)
|
119 |
+
|
120 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
121 |
+
return self.model(x)
|
122 |
+
|
123 |
+
|
124 |
+
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
|
125 |
+
# this code is adapted from https://github.com/victorca25/iNNfer
|
126 |
+
scale2x = 0
|
127 |
+
scalemin = 6
|
128 |
+
n_uplayer = 0
|
129 |
+
out_nc = 0
|
130 |
+
nb = 0
|
131 |
+
|
132 |
+
for block in list(state_dict):
|
133 |
+
parts = block.split(".")
|
134 |
+
n_parts = len(parts)
|
135 |
+
if n_parts == 5 and parts[2] == "sub":
|
136 |
+
nb = int(parts[3])
|
137 |
+
elif n_parts == 3:
|
138 |
+
part_num = int(parts[1])
|
139 |
+
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
|
140 |
+
scale2x += 1
|
141 |
+
if part_num > n_uplayer:
|
142 |
+
n_uplayer = part_num
|
143 |
+
out_nc = state_dict[block].shape[0]
|
144 |
+
assert "conv1x1" not in block # no ESRGANPlus
|
145 |
+
|
146 |
+
nf = state_dict["model.0.weight"].shape[0]
|
147 |
+
in_nc = state_dict["model.0.weight"].shape[1]
|
148 |
+
scale = 2**scale2x
|
149 |
+
|
150 |
+
assert out_nc > 0
|
151 |
+
assert nb > 0
|
152 |
+
|
153 |
+
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
|
154 |
+
|
155 |
+
|
156 |
+
Tile = tuple[int, int, Image.Image]
|
157 |
+
Tiles = list[tuple[int, int, list[Tile]]]
|
158 |
+
|
159 |
+
|
160 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
161 |
+
class Grid(NamedTuple):
|
162 |
+
tiles: Tiles
|
163 |
+
tile_w: int
|
164 |
+
tile_h: int
|
165 |
+
image_w: int
|
166 |
+
image_h: int
|
167 |
+
overlap: int
|
168 |
+
|
169 |
+
|
170 |
+
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
171 |
+
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
|
172 |
+
w = image.width
|
173 |
+
h = image.height
|
174 |
+
|
175 |
+
non_overlap_width = tile_w - overlap
|
176 |
+
non_overlap_height = tile_h - overlap
|
177 |
+
|
178 |
+
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
|
179 |
+
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
|
180 |
+
|
181 |
+
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
182 |
+
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
183 |
+
|
184 |
+
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
185 |
+
for row in range(rows):
|
186 |
+
row_images: list[Tile] = []
|
187 |
+
y1 = max(min(int(row * dy), h - tile_h), 0)
|
188 |
+
y2 = min(y1 + tile_h, h)
|
189 |
+
for col in range(cols):
|
190 |
+
x1 = max(min(int(col * dx), w - tile_w), 0)
|
191 |
+
x2 = min(x1 + tile_w, w)
|
192 |
+
tile = image.crop((x1, y1, x2, y2))
|
193 |
+
row_images.append((x1, tile_w, tile))
|
194 |
+
grid.tiles.append((y1, tile_h, row_images))
|
195 |
+
|
196 |
+
return grid
|
197 |
+
|
198 |
+
|
199 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
200 |
+
def combine_grid(grid: Grid):
|
201 |
+
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
|
202 |
+
r = r * 255 / grid.overlap
|
203 |
+
return Image.fromarray(r.astype(np.uint8), "L")
|
204 |
+
|
205 |
+
mask_w = make_mask_image(
|
206 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
207 |
+
)
|
208 |
+
mask_h = make_mask_image(
|
209 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
|
210 |
+
)
|
211 |
+
|
212 |
+
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
213 |
+
for y, h, row in grid.tiles:
|
214 |
+
combined_row = Image.new("RGB", (grid.image_w, h))
|
215 |
+
for x, w, tile in row:
|
216 |
+
if x == 0:
|
217 |
+
combined_row.paste(tile, (0, 0))
|
218 |
+
continue
|
219 |
+
|
220 |
+
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
221 |
+
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
222 |
+
|
223 |
+
if y == 0:
|
224 |
+
combined_image.paste(combined_row, (0, 0))
|
225 |
+
continue
|
226 |
+
|
227 |
+
combined_image.paste(
|
228 |
+
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
|
229 |
+
(0, y),
|
230 |
+
mask=mask_h,
|
231 |
+
)
|
232 |
+
combined_image.paste(
|
233 |
+
combined_row.crop((0, grid.overlap, combined_row.width, h)),
|
234 |
+
(0, y + grid.overlap),
|
235 |
+
)
|
236 |
+
|
237 |
+
return combined_image
|
238 |
+
|
239 |
+
|
240 |
+
class UpscalerESRGAN:
|
241 |
+
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
242 |
+
self.model_path = model_path
|
243 |
+
self.device = device
|
244 |
+
self.model = self.load_model(model_path)
|
245 |
+
self.to(device, dtype)
|
246 |
+
|
247 |
+
def __call__(self, img: Image.Image) -> Image.Image:
|
248 |
+
return self.upscale_without_tiling(img)
|
249 |
+
|
250 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
251 |
+
self.device = device
|
252 |
+
self.dtype = dtype
|
253 |
+
self.model.to(device=device, dtype=dtype)
|
254 |
+
|
255 |
+
def load_model(self, path: Path) -> RRDBNet:
|
256 |
+
filename = path
|
257 |
+
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
|
258 |
+
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
|
259 |
+
assert upscale == 4, "Only 4x upscaling is supported"
|
260 |
+
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
|
261 |
+
model.load_state_dict(state_dict)
|
262 |
+
model.eval()
|
263 |
+
|
264 |
+
return model
|
265 |
+
|
266 |
+
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
267 |
+
img_np = np.array(img)
|
268 |
+
img_np = img_np[:, :, ::-1]
|
269 |
+
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
|
270 |
+
img_t = torch.from_numpy(img_np).float() # type: ignore
|
271 |
+
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
272 |
+
with torch.no_grad():
|
273 |
+
output = self.model(img_t)
|
274 |
+
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
275 |
+
output = 255.0 * np.moveaxis(output, 0, 2)
|
276 |
+
output = output.astype(np.uint8)
|
277 |
+
output = output[:, :, ::-1]
|
278 |
+
return Image.fromarray(output, "RGB")
|
279 |
+
|
280 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
|
281 |
+
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
282 |
+
img = img.convert("RGB")
|
283 |
+
grid = split_grid(img)
|
284 |
+
newtiles: Tiles = []
|
285 |
+
scale_factor: int = 1
|
286 |
+
|
287 |
+
for y, h, row in grid.tiles:
|
288 |
+
newrow: list[Tile] = []
|
289 |
+
for tiledata in row:
|
290 |
+
x, w, tile = tiledata
|
291 |
+
output = self.upscale_without_tiling(tile)
|
292 |
+
scale_factor = output.width // tile.width
|
293 |
+
newrow.append((x * scale_factor, w * scale_factor, output))
|
294 |
+
newtiles.append((y * scale_factor, h * scale_factor, newrow))
|
295 |
+
|
296 |
+
newgrid = Grid(
|
297 |
+
newtiles,
|
298 |
+
grid.tile_w * scale_factor,
|
299 |
+
grid.tile_h * scale_factor,
|
300 |
+
grid.image_w * scale_factor,
|
301 |
+
grid.image_h * scale_factor,
|
302 |
+
grid.overlap * scale_factor,
|
303 |
+
)
|
304 |
+
output = combine_grid(newgrid)
|
305 |
+
return output
|
inference.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
|
2 |
from pathlib import Path
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
-
import base64
|
6 |
-
|
7 |
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
|
8 |
|
|
|
9 |
checkpoints = ESRGANUpscalerCheckpoints(
|
10 |
esrgan=Path("checkpoints/4x-UltraSharp.pth")
|
11 |
)
|
@@ -13,30 +13,34 @@ checkpoints = ESRGANUpscalerCheckpoints(
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
15 |
|
16 |
-
enhancer = ESRGANUpscaler(
|
17 |
-
checkpoints=checkpoints,
|
18 |
-
device=device,
|
19 |
-
dtype=dtype
|
20 |
-
)
|
21 |
|
|
|
22 |
def inference(inputs: dict) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if "image" not in inputs:
|
24 |
return {"error": "No image provided"}
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
buf = io.BytesIO()
|
35 |
-
|
36 |
-
|
37 |
|
38 |
return {
|
39 |
-
"enhanced_image":
|
40 |
-
"original_size":
|
41 |
-
"enhanced_size":
|
42 |
}
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
+
import base64, io
|
5 |
+
|
6 |
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
|
7 |
|
8 |
+
# -------- initialise model once at cold-start --------
|
9 |
checkpoints = ESRGANUpscalerCheckpoints(
|
10 |
esrgan=Path("checkpoints/4x-UltraSharp.pth")
|
11 |
)
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
15 |
|
16 |
+
enhancer = ESRGANUpscaler(checkpoints=checkpoints, device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# -------- entry-point for Hugging Face Hosted Inference API --------
|
19 |
def inference(inputs: dict) -> dict:
|
20 |
+
"""
|
21 |
+
Expected payload:
|
22 |
+
{"image": "<BASE64-STRING>"}
|
23 |
+
Returns:
|
24 |
+
{ "enhanced_image": "<BASE64-PNG>", "original_size": [w,h], "enhanced_size": [w,h] }
|
25 |
+
"""
|
26 |
if "image" not in inputs:
|
27 |
return {"error": "No image provided"}
|
28 |
|
29 |
+
# decode base64
|
30 |
+
data = inputs["image"]
|
31 |
+
if data.startswith("data:image"):
|
32 |
+
data = data.split(",")[1]
|
33 |
+
img = Image.open(io.BytesIO(base64.b64decode(data))).convert("RGB")
|
34 |
|
35 |
+
# run ESRGAN ➜ SD-1.5 upscale
|
36 |
+
result = enhancer.upscale(img)
|
37 |
|
38 |
buf = io.BytesIO()
|
39 |
+
result.save(buf, format="PNG")
|
40 |
+
result_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
41 |
|
42 |
return {
|
43 |
+
"enhanced_image": result_b64,
|
44 |
+
"original_size": img.size,
|
45 |
+
"enhanced_size": result.size,
|
46 |
}
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
git+https://github.com/finegrain-ai/refiners@cfe8b66ba4f8a906583850ac25e9e89cb83a44b9
|
3 |
numpy<2.0.0
|
4 |
pillow>=10.4.0
|
|
|
|
|
1 |
git+https://github.com/finegrain-ai/refiners@cfe8b66ba4f8a906583850ac25e9e89cb83a44b9
|
2 |
numpy<2.0.0
|
3 |
pillow>=10.4.0
|