File size: 226,473 Bytes
cf14949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Proximal Policy Optimization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gym\n",
    "from gym import spaces\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib.patches import Rectangle\n",
    "\n",
    "import os\n",
    "import random\n",
    "import imageio\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from torch.distributions import Categorical"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "class RoverGridEnv(gym.Env):\n",
    "    metadata={'render.modes': ['human']} \n",
    "    def __init__(self,max_ts=20):     \n",
    "        super(RoverGridEnv,self).__init__()\n",
    "        self.max_ts=max_ts      # Note: The Max_Timestamps is set to 20 by default.\n",
    "        self.grid_size=(15,15)   \n",
    "        self.action_space=spaces.Discrete(5) \n",
    "        self.observation_space=spaces.MultiDiscrete([15,15,15,15,15,15])\n",
    "        self.rover_positions=np.array([[6,4],[10,4]])\n",
    "        self.operation_desks=np.array([[6,3],[10,3]])\n",
    "        self.rooms=np.array([[4,7],[4,10],[4,13],[8,7],[8,10],[8,13],[12,7],[12,10],[12,13]])\n",
    "        self.human_position=np.array([8,9])\n",
    "        self.targets=np.array([[5,10],[9,13]])\n",
    "        self.actions=[(0,-1),(0,1),(-1,0),(1,0),(0,0)]  # Down,Up,Left,Right,Wait\n",
    "        self.rover_done=[False,False] \n",
    "        self.reset()\n",
    "    \n",
    "    def seed(self,seed=None):\n",
    "        np.random.seed(seed)\n",
    "        random.seed(seed)\n",
    "        \n",
    "    def reset(self):\n",
    "        self.current_step=0\n",
    "        self.rover_positions=np.array([[6,4],[10,4]])\n",
    "        self.rover_done=[False,False]\n",
    "        self.human_position=np.array([7,8])\n",
    "        self.current_step=0\n",
    "        return self._get_obs()\n",
    "    \n",
    "    def _get_obs(self):\n",
    "        return np.concatenate((self.rover_positions.flatten(),self.human_position))\n",
    "    \n",
    "    def step(self,actions):\n",
    "        rewards=np.zeros(2)\n",
    "        done=[False,False]\n",
    "        info={'message': ''}        \n",
    "        for i,action in enumerate(actions):\n",
    "            if self.rover_done[i]:\n",
    "                done[i]=True \n",
    "                continue\n",
    "            prev_distance=np.linalg.norm(self.targets[i]-self.rover_positions[i])\n",
    "            if self._is_human_adjacent(self.rover_positions[i]):\n",
    "                rewards[i] -= 5\n",
    "            else:\n",
    "                delta=np.array(self.actions[action])\n",
    "                new_position=self.rover_positions[i]+delta\n",
    "                if self._out_of_bounds(new_position):\n",
    "                    rewards[i] -= 15\n",
    "                    continue\n",
    "                if self._collision(new_position,i):\n",
    "                    rewards[i] -= 15\n",
    "                    continue\n",
    "                self.rover_positions[i]=new_position\n",
    "                new_distance=np.linalg.norm(self.targets[i]-new_position)\n",
    "                if new_distance < prev_distance:\n",
    "                    rewards[i]+=30 \n",
    "                else:\n",
    "                    rewards[i] -= 20 \n",
    "                if np.array_equal(new_position,self.targets[i]):\n",
    "                    rewards[i]+=100\n",
    "                    self.rover_done[i]=True \n",
    "                    done[i]=True\n",
    "\n",
    "        # move human randomly\n",
    "        self._move_human()\n",
    "        self.current_step+=1\n",
    "        all_done=all(done) or self.current_step >= self.max_ts\n",
    "        if all_done and not all(done):  # if the maximum number of steps is reached but not all targets were reached\n",
    "            info['message']='Maximum number of timestamps reached'\n",
    "        return self._get_obs(),rewards,all_done,info\n",
    "\n",
    "    def _is_human_adjacent(self,position):\n",
    "        for delta in [(1,1),(1,-1),(-1,1),(-1,-1)]:\n",
    "            adjacent_position=position+np.array(delta)\n",
    "            if np.array_equal(adjacent_position,self.human_position):\n",
    "                return True\n",
    "        return False\n",
    "\n",
    "    def _out_of_bounds(self,position):\n",
    "        return not (0 <= position[0] < self.grid_size[0] and 0 <= position[1] < self.grid_size[1])\n",
    "    \n",
    "    def _collision(self,new_position,rover_index):\n",
    "        if any(np.array_equal(new_position,pos) for pos in np.delete(self.rover_positions,rover_index,axis=0)):\n",
    "            return True  # Collision with the other rover\n",
    "        if any(np.array_equal(new_position,pos) for pos in self.rooms):\n",
    "            return True  # Collision with a room\n",
    "        if any(np.array_equal(new_position,pos) for pos in self.operation_desks):\n",
    "            return True  # Collision with an operation desk\n",
    "        if np.array_equal(new_position,self.human_position):\n",
    "            return True  # Collision with the human\n",
    "        return False\n",
    "    \n",
    "    def _move_human(self):\n",
    "        valid_moves=[move for move in self.actions if not self._out_of_bounds(self.human_position+np.array(move))]\n",
    "        self.human_position+=np.array(valid_moves[np.random.choice(len(valid_moves))])\n",
    "    \n",
    "    def render(self,mode='human',save_path=None):\n",
    "        fig,ax=plt.subplots(figsize=(7,7))\n",
    "        ax.set_xlim(0,self.grid_size[0])\n",
    "        ax.set_ylim(0,self.grid_size[1])\n",
    "        ax.set_xticks(np.arange(0,15,1))\n",
    "        ax.set_yticks(np.arange(0,15,1))\n",
    "        ax.grid(which='both')\n",
    "\n",
    "        # draw elements\n",
    "        for pos in self.rover_positions:\n",
    "            ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='blue'))\n",
    "        for pos in self.operation_desks:\n",
    "            ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='darkgreen'))\n",
    "        for pos in self.rooms:\n",
    "            ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='black'))\n",
    "        ax.add_patch(Rectangle((self.human_position[0]-0.5,self.human_position[1]-0.5),1,1,color='purple'))\n",
    "        for pos in self.targets:\n",
    "            ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='yellow',alpha=0.5))\n",
    "\n",
    "        if save_path is not None:\n",
    "            plt.savefig(save_path)\n",
    "            plt.close()\n",
    "    \n",
    "    def close(self):\n",
    "        plt.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Initial Setup\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJGCAYAAABGPbGbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9MklEQVR4nO3df3RU5YH/8c8kmUwmQCJk+JFoBlAEKmpEUYv4pVAJnCxFabeixmIKbXd7ilWalrW0iyRVitizLLZyoLiK3bZBu61QyzmWRqukHOW3odC1EbpIbIjQVMlAfoyXzP3+QZMSEyZPMndmLun7dQ4n59658zwfZx4vn9wZZjy2bdsCAABAVCnJDgAAAHAxoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYSEt2gI+KRCI6fvy4Bg0aJI/Hk+w4AACgn7NtW6dPn1ZeXp5SUi58Pcl1pen48ePKz89PdgwAAPAP5t1339Vll112wdtdV5oGDRokSTp69KiGDBmS5DTnWJal3/zmN5o5c6a8Xm+y45CHPP0qj+S+TOQhT3/KI7kvk9vyhEIh5efnd3SQC3FdaWp/SW7QoEHKyspKcppzLMtSZmamsrKyXPHkkoc8/SmP5L5M5CFPf8ojuS+T2/K06+ltQbwRHAAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwECvS1NVVZXmzJmjvLw8eTwebdmy5YLHfvnLX5bH49GaNWtiiAgAAJB8vS5NTU1NKigo0Nq1a6Met3nzZu3cuVN5eXl9DgcAAOAWab29Q1FRkYqKiqIeU1dXp69+9avatm2bZs+e3edwAAAAbtHr0tSTSCSi+fPna8mSJZowYUKPx4fDYYXD4Y7tUCgkSbIsS5ZlOR2vT9pzkKd75ImOPD1zWybyREee6NyWR3JfJrfm6YnHtm27r5N4PB5t3rxZc+fO7di3cuVKvfrqq9q2bZs8Ho9GjRqlxYsXa/Hixd2OUVZWpvLy8i77KyoqlJmZ2ddoAAAARpqbm1VcXKzGxkZlZWVd8DhHrzTt27dPTzzxhPbv3y+Px2N0n6VLl6q0tLRjOxQKKT8/X9OnT1dOTo6T8frMsixVVlaqsLBQXq832XHIQ55+lUdyXybykKc/5ZHcl8ltedpf5eqJo6Xpd7/7nU6ePKlgMNixr62tTV//+te1Zs0avfPOO13u4/P55PP5uuz3er2ueCDP57ZM5ImOPNG5LY/kvkzkiY480bktj+S+TG7JY5rB0dI0f/58zZgxo9O+WbNmaf78+VqwYIGTUwEAACRUr0vTmTNndOTIkY7to0ePqrq6WkOGDFEwGOzykprX69WIESM0bty42NMCAAAkSa9L0969ezV9+vSO7fb3I5WUlOjZZ591LBgAAICb9Lo0TZs2Tb35B3fdvY8JAADgYsN3zwEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABjo9deoAPFUW1urhoaGmMaIRCKSpAMHDiglJbbfCwKBgILBYExjILHctoaGDk1Xfn5OzwdG1fa3nyckpcY4Vqak7BjH6L/ctn4kzkNuQmmCa9TW1mrcuHFqbW2NaRy/369NmzZp6tSpamlpiWmsjIwM1dTUcMK6SLhtDWVlSWVlqfrSl+Zq4MCBMSRKkzRHUpmkszGMI0kBSctEcerKbeunHech96A0wTUaGhpiPlk5rbW1VQ0NDZysLhJuW0OZmdLgwW1qaZEGDozlalP71aUh+vtVp75oltTwt5+Upo9y2/ppx3nIPShNABBnkYhf0qAYRmh/iWegpEiMaWK/8gH8o+KN4AAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAZ6XZqqqqo0Z84c5eXlyePxaMuWLZ1uLysr0/jx4zVgwAANHjxYM2bM0K5du5zKCwAAkBS9Lk1NTU0qKCjQ2rVru7197NixevLJJ3Xw4EHt2LFDo0aN0syZM/WXv/wl5rAAAADJktbbOxQVFamoqOiCtxcXF3faXr16tZ5++mn9/ve/12233db7hAAAAC7Q69LUGx9++KE2bNig7OxsFRQUdHtMOBxWOBzu2A6FQpIky7JkWVY84xlrz0Ge7jmVJxKJyO/3x5ynfQwnxpLO5Yrlv62/Pl9O6q9rKCPj3M+zZ9NkWX1/C2n7fWMZ45xUnTvtt0liTX+U29bP+TgPxZdpDo9t23ZfJ/F4PNq8ebPmzp3baf/WrVt19913q7m5Wbm5udqyZYtuvPHGbscoKytTeXl5l/0VFRXKzMzsazQAAAAjzc3NKi4uVmNjo7Kysi54XFxKU1NTk+rr69XQ0KCnnnpKv/3tb7Vr1y4NGzasyxjdXWnKz89XfX29cnJy+hrNUZZlqbKyUoWFhfJ6vcmO02/zHDhwQFOnTo05j9/v1zPPPKOFCxeqpaUl5vGqqqoueKXURH99vpzUX9fQ8OHS8uVSYeFdGjZsdJ/HsawUVVZeo8LCg/J6I30eRzoj6X1JZZKGx5DHXWuov66f83Eeiq9QKKRAINBjaYrLy3MDBgzQmDFjNGbMGH384x/XlVdeqaefflpLly7tcqzP55PP5+uy3+v1uuKBPJ/bMvW3PCkpKY6dYCSppaXFkfFSUlIceZz72/MVD/1tDbW2nvuZlnY2xrJzjtcbiXGcNklnde5lOtb0R7lt/ZyP81D8c5hIyOc0RSKRTleTAAAALja9vtJ05swZHTlypGP76NGjqq6u1pAhQ5STk6MVK1bo9ttvV25urhoaGrR27VrV1dXpzjvvdDQ4AABAIvW6NO3du1fTp0/v2C4tLZUklZSUaP369frjH/+oH/3oR2poaFBOTo5uvPFG/e53v9OECROcSw0AAJBgvS5N06ZNU7T3jr/wwgsxBQIAAHAjvnsOAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAQK+/RgUA0DspKS2STscwQurffp6R1BbDOM0x3BcApQmuEQgElJGRodbW1mRH6ZCRkaFAIJDsGDDktjXU3Cx98EGq/H5J+msMI7Wfqt+XdDbGVAFJmTGO0T+5bf204zzkHpQmuEYwGFRNTY0aGhpiGicSiaiurk5VVVVKSYntFehAIKBgMBjTGEgcN66hoUPTNXBgTkxjnLu6tE9Smf5+1amvMiVlxzhG/+TG9SNxHnITShNcJRgMxnxysCxLdXV1KigokNfrdSgZLhb9cw1Zf/s5XJIb8vRf/XP9wCm8ERwAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMBAr0tTVVWV5syZo7y8PHk8Hm3ZsqXjNsuy9NBDD+maa67RgAEDlJeXp/vuu0/Hjx93MjMAAEDC9bo0NTU1qaCgQGvXru1yW3Nzs/bv369ly5Zp//79euGFF1RTU6Pbb7/dkbAAAADJktbbOxQVFamoqKjb27Kzs1VZWdlp35NPPqmbbrpJtbW1MX9zNAAAQLL0ujT1VmNjozwejy655JJubw+HwwqHwx3boVBI0rmX+izLinc8I+05yNM98kRHnp65LRN5oiNPdG7LI7kvk1vz9MRj27bd10k8Ho82b96suXPndnt7a2urpkyZovHjx+unP/1pt8eUlZWpvLy8y/6KigplZmb2NRoAAICR5uZmFRcXq7GxUVlZWRc8Lm6lybIs/fM//7P+/Oc/67XXXrtgiO6uNOXn56u+vl45OTl9jeYoy7JUWVmpwsJCeb3eZMchD3n6VR7JfZnIQ57+lEdyXya35QmFQgoEAj2Wpri8PGdZlubNm6djx47pt7/9bdQAPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phkcL03thenw4cN69dVXXXO1CAAAIBa9Lk1nzpzRkSNHOraPHj2q6upqDRkyRLm5ufrsZz+r/fv3a+vWrWpra9N7770nSRoyZIjS09OdSw4AAJBAvS5Ne/fu1fTp0zu2S0tLJUklJSUqKyvTiy++KEm67rrrOt3v1Vdf1bRp0/qeFAAAIIl6XZqmTZumaO8dj+F95QAAAK7Fd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAY6HVpqqqq0pw5c5SXlyePx6MtW7Z0uv2FF17QzJkzlZOTI4/Ho+rqaoeiAgAAJE+vS1NTU5MKCgq0du3aC95+6623atWqVTGHAwAAcIu03t6hqKhIRUVFF7x9/vz5kqR33nmnz6EAAADcptelyWnhcFjhcLhjOxQKSZIsy5JlWcmK1Ul7DvJ0jzzRkadnbstEnujIE53b8kjuy+TWPD3x2LZt93USj8ejzZs3a+7cuV1ue+eddzR69Gi9+eabuu666y44RllZmcrLy7vsr6ioUGZmZl+jAQAAGGlublZxcbEaGxuVlZV1weOSfqVp6dKlKi0t7dgOhULKz8/X9OnTlZOTk8Rkf2dZliorK1VYWCiv15vsOOQhT7/KI7kvE3nI05/ySO7L5LY87a9y9STppcnn88nn83XZ7/V6XfFAns9tmcgTHXmic1seyX2ZyBMdeaJzWx7JfZncksc0A5/TBAAAYKDXV5rOnDmjI0eOdGwfPXpU1dXVGjJkiILBoN5//33V1tbq+PHjkqSamhpJ0ogRIzRixAiHYgMAACRWr6807d27VxMnTtTEiRMlSaWlpZo4caIefvhhSdKLL76oiRMnavbs2ZKku+++WxMnTtT69esdjA0AAJBYvb7SNG3aNEX7B3ef//zn9fnPfz6WTAAAAK7De5oAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAM9PprVIB4qq2tVUNDQ0xjRCIRSdKBAweUkhLb7wVDh6YrPz8npjGktr/9PCEpNcaxMiVlxzhG/+a2NRQIBBQMBmMaA4njtvUjsYbchNIE16itrdW4cePU2toa0zh+v1+bNm3S1KlT1dLS0udxsrKksrJUfelLczVw4MAYEqVJmiOpTNLZGMaRpICkZaI4dc9ta0iSMjIyVFNTw196FwE3rh+JNeQmlCa4RkNDQ8wnKydlZkqDB7eppUUaODCWq03tV5eG6O9XnfqiWVLD335SmrrjtjUkSa2trWpoaOAvvIuAG9ePxBpyE0oT0INIxC9pUAwjtF+eHygpEmOa2H9rBQD0DW8EBwAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMNDr0lRVVaU5c+YoLy9PHo9HW7Zs6XS7bdt6+OGHlZubK7/frxkzZujw4cNO5QUAAEiKXpempqYmFRQUaO3atd3e/vjjj+v73/++1q9fr127dmnAgAGaNWuWK785GgAAwFRab+9QVFSkoqKibm+zbVtr1qzRv//7v+uOO+6QJP33f/+3hg8fri1btujuu++OLS0AAECS9Lo0RXP06FG99957mjFjRse+7Oxs3XzzzXrjjTe6LU3hcFjhcLhjOxQKSZIsy5JlWU7G67P2HOTpnlN5IpGI/H5/zHnax4h1rIyMcz/Pnk2TZfX97X/t941ljHNSde5/2TZJfX+s3bZ+pP67htpFIpGY/tvc9pz11zxuXT8SayjeTHN4bNu2+zqJx+PR5s2bNXfuXEnS66+/rilTpuj48ePKzc3tOG7evHnyeDx6/vnnu4xRVlam8vLyLvsrKiqUmZnZ12gAAABGmpubVVxcrMbGRmVlZV3wOEevNPXF0qVLVVpa2rEdCoWUn5+v6dOnKycnJ4nJ/s6yLFVWVqqwsFBerzfZcfptngMHDmjq1Kkx5/H7/XrmmWe0cOFCtbS09Hmc4cOl5culwsK7NGzY6D6PY1kpqqy8RoWFB+X1Rvo8jnRG0vuSyiQNjyGPu9aP1H/XULuqqioVFBT0+f5ue876ax63rh+JNRRv7a9y9cTR0jRixAhJ0okTJzpdaTpx4oSuu+66bu/j8/nk8/m67Pd6va54IM/ntkz9LU9KSopjJxhJamlpiWm89n+7kJZ2Nsayc47XG4lxnDZJZ3XuZbrYn3e3rR+p/62hdikpKY481m57zvpbHreuH4k1lIgcJhz9nKbRo0drxIgReuWVVzr2hUIh7dq1S5MnT3ZyKgAAgITq9ZWmM2fO6MiRIx3bR48eVXV1tYYMGaJgMKjFixfr0Ucf1ZVXXqnRo0dr2bJlysvL63jfEwAAwMWo16Vp7969mj59esd2+/uRSkpK9Oyzz+rf/u3f1NTUpH/5l3/RqVOndOutt+rXv/61Mtr/KRIAAMBFqNeladq0aYr2D+48Ho++853v6Dvf+U5MwQAAANyE754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAw0OuvUQH+0aSktEg6HcMIqX/7eUZSWwzjNMdwXwBArChNcI1AIKCMjAy1trYmO4okqblZ+uCDVPn9kvTXGEZq/9/sfUlnY0wVkJQZ4xj9l9vWkCRlZGQoEAgkOwYMuHH9SKwhN6E0wTWCwaBqamrU0NAQ0ziRSER1dXWqqqpSSkpsr0APHZqugQNzYhrj3NWlfZLK9PerTn2VKSk7xjH6LzeuoUAgoGAwGNMYSAw3rh+JNeQmlCa4SjAYjPnkYFmW6urqVFBQIK/X61CyWFh/+zlckhvy9G/9cw0hUVg/iIY3ggMAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIS2k6ffq0Fi9erJEjR8rv9+uWW27Rnj174jEVAABAQsSlNH3xi19UZWWlfvzjH+vgwYOaOXOmZsyYobq6unhMBwAAEHeOl6aWlhb94he/0OOPP66pU6dqzJgxKisr05gxY7Ru3TqnpwMAAEiINKcHPHv2rNra2pSRkdFpv9/v144dO7ocHw6HFQ6HO7ZDoZAkybIsWZbldLw+ac9Bnu6RJzry9MxtmcgTHXmic1seyX2Z3JqnJx7btm2nJ7/llluUnp6uiooKDR8+XJs2bVJJSYnGjBmjmpqaTseWlZWpvLy8yxgVFRXKzMx0OhoAAEAnzc3NKi4uVmNjo7Kysi54XFxK05/+9CctXLhQVVVVSk1N1fXXX6+xY8dq3759euuttzod292Vpvz8fNXX1ysnJ8fpaH1iWZYqKytVWFgor9eb7DjkIU+/yiO5LxN5yNOf8kjuy+S2PKFQSIFAoMfS5PjLc5J0xRVXaPv27WpqalIoFFJubq7uuusuXX755V2O9fl88vl8XfZ7vV5XPJDnc1sm8kRHnujclkdyXybyREee6NyWR3JfJrfkMc0Q189pGjBggHJzc/XBBx9o27ZtuuOOO+I5HQAAQNzE5UrTtm3bZNu2xo0bpyNHjmjJkiUaP368FixYEI/pAAAA4i4uV5oaGxu1aNEijR8/Xvfdd59uvfVWbdu2zRWX4AAAAPoiLlea5s2bp3nz5sVjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMxOVrVAD842isbVRzQ3NMY7RF2iRJJw6cUGpKakxjZQYylR3MjmkMAOgOpQlAnzXWNurJcU/qbOvZmMZJ8afo2k3XauPUjYq0RGIaKy0jTffX3E9xAuA4Xp4D0GfNDc0xFyannW09G/OVLwDoDqUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAgOOlqa2tTcuWLdPo0aPl9/t1xRVX6JFHHpFt205PBQAAkDBpTg+4atUqrVu3Tj/60Y80YcIE7d27VwsWLFB2drYeeOABp6cDAABICMdL0+uvv6477rhDs2fPliSNGjVKmzZt0u7du52eCgAAIGEcL0233HKLNmzYoLfffltjx47VgQMHtGPHDq1evbrb48PhsMLhcMd2KBSSJFmWJcuynI7XJ+05yNM98kTXn/O0RdqU4o/9Vf72MZwYSzqXK5b/vv78nDmBPNG5LY/kvkxuzdMTj+3wm40ikYi+9a1v6fHHH1dqaqra2tq0YsUKLV26tNvjy8rKVF5e3mV/RUWFMjMznYwGAADQRXNzs4qLi9XY2KisrKwLHud4aXruuee0ZMkSfe9739OECRNUXV2txYsXa/Xq1SopKelyfHdXmvLz81VfX6+cnBwno/WZZVmqrKxUYWGhvF5vsuOQhzyuyXPiwAltnLox5kwp/hRd/czVOrTwkCItkZjHW1C1QMMLhvf5/v35OSPPP14eyX2Z3JYnFAopEAj0WJocf3luyZIl+uY3v6m7775bknTNNdfo2LFjWrlyZbelyefzyefzddnv9Xpd8UCez22ZyBMdeaJzIk9qSqojJaddpCXiyHipKamOPNb98TlzEnmic1seyX2Z3JLHNIPjHznQ3NyslJTOw6ampioSce7ECgAAkGiOX2maM2eOVqxYoWAwqAkTJujNN9/U6tWrtXDhQqenAgAASBjHS9MPfvADLVu2TF/5yld08uRJ5eXl6V//9V/18MMPOz0VAABAwjhemgYNGqQ1a9ZozZo1Tg8NAACQNHz3HAAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAHHv0YFiEVtba0aGhpiGiMSiUiSDhw4oJSU2H4vCAQCCgaDMY2BxHvrrbdUr/o+35819I/LbecgiTXkJpQmuEZtba3GjRun1tbWmMbx+/3atGmTpk6dqpaWlpjGysjIUE1NDSesC8gMZCotI01nW88mO0qHszqrz3zuM2pUY5/HYA39Y3LjOUhiDbkJpQmu0dDQEPPJymmtra1qaGjgZHUB2cFs3V9zv5obmmMapy3Spn11+7SgaoFSU1L7PM5bb70Vc2FyGmvo4uHGc5DEGnITShOAmGQHs5UdzI5pDMuypDppeMFweb3ePo9Tr3pXFSYA/QtvBAcAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGkaNWqUPB5Plz+LFi1yeioAAICEcfwLe/fs2aO2traO7UOHDqmwsFB33nmn01MBAAAkjOOlaejQoZ22H3vsMV1xxRX6xCc+4fRUAAAACeN4aTrfhx9+qJ/85CcqLS2Vx+Pp9phwOKxwONyxHQqFJEmWZcmyrHjGM9aegzzdcypPJBKR3++POU/7GE6MJZ3LFct/W399vpzEGorObc9Zf83j1vUjsYbizTSHx7ZtO14hfvazn6m4uFi1tbXKy8vr9piysjKVl5d32V9RUaHMzMx4RQMAAJAkNTc3q7i4WI2NjcrKyrrgcXEtTbNmzVJ6erp+9atfXfCY7q405efnq76+Xjk5OfGK1iuWZamyslKFhYXyer3JjtNv8xw4cEBTp06NOY/f79czzzyjhQsXqqWlJebxqqqqVFBQ0Of799fny0msoejc9pz11zxuXT8SayjeQqGQAoFAj6Upbi/PHTt2TC+//LJeeOGFqMf5fD75fL4u+71eryseyPO5LVN/y5OSkuLYCUaSWlpaHBkvJSXFkce5vz1f8cAais5tz1l/y+PW9SOxhhKRw0TcPqdp48aNGjZsmGbPnh2vKQAAABImLqUpEolo48aNKikpUVpaXN9rDgAAkBBxKU0vv/yyamtrtXDhwngMDwAAkHBxuQw0c+ZMxfH95QAAAAnHd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDTBNQKBgDIyMpIdo5OMjAwFAoFkx4Ah1hBi4cb1I7GG3CQuX9gL9EUwGFRNTY0aGhpiGicSiaiurk5VVVVKSYnt94JAIKBgMBjTGEgc1hBi4cb1I7GG3ITSBFcJBoMxnxwsy1JdXZ0KCgrk9XodSoaLBWsIsWD9IBpengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADAQl9JUV1enz33uc8rJyZHf79c111yjvXv3xmMqAACAhHD8C3s/+OADTZkyRdOnT9dLL72koUOH6vDhwxo8eLDTUwEAACSM46Vp1apVys/P18aNGzv2jR492ulpAAAAEsrx0vTiiy9q1qxZuvPOO7V9+3Zdeuml+spXvqIvfelL3R4fDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu2bScnzsjIkCSVlpbqzjvv1J49e/Tggw9q/fr1Kikp6XJ8WVmZysvLu+yvqKhQZmamk9EAAAC6aG5uVnFxsRobG5WVlXXB4xwvTenp6Zo0aZJef/31jn0PPPCA9uzZozfeeKPL8d1dacrPz1d9fb1ycnKcjNZnlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PJebm6urrrqq076Pfexj+sUvftHt8T6fTz6fr8t+r9frigfyfG7LRJ7oyBOd2/JI7stEnujIE53b8kjuy+SWPKYZHP/IgSlTpqimpqbTvrffflsjR450eioAAICEcbw0fe1rX9POnTv13e9+V0eOHFFFRYU2bNigRYsWOT0VAABAwjhemm688UZt3rxZmzZt0tVXX61HHnlEa9as0b333uv0VAAAAAnj+HuaJOlTn/qUPvWpT8VjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMOF6aysrK5PF4Ov0ZP36809MAAAAkVFo8Bp0wYYJefvnlv0+SFpdpAAAAEiYubSYtLU0jRoyIx9AAAABJEZfSdPjwYeXl5SkjI0OTJ0/WypUrFQwGuz02HA4rHA53bIdCIUmSZVmyLCse8XqtPQd5ukee6MjTM7dlIk905InObXkk92Vya56eeGzbtp2c+KWXXtKZM2c0btw41dfXq7y8XHV1dTp06JAGDRrU5fiysjKVl5d32V9RUaHMzEwnowEAAHTR3Nys4uJiNTY2Kisr64LHOV6aPurUqVMaOXKkVq9erS984Qtdbu/uSlN+fr7q6+uVk5MTz2jGLMtSZWWlCgsL5fV6kx2HPOTpV3kk92UiD3n6Ux7JfZnclicUCikQCPRYmuL+Du1LLrlEY8eO1ZEjR7q93efzyefzddnv9Xpd8UCez22ZyBMdeaJzWx7JfZnIEx15onNbHsl9mdySxzRD3D+n6cyZM/rTn/6k3NzceE8FAAAQN46Xpm984xvavn273nnnHb3++uv69Kc/rdTUVN1zzz1OTwUAAJAwjr889+c//1n33HOP/vrXv2ro0KG69dZbtXPnTg0dOtTpqQAAABLG8dL03HPPOT0kAABA0vHdcwAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYc/xoVAPFTWys1NMQ2RiRy7ueBA1KKA782BQJSMBj7OEgMt60h1g8uJpQm4CJRWyuNGye1tsY2jt8vbdokTZ0qtbTEnisjQ6qp4S++i4Eb1xDrBxcTXp4DLhINDbH/ZRcPra2xX7lAYrhxDbF+cDGhNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIe2l67LHH5PF4tHjx4nhPBQAAEDdxLU179uzRD3/4Q1177bXxnAYAACDu4laazpw5o3vvvVdPPfWUBg8eHK9pAAAAEiItXgMvWrRIs2fP1owZM/Too49e8LhwOKxwONyxHQqFJEmWZcmyrHjF65X2HOTpHnmicypPJCL5/bHn8futTj+dEIlIsfzn9dfnzCn9fQ2xfuLPbZncmqcnHtu2bacnf+6557RixQrt2bNHGRkZmjZtmq677jqtWbOmy7FlZWUqLy/vsr+iokKZmZlORwMAAOikublZxcXFamxsVFZW1gWPc7w0vfvuu5o0aZIqKys73ssUrTR1d6UpPz9f9fX1ysnJcTJan1mWpcrKShUWFsrr9SY7Dnn+QfMcOCBNnRp7Hr/f0jPPVGrhwkK1tDjz+FRVSQUFfb9/f33O3JbHrWuI9RN/bsvktjyhUEiBQKDH0uT4y3P79u3TyZMndf3113fsa2trU1VVlZ588kmFw2GlpqZ23Obz+eTz+bqM4/V6XfFAns9tmcgTXX/Lk5IitbQ4l6elxetYaUpJkZx4qPvbc+a0/rqGWD+J47ZMbsljmsHx0nTbbbfp4MGDnfYtWLBA48eP10MPPdSpMAEAAFwsHC9NgwYN0tVXX91p34ABA5STk9NlPwAAwMWCTwQHAAAwELePHDjfa6+9lohpAAAA4oYrTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYS8jUqABwyoFbKaIhtjIzIuZ9DDkitDvze1BqQFIx9HCSG29YQ6wcXEUoTcJEIe2uleeOk1NbYBkrzS9okzZkqnW2JPVhbhsLeGvEXn/u5cg2xfnAR4eU54CLhy2qI/S+7eEhtPZcNrufKNcT6wUWE0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGDA8dK0bt06XXvttcrKylJWVpYmT56sl156yelpAAAAEsrx0nTZZZfpscce0759+7R371598pOf1B133KE//OEPTk8FAACQMGlODzhnzpxO2ytWrNC6deu0c+dOTZgwocvx4XBY4XC4YzsUCkmSLMuSZVlOx+uT9hzk6R55onMqT6QtIn+aP+Y8/lR/p59OiLRFYvrv66/PmVP6+xpi/cSf2zK5NU9PPLZt2/EK0dbWpv/5n/9RSUmJ3nzzTV111VVdjikrK1N5eXmX/RUVFcrMzIxXNAAAAElSc3OziouL1djYqKysrAseF5fSdPDgQU2ePFmtra0aOHCgKioq9E//9E/dHtvdlab8/HzV19crJyfH6Wh9YlmWKisrVVhYKK/Xm+w45PkHzXPg3QOa+r2pMefxp/r1TOEzWli5UC1tLTGPJ0lVS6pUkF/Q5/v31+fMbXncuoZYP/HntkxuyxMKhRQIBHosTY6/PCdJ48aNU3V1tRobG/Xzn/9cJSUl2r59e7dXmnw+n3w+X5f9Xq/XFQ/k+dyWiTzR9bc8KakpajnrTMmRpJa2FsfGS0lNceSx7m/PmdP66xpi/SSO2zK5JY9phriUpvT0dI0ZM0aSdMMNN2jPnj164okn9MMf/jAe0wEAAMRdQj6nKRKJdHoJDgAA4GLj+JWmpUuXqqioSMFgUKdPn1ZFRYVee+01bdu2zempAAAAEsbx0nTy5Endd999qq+vV3Z2tq699lpt27ZNhYWFTk8FAACQMI6XpqefftrpIQEAAJKO754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCLhKBgQFlpGUkO0YXGWkZCgwMJDsGDLhxDbF+cDFx/LvnAMRHMCeomkdr1HCmIaZxIm0R1R2sU9WSKqWkxv57U2BgQMGcYMzjIP7cuIZYP7iYUJqAi0gwJxjzXzCWZanuYJ0K8gvk9XodSoaLBWsI6DtengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGlauXKlbrzxRg0aNEjDhg3T3LlzVVNT4/Q0AAAACeV4adq+fbsWLVqknTt3qrKyUpZlaebMmWpqanJ6KgAAgIRJc3rAX//61522n332WQ0bNkz79u3T1KlTuxwfDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu27XgGOXLkiK688kodPHhQV199dZfby8rKVF5e3mV/RUWFMjMz4xkNAABAzc3NKi4uVmNjo7Kysi54XFxLUyQS0e23365Tp05px44d3R7T3ZWm/Px81dfXKycnJ17ResWyLFVWVqqwsFBerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15QqGQAoFAj6XJ8Zfnzrdo0SIdOnTogoVJknw+n3w+X5f9Xq/XFQ/k+dyWiTzRkSc6t+WR3JeJPNGRJzq35ZHcl8kteUwzxK003X///dq6dauqqqp02WWXxWsaAACAhHC8NNm2ra9+9avavHmzXnvtNY0ePdrpKQAAABLO8dK0aNEiVVRU6Je//KUGDRqk9957T5KUnZ0tv9/v9HQAAAAJ4fjnNK1bt06NjY2aNm2acnNzO/48//zzTk8FAACQMHF5eQ4AAKC/4bvnAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADDhemqqqqjRnzhzl5eXJ4/Foy5YtTk8BAACQcI6XpqamJhUUFGjt2rVODw0AAJA0aU4PWFRUpKKiIuPjw+GwwuFwx3YoFJIkWZYly7Kcjtcn7TnI0z3yREeenrktE3miI090bssjuS+TW/P0xGPbth2vEB6PR5s3b9bcuXMveExZWZnKy8u77K+oqFBmZma8ogEAAEiSmpubVVxcrMbGRmVlZV3wuKSXpu6uNOXn56u+vl45OTnxitYrlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PNdbPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phn4yAEAAAADlCYAAAADjr88d+bMGR05cqRj++jRo6qurtaQIUMUDAadng4AACAhHC9Ne/fu1fTp0zu2S0tLJUklJSV69tlnnZ4OAAAgIRwvTdOmTVMc/0EeAABAUvCeJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAANxK01r167VqFGjlJGRoZtvvlm7d++O11QAAABxF5fS9Pzzz6u0tFTLly/X/v37VVBQoFmzZunkyZPxmA4AACDu4lKaVq9erS996UtasGCBrrrqKq1fv16ZmZl65pln4jEdAABA3KU5PeCHH36offv2aenSpR37UlJSNGPGDL3xxhtdjg+HwwqHwx3bjY2NkqT333/f6Wh9ZlmWmpub9de//lVerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15Tp8+LUmybTvqcY6XpoaGBrW1tWn48OGd9g8fPlx//OMfuxy/cuVKlZeXd9k/duxYp6MBAABc0OnTp5WdnX3B2x0vTb21dOlSlZaWdmyfOnVKI0eOVG1tbdTgiRQKhZSfn693331XWVlZyY5DHvL0qzyS+zKRhzz9KY/kvkxuy2Pbtk6fPq28vLyoxzlemgKBgFJTU3XixIlO+0+cOKERI0Z0Od7n88nn83XZn52d7YoH8nxZWVmuykSe6MgTndvySO7LRJ7oyBOd2/JI7svkpjwmF2ocfyN4enq6brjhBr3yyisd+yKRiF555RVNnjzZ6ekAAAASIi4vz5WWlqqkpESTJk3STTfdpDVr1qipqUkLFiyIx3QAAABxF5fSdNddd+kvf/mLHn74Yb333nu67rrr9Otf/7rLm8O74/P5tHz58m5fsksWt2UiT3Tkic5teST3ZSJPdOSJzm15JPdlclseUx67p39fBwAAAL57DgAAwASlCQAAwAClCQAAwAClCQAAwAClCQAAwIDrStPatWs1atQoZWRk6Oabb9bu3buTlqWqqkpz5sxRXl6ePB6PtmzZkrQsK1eu1I033qhBgwZp2LBhmjt3rmpqapKWR5LWrVuna6+9tuMTXSdPnqyXXnopqZnaPfbYY/J4PFq8eHHSMpSVlcnj8XT6M378+KTlkaS6ujp97nOfU05Ojvx+v6655hrt3bs3KVlGjRrV5fHxeDxatGhRUvK0tbVp2bJlGj16tPx+v6644go98sgjPX6BZzydPn1aixcv1siRI+X3+3XLLbdoz549CZu/p3Ogbdt6+OGHlZubK7/frxkzZujw4cNJy/PCCy9o5syZysnJkcfjUXV1ddyy9JTHsiw99NBDuuaaazRgwADl5eXpvvvu0/Hjx5OSRzp3Tho/frwGDBigwYMHa8aMGdq1a1fc8phkOt+Xv/xleTwerVmzJq6ZYuGq0vT888+rtLRUy5cv1/79+1VQUKBZs2bp5MmTScnT1NSkgoICrV27Ninzn2/79u1atGiRdu7cqcrKSlmWpZkzZ6qpqSlpmS677DI99thj2rdvn/bu3atPfvKTuuOOO/SHP/whaZkkac+ePfrhD3+oa6+9Nqk5JGnChAmqr6/v+LNjx46kZfnggw80ZcoUeb1evfTSS/rf//1f/cd//IcGDx6clDx79uzp9NhUVlZKku68886k5Fm1apXWrVunJ598Um+99ZZWrVqlxx9/XD/4wQ+SkkeSvvjFL6qyslI//vGPdfDgQc2cOVMzZsxQXV1dQubv6Rz4+OOP6/vf/77Wr1+vXbt2acCAAZo1a5ZaW1uTkqepqUm33nqrVq1aFZf5e5OnublZ+/fv17Jly7R//3698MILqqmp0e23356UPJI0duxYPfnkkzp48KB27NihUaNGaebMmfrLX/6StEztNm/erJ07d/b43W9JZ7vITTfdZC9atKhju62tzc7Ly7NXrlyZxFTnSLI3b96c7BgdTp48aUuyt2/fnuwonQwePNj+r//6r6TNf/r0afvKK6+0Kysr7U984hP2gw8+mLQsy5cvtwsKCpI2/0c99NBD9q233prsGBf04IMP2ldccYUdiUSSMv/s2bPthQsXdtr3mc98xr733nuTkqe5udlOTU21t27d2mn/9ddfb3/7299OeJ6PngMjkYg9YsQI+3vf+17HvlOnTtk+n8/etGlTwvOc7+jRo7Yk+80334x7DpM87Xbv3m1Lso8dO+aKPI2NjbYk++WXX457nmiZ/vznP9uXXnqpfejQIXvkyJH2f/7nfyYkT1+45krThx9+qH379mnGjBkd+1JSUjRjxgy98cYbSUzmTo2NjZKkIUOGJDnJOW1tbXruuefU1NSU1O8YXLRokWbPnt1pHSXT4cOHlZeXp8svv1z33nuvamtrk5blxRdf1KRJk3TnnXdq2LBhmjhxop566qmk5Tnfhx9+qJ/85CdauHChPB5PUjLccssteuWVV/T2229Lkg4cOKAdO3aoqKgoKXnOnj2rtrY2ZWRkdNrv9/uTesWy3dGjR/Xee+91+n8tOztbN998M+fsC2hsbJTH49Ell1yS7Cj68MMPtWHDBmVnZ6ugoCBpOSKRiObPn68lS5ZowoQJScthKi5fo9IXDQ0Namtr6/JVK8OHD9cf//jHJKVyp0gkosWLF2vKlCm6+uqrk5rl4MGDmjx5slpbWzVw4EBt3rxZV111VVKyPPfcc9q/f39C3/MRzc0336xnn31W48aNU319vcrLy/X//t//06FDhzRo0KCE5/m///s/rVu3TqWlpfrWt76lPXv26IEHHlB6erpKSkoSnud8W7Zs0alTp/T5z38+aRm++c1vKhQKafz48UpNTVVbW5tWrFihe++9Nyl5Bg0apMmTJ+uRRx7Rxz72MQ0fPlybNm3SG2+8oTFjxiQl0/nee+89Ser2nN1+G/6utbVVDz30kO655x5lZWUlLcfWrVt19913q7m5Wbm5uaqsrFQgEEhanlWrViktLU0PPPBA0jL0hmtKE8wtWrRIhw4dcsVvm+PGjVN1dbUaGxv185//XCUlJdq+fXvCi9O7776rBx98UJWVlV1+M0+W869QXHvttbr55ps1cuRI/exnP9MXvvCFhOeJRCKaNGmSvvvd70qSJk6cqEOHDmn9+vVJL01PP/20ioqKkvp+hp/97Gf66U9/qoqKCk2YMEHV1dVavHix8vLykvb4/PjHP9bChQt16aWXKjU1Vddff73uuece7du3Lyl50DeWZWnevHmybVvr1q1Lapbp06erurpaDQ0NeuqppzRv3jzt2rVLw4YNS3iWffv26YknntD+/fuTdoW5t1zz8lwgEFBqaqpOnDjRaf+JEyc0YsSIJKVyn/vvv19bt27Vq6++qssuuyzZcZSenq4xY8bohhtu0MqVK1VQUKAnnngi4Tn27dunkydP6vrrr1daWprS0tK0fft2ff/731daWpra2toSnumjLrnkEo0dO1ZHjhxJyvy5ubldyuzHPvaxpL5kKEnHjh3Tyy+/rC9+8YtJzbFkyRJ985vf1N13361rrrlG8+fP19e+9jWtXLkyaZmuuOIKbd++XWfOnNG7776r3bt3y7IsXX755UnL1K79vMw5O7r2wnTs2DFVVlYm9SqTJA0YMEBjxozRxz/+cT399NNKS0vT008/nZQsv/vd73Ty5EkFg8GO8/axY8f09a9/XaNGjUpKpp64pjSlp6frhhtu0CuvvNKxLxKJ6JVXXknqe2TcwrZt3X///dq8ebN++9vfavTo0cmO1K1IJKJwOJzweW+77TYdPHhQ1dXVHX8mTZqke++9V9XV1UpNTU14po86c+aM/vSnPyk3Nzcp80+ZMqXLx1S8/fbbGjlyZFLytNu4caOGDRum2bNnJzVHc3OzUlI6nxJTU1MViUSSlOjvBgwYoNzcXH3wwQfatm2b7rjjjmRH0ujRozVixIhO5+xQKKRdu3Zxzv6b9sJ0+PBhvfzyy8rJyUl2pC6Sdc6WpPnz5+v3v/99p/N2Xl6elixZom3btiUlU09c9fJcaWmpSkpKNGnSJN10001as2aNmpqatGDBgqTkOXPmTKerAkePHlV1dbWGDBmiYDCY0CyLFi1SRUWFfvnLX2rQoEEd7xnIzs6W3+9PaJZ2S5cuVVFRkYLBoE6fPq2Kigq99tprSVnsgwYN6vL+rgEDBignJydp7/v6xje+oTlz5mjkyJE6fvy4li9frtTUVN1zzz1JyfO1r31Nt9xyi7773e9q3rx52r17tzZs2KANGzYkJY907oS9ceNGlZSUKC0tuaejOXPmaMWKFQoGg5owYYLefPNNrV69WgsXLkxapm3btsm2bY0bN05HjhzRkiVLNH78+ISdE3s6By5evFiPPvqorrzySo0ePVrLli1TXl6e5s6dm5Q877//vmprazs+C6n9l4QRI0bE5epXtDy5ubn67Gc/q/3792vr1q1qa2vrOG8PGTJE6enpCc2Tk5OjFStW6Pbbb1dubq4aGhq0du1a1dXVxfVjPnp6zj5aJL1er0aMGKFx48bFLVNMkvyv97r4wQ9+YAeDQTs9Pd2+6aab7J07dyYty6uvvmpL6vKnpKQk4Vm6yyHJ3rhxY8KztFu4cKE9cuRIOz093R46dKh922232b/5zW+Sluejkv2RA3fddZedm5trp6en25deeql911132UeOHElaHtu27V/96lf21Vdfbft8Pnv8+PH2hg0bkppn27ZttiS7pqYmqTls27ZDoZD94IMP2sFg0M7IyLAvv/xy+9vf/rYdDoeTlun555+3L7/8cjs9Pd0eMWKEvWjRIvvUqVMJm7+nc2AkErGXLVtmDx8+3Pb5fPZtt90W1+eypzwbN27s9vbly5cnPE/7xx509+fVV19NeJ6Wlhb705/+tJ2Xl2enp6fbubm59u23327v3r07LllMMnXH7R854LHtJH7cLQAAwEXCNe9pAgAAcDNKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgIH/DxGoqVjdvWm8AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 700x700 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "env=RoverGridEnv()\n",
    "print(\"Initial Setup\")\n",
    "observation=env.reset()\n",
    "env.render()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# PPO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "class ActorCritic(nn.Module):\n",
    "    def __init__(self,\n",
    "                 input_dim,\n",
    "                 n_actions):\n",
    "        super(ActorCritic,self).__init__()\n",
    "        self.fc1=nn.Linear(input_dim,128)\n",
    "        self.fc2=nn.Linear(128,64)\n",
    "        self.actor=nn.Linear(64,n_actions)\n",
    "        self.critic=nn.Linear(64,1)\n",
    "\n",
    "    def forward(self,x):\n",
    "        x=torch.relu(self.fc1(x))\n",
    "        x=torch.relu(self.fc2(x))\n",
    "        policy_logits=self.actor(x)\n",
    "        value=self.critic(x)\n",
    "        return policy_logits,value\n",
    "\n",
    "def compute_advantages(rewards,\n",
    "                       values,\n",
    "                       next_values,\n",
    "                       gamma=0.99,\n",
    "                       lambda_=0.95):\n",
    "    deltas=rewards+gamma*next_values-values\n",
    "    advantages=[]\n",
    "    advantage=0\n",
    "    for delta in reversed(deltas):\n",
    "        advantage=delta+gamma*lambda_*advantage\n",
    "        advantages.insert(0,advantage)\n",
    "    return torch.tensor(advantages,dtype=torch.float32)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_ppo(env,\n",
    "              actor_critic,\n",
    "              optimizer,\n",
    "              total_timesteps=10000,\n",
    "              gamma=0.99,\n",
    "              lambda_=0.95,\n",
    "              epsilon=0.2,\n",
    "              epochs=3,\n",
    "              batch_size=64):\n",
    "    \n",
    "    episode_rwds_ppo=[]\n",
    "    for _ in range(total_timesteps // batch_size):\n",
    "        obs=env.reset()\n",
    "        obs_list,action_list,reward_list,value_list,logprob_list=[],[],[],[],[]\n",
    "        total_episode_reward=0\n",
    "        for _ in range(batch_size):\n",
    "            obs_tensor=torch.tensor(obs,\n",
    "                                      dtype=torch.float32).unsqueeze(0)\n",
    "            policy_logits,value=actor_critic(obs_tensor)\n",
    "            dist=Categorical(logits=policy_logits)\n",
    "            action=dist.sample()\n",
    "            obs_list.append(obs)\n",
    "            action_list.append(action.item())\n",
    "            reward_list.append(0)\n",
    "            value_list.append(value.item())\n",
    "            logprob_list.append(dist.log_prob(action).item())\n",
    "            obs,rewards,done,_=env.step([action.item(),\n",
    "                                              action.item()])\n",
    "            reward_list[-1]=rewards.sum()\n",
    "            total_episode_reward+=rewards.sum()\n",
    "            if done:\n",
    "                episode_rwds_ppo.append(total_episode_reward)\n",
    "                print(f\"Episode {len(episode_rwds_ppo)} ended with reward: {total_episode_reward}\")\n",
    "                obs=env.reset()\n",
    "                total_episode_reward=0\n",
    "                break\n",
    "        obs_tensor=torch.tensor(np.array(obs_list),\n",
    "                                  dtype=torch.float32)\n",
    "        action_tensor=torch.tensor(action_list)\n",
    "\n",
    "        reward_tensor=torch.tensor(reward_list,\n",
    "                                     dtype=torch.float32)\n",
    "        value_tensor=torch.tensor(value_list,\n",
    "                                    dtype=torch.float32)\n",
    "        logprob_tensor=torch.tensor(logprob_list,\n",
    "                                      dtype=torch.float32)\n",
    "        advantages=compute_advantages(reward_tensor,\n",
    "                                        value_tensor,\n",
    "                                        torch.cat((value_tensor[1:],\n",
    "                                                   torch.tensor([0])),\n",
    "                                                   axis=0),\n",
    "                                        gamma,\n",
    "                                        lambda_)\n",
    "\n",
    "        for _ in range(epochs):\n",
    "            new_policy_logits,new_values=actor_critic(obs_tensor)\n",
    "            new_dist=Categorical(logits=new_policy_logits)\n",
    "            new_logprobs=new_dist.log_prob(action_tensor)\n",
    "            ratio=torch.exp(new_logprobs-logprob_tensor)\n",
    "            surr1=ratio*advantages\n",
    "            surr2=torch.clamp(ratio,\n",
    "                                1-epsilon,\n",
    "                                1+epsilon)*advantages\n",
    "            policy_loss=-torch.min(surr1,surr2).mean()\n",
    "            value_loss=nn.MSELoss()(new_values.squeeze(),\n",
    "                                      reward_tensor)\n",
    "            loss=policy_loss+0.5*value_loss\n",
    "            optimizer.zero_grad()\n",
    "            loss.backward()\n",
    "            optimizer.step()\n",
    "    return episode_rwds_ppo"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Episode 1 ended with reward: -370.0\n",
      "Episode 2 ended with reward: -30.0\n",
      "Episode 3 ended with reward: -90.0\n",
      "Episode 4 ended with reward: -285.0\n",
      "Episode 5 ended with reward: 35.0\n",
      "Episode 6 ended with reward: 355.0\n",
      "Episode 7 ended with reward: 190.0\n",
      "Episode 8 ended with reward: 425.0\n",
      "Episode 9 ended with reward: 710.0\n",
      "Episode 10 ended with reward: 455.0\n",
      "Episode 11 ended with reward: 110.0\n",
      "Episode 12 ended with reward: 150.0\n",
      "Episode 13 ended with reward: 140.0\n",
      "Episode 14 ended with reward: 50.0\n",
      "Episode 15 ended with reward: 150.0\n",
      "Episode 16 ended with reward: 60.0\n",
      "Episode 17 ended with reward: 60.0\n",
      "Episode 18 ended with reward: 220.0\n",
      "Episode 19 ended with reward: 160.0\n",
      "Episode 20 ended with reward: 120.0\n",
      "Episode 21 ended with reward: 345.0\n",
      "Episode 22 ended with reward: 50.0\n",
      "Episode 23 ended with reward: 170.0\n",
      "Episode 24 ended with reward: 130.0\n",
      "Episode 25 ended with reward: 115.0\n",
      "Episode 26 ended with reward: 375.0\n",
      "Episode 27 ended with reward: 150.0\n",
      "Episode 28 ended with reward: 110.0\n",
      "Episode 29 ended with reward: 120.0\n",
      "Episode 30 ended with reward: 90.0\n",
      "Episode 31 ended with reward: 120.0\n",
      "Episode 32 ended with reward: 405.0\n",
      "Episode 33 ended with reward: 710.0\n",
      "Episode 34 ended with reward: 85.0\n",
      "Episode 35 ended with reward: 380.0\n",
      "Episode 36 ended with reward: 170.0\n",
      "Episode 37 ended with reward: 105.0\n",
      "Episode 38 ended with reward: 80.0\n",
      "Episode 39 ended with reward: -115.0\n",
      "Episode 40 ended with reward: 380.0\n",
      "Episode 41 ended with reward: 675.0\n",
      "Episode 42 ended with reward: 475.0\n",
      "Episode 43 ended with reward: 220.0\n",
      "Episode 44 ended with reward: 70.0\n",
      "Episode 45 ended with reward: 580.0\n",
      "Episode 46 ended with reward: 400.0\n",
      "Episode 47 ended with reward: 355.0\n",
      "Episode 48 ended with reward: 460.0\n",
      "Episode 49 ended with reward: 420.0\n",
      "Episode 50 ended with reward: 535.0\n",
      "Episode 51 ended with reward: 470.0\n",
      "Episode 52 ended with reward: 745.0\n",
      "Episode 53 ended with reward: 460.0\n",
      "Episode 54 ended with reward: 600.0\n",
      "Episode 55 ended with reward: 750.0\n",
      "Episode 56 ended with reward: 290.0\n",
      "Episode 57 ended with reward: 745.0\n",
      "Episode 58 ended with reward: 500.0\n",
      "Episode 59 ended with reward: 550.0\n",
      "Episode 60 ended with reward: 610.0\n",
      "Episode 61 ended with reward: 465.0\n",
      "Episode 62 ended with reward: 610.0\n",
      "Episode 63 ended with reward: 785.0\n",
      "Episode 64 ended with reward: 710.0\n",
      "Episode 65 ended with reward: 275.0\n",
      "Episode 66 ended with reward: 145.0\n",
      "Episode 67 ended with reward: 300.0\n",
      "Episode 68 ended with reward: 685.0\n",
      "Episode 69 ended with reward: 660.0\n",
      "Episode 70 ended with reward: 665.0\n",
      "Episode 71 ended with reward: 585.0\n",
      "Episode 72 ended with reward: 625.0\n",
      "Episode 73 ended with reward: 615.0\n",
      "Episode 74 ended with reward: 565.0\n",
      "Episode 75 ended with reward: 690.0\n",
      "Episode 76 ended with reward: 700.0\n",
      "Episode 77 ended with reward: 465.0\n",
      "Episode 78 ended with reward: 380.0\n",
      "Episode 79 ended with reward: 395.0\n",
      "Episode 80 ended with reward: 560.0\n",
      "Episode 81 ended with reward: 480.0\n",
      "Episode 82 ended with reward: 515.0\n",
      "Episode 83 ended with reward: 470.0\n",
      "Episode 84 ended with reward: 495.0\n",
      "Episode 85 ended with reward: 510.0\n",
      "Episode 86 ended with reward: 365.0\n",
      "Episode 87 ended with reward: 460.0\n",
      "Episode 88 ended with reward: 480.0\n",
      "Episode 89 ended with reward: 515.0\n",
      "Episode 90 ended with reward: 785.0\n",
      "Episode 91 ended with reward: 715.0\n",
      "Episode 92 ended with reward: 635.0\n",
      "Episode 93 ended with reward: 540.0\n",
      "Episode 94 ended with reward: 745.0\n",
      "Episode 95 ended with reward: 690.0\n",
      "Episode 96 ended with reward: 750.0\n",
      "Episode 97 ended with reward: 530.0\n",
      "Episode 98 ended with reward: 555.0\n",
      "Episode 99 ended with reward: 665.0\n",
      "Episode 100 ended with reward: 445.0\n",
      "Episode 101 ended with reward: 370.0\n",
      "Episode 102 ended with reward: 410.0\n",
      "Episode 103 ended with reward: 120.0\n",
      "Episode 104 ended with reward: -95.0\n",
      "Episode 105 ended with reward: -250.0\n",
      "Episode 106 ended with reward: -170.0\n",
      "Episode 107 ended with reward: 380.0\n",
      "Episode 108 ended with reward: 75.0\n",
      "Episode 109 ended with reward: 265.0\n",
      "Episode 110 ended with reward: 260.0\n",
      "Episode 111 ended with reward: 265.0\n",
      "Episode 112 ended with reward: 325.0\n",
      "Episode 113 ended with reward: 335.0\n",
      "Episode 114 ended with reward: 250.0\n",
      "Episode 115 ended with reward: 400.0\n",
      "Episode 116 ended with reward: 375.0\n",
      "Episode 117 ended with reward: 320.0\n",
      "Episode 118 ended with reward: 370.0\n",
      "Episode 119 ended with reward: 405.0\n",
      "Episode 120 ended with reward: 410.0\n",
      "Episode 121 ended with reward: 510.0\n",
      "Episode 122 ended with reward: 465.0\n",
      "Episode 123 ended with reward: 530.0\n",
      "Episode 124 ended with reward: 465.0\n",
      "Episode 125 ended with reward: 520.0\n",
      "Episode 126 ended with reward: 500.0\n",
      "Episode 127 ended with reward: 490.0\n",
      "Episode 128 ended with reward: 465.0\n",
      "Episode 129 ended with reward: 380.0\n",
      "Episode 130 ended with reward: 515.0\n",
      "Episode 131 ended with reward: 500.0\n",
      "Episode 132 ended with reward: 500.0\n",
      "Episode 133 ended with reward: 430.0\n",
      "Episode 134 ended with reward: 480.0\n",
      "Episode 135 ended with reward: 295.0\n",
      "Episode 136 ended with reward: 465.0\n",
      "Episode 137 ended with reward: 350.0\n",
      "Episode 138 ended with reward: 420.0\n",
      "Episode 139 ended with reward: 420.0\n",
      "Episode 140 ended with reward: 465.0\n",
      "Episode 141 ended with reward: 430.0\n",
      "Episode 142 ended with reward: 385.0\n",
      "Episode 143 ended with reward: 420.0\n",
      "Episode 144 ended with reward: 310.0\n",
      "Episode 145 ended with reward: 445.0\n",
      "Episode 146 ended with reward: 360.0\n",
      "Episode 147 ended with reward: 400.0\n",
      "Episode 148 ended with reward: 470.0\n",
      "Episode 149 ended with reward: 420.0\n",
      "Episode 150 ended with reward: 445.0\n",
      "Episode 151 ended with reward: 455.0\n",
      "Episode 152 ended with reward: 405.0\n",
      "Episode 153 ended with reward: 395.0\n",
      "Episode 154 ended with reward: 445.0\n",
      "Episode 155 ended with reward: 445.0\n",
      "Episode 156 ended with reward: 515.0\n",
      "Episode 157 ended with reward: 435.0\n",
      "Episode 158 ended with reward: 485.0\n",
      "Episode 159 ended with reward: 500.0\n",
      "Episode 160 ended with reward: 420.0\n",
      "Episode 161 ended with reward: 500.0\n",
      "Episode 162 ended with reward: 440.0\n",
      "Episode 163 ended with reward: 405.0\n",
      "Episode 164 ended with reward: 500.0\n",
      "Episode 165 ended with reward: 420.0\n",
      "Episode 166 ended with reward: 450.0\n",
      "Episode 167 ended with reward: 485.0\n",
      "Episode 168 ended with reward: 455.0\n",
      "Episode 169 ended with reward: 465.0\n",
      "Episode 170 ended with reward: 490.0\n",
      "Episode 171 ended with reward: 655.0\n",
      "Episode 172 ended with reward: 565.0\n",
      "Episode 173 ended with reward: 575.0\n",
      "Episode 174 ended with reward: 510.0\n",
      "Episode 175 ended with reward: 680.0\n",
      "Episode 176 ended with reward: 300.0\n",
      "Episode 177 ended with reward: 730.0\n",
      "Episode 178 ended with reward: 375.0\n",
      "Episode 179 ended with reward: 540.0\n",
      "Episode 180 ended with reward: 695.0\n",
      "Episode 181 ended with reward: 350.0\n",
      "Episode 182 ended with reward: 590.0\n",
      "Episode 183 ended with reward: 705.0\n",
      "Episode 184 ended with reward: 210.0\n",
      "Episode 185 ended with reward: 785.0\n",
      "Episode 186 ended with reward: 730.0\n",
      "Episode 187 ended with reward: 610.0\n",
      "Episode 188 ended with reward: 510.0\n",
      "Episode 189 ended with reward: 140.0\n",
      "Episode 190 ended with reward: 565.0\n",
      "Episode 191 ended with reward: 775.0\n",
      "Episode 192 ended with reward: 625.0\n",
      "Episode 193 ended with reward: 620.0\n",
      "Episode 194 ended with reward: 450.0\n",
      "Episode 195 ended with reward: 555.0\n",
      "Episode 196 ended with reward: 570.0\n",
      "Episode 197 ended with reward: 510.0\n",
      "Episode 198 ended with reward: 450.0\n",
      "Episode 199 ended with reward: 450.0\n",
      "Episode 200 ended with reward: 505.0\n",
      "Episode 201 ended with reward: 645.0\n",
      "Episode 202 ended with reward: 740.0\n",
      "Episode 203 ended with reward: 515.0\n",
      "Episode 204 ended with reward: 710.0\n",
      "Episode 205 ended with reward: 290.0\n",
      "Episode 206 ended with reward: 560.0\n",
      "Episode 207 ended with reward: 380.0\n",
      "Episode 208 ended with reward: 200.0\n",
      "Episode 209 ended with reward: 500.0\n",
      "Episode 210 ended with reward: 110.0\n",
      "Episode 211 ended with reward: 320.0\n",
      "Episode 212 ended with reward: -175.0\n",
      "Episode 213 ended with reward: 160.0\n",
      "Episode 214 ended with reward: 490.0\n",
      "Episode 215 ended with reward: 445.0\n",
      "Episode 216 ended with reward: 685.0\n",
      "Episode 217 ended with reward: 470.0\n",
      "Episode 218 ended with reward: 475.0\n",
      "Episode 219 ended with reward: 745.0\n",
      "Episode 220 ended with reward: 800.0\n",
      "Episode 221 ended with reward: 560.0\n",
      "Episode 222 ended with reward: 500.0\n",
      "Episode 223 ended with reward: 570.0\n",
      "Episode 224 ended with reward: 260.0\n",
      "Episode 225 ended with reward: 645.0\n",
      "Episode 226 ended with reward: 110.0\n",
      "Episode 227 ended with reward: 665.0\n",
      "Episode 228 ended with reward: 500.0\n",
      "Episode 229 ended with reward: 515.0\n",
      "Episode 230 ended with reward: 470.0\n",
      "Episode 231 ended with reward: 420.0\n",
      "Episode 232 ended with reward: 470.0\n",
      "Episode 233 ended with reward: 420.0\n",
      "Episode 234 ended with reward: 505.0\n",
      "Episode 235 ended with reward: 415.0\n",
      "Episode 236 ended with reward: 455.0\n",
      "Episode 237 ended with reward: 755.0\n",
      "Episode 238 ended with reward: 525.0\n",
      "Episode 239 ended with reward: 465.0\n",
      "Episode 240 ended with reward: 485.0\n",
      "Episode 241 ended with reward: 610.0\n",
      "Episode 242 ended with reward: 480.0\n",
      "Episode 243 ended with reward: 675.0\n",
      "Episode 244 ended with reward: 335.0\n",
      "Episode 245 ended with reward: 195.0\n",
      "Episode 246 ended with reward: 440.0\n",
      "Episode 247 ended with reward: 370.0\n",
      "Episode 248 ended with reward: 355.0\n",
      "Episode 249 ended with reward: 405.0\n",
      "Episode 250 ended with reward: 365.0\n",
      "Episode 251 ended with reward: 750.0\n",
      "Episode 252 ended with reward: 390.0\n",
      "Episode 253 ended with reward: 585.0\n",
      "Episode 254 ended with reward: 660.0\n",
      "Episode 255 ended with reward: 445.0\n",
      "Episode 256 ended with reward: 685.0\n",
      "Episode 257 ended with reward: 395.0\n",
      "Episode 258 ended with reward: 550.0\n",
      "Episode 259 ended with reward: 725.0\n",
      "Episode 260 ended with reward: 455.0\n",
      "Episode 261 ended with reward: 520.0\n",
      "Episode 262 ended with reward: 535.0\n",
      "Episode 263 ended with reward: 530.0\n",
      "Episode 264 ended with reward: 550.0\n",
      "Episode 265 ended with reward: 620.0\n",
      "Episode 266 ended with reward: 515.0\n",
      "Episode 267 ended with reward: 465.0\n",
      "Episode 268 ended with reward: 425.0\n",
      "Episode 269 ended with reward: 535.0\n",
      "Episode 270 ended with reward: 565.0\n",
      "Episode 271 ended with reward: 725.0\n",
      "Episode 272 ended with reward: 505.0\n",
      "Episode 273 ended with reward: 560.0\n",
      "Episode 274 ended with reward: 270.0\n",
      "Episode 275 ended with reward: 175.0\n",
      "Episode 276 ended with reward: 490.0\n",
      "Episode 277 ended with reward: 355.0\n",
      "Episode 278 ended with reward: 505.0\n",
      "Episode 279 ended with reward: 480.0\n",
      "Episode 280 ended with reward: 500.0\n",
      "Episode 281 ended with reward: 520.0\n",
      "Episode 282 ended with reward: 465.0\n",
      "Episode 283 ended with reward: 465.0\n",
      "Episode 284 ended with reward: 485.0\n",
      "Episode 285 ended with reward: 530.0\n",
      "Episode 286 ended with reward: 465.0\n",
      "Episode 287 ended with reward: 275.0\n",
      "Episode 288 ended with reward: 410.0\n",
      "Episode 289 ended with reward: 355.0\n",
      "Episode 290 ended with reward: 455.0\n",
      "Episode 291 ended with reward: 345.0\n",
      "Episode 292 ended with reward: 265.0\n",
      "Episode 293 ended with reward: 500.0\n",
      "Episode 294 ended with reward: 530.0\n",
      "Episode 295 ended with reward: 500.0\n",
      "Episode 296 ended with reward: 515.0\n",
      "Episode 297 ended with reward: 500.0\n",
      "Episode 298 ended with reward: 500.0\n",
      "Episode 299 ended with reward: 480.0\n",
      "Episode 300 ended with reward: 500.0\n",
      "Episode 301 ended with reward: 460.0\n",
      "Episode 302 ended with reward: 390.0\n",
      "Episode 303 ended with reward: 485.0\n",
      "Episode 304 ended with reward: 440.0\n",
      "Episode 305 ended with reward: 330.0\n",
      "Episode 306 ended with reward: 365.0\n",
      "Episode 307 ended with reward: 440.0\n",
      "Episode 308 ended with reward: 360.0\n",
      "Episode 309 ended with reward: 500.0\n",
      "Episode 310 ended with reward: 450.0\n",
      "Episode 311 ended with reward: 315.0\n",
      "Episode 312 ended with reward: 420.0\n",
      "Episode 313 ended with reward: 500.0\n",
      "Episode 314 ended with reward: 340.0\n",
      "Episode 315 ended with reward: 565.0\n",
      "Episode 316 ended with reward: 560.0\n",
      "Episode 317 ended with reward: 515.0\n",
      "Episode 318 ended with reward: 520.0\n",
      "Episode 319 ended with reward: 500.0\n",
      "Episode 320 ended with reward: 595.0\n",
      "Episode 321 ended with reward: 780.0\n",
      "Episode 322 ended with reward: 500.0\n",
      "Episode 323 ended with reward: 530.0\n",
      "Episode 324 ended with reward: 470.0\n",
      "Episode 325 ended with reward: 320.0\n",
      "Episode 326 ended with reward: 460.0\n",
      "Episode 327 ended with reward: 475.0\n",
      "Episode 328 ended with reward: 555.0\n",
      "Episode 329 ended with reward: 695.0\n",
      "Episode 330 ended with reward: 515.0\n",
      "Episode 331 ended with reward: 615.0\n",
      "Episode 332 ended with reward: 500.0\n",
      "Episode 333 ended with reward: 510.0\n",
      "Episode 334 ended with reward: 575.0\n",
      "Episode 335 ended with reward: 300.0\n",
      "Episode 336 ended with reward: 445.0\n",
      "Episode 337 ended with reward: 535.0\n",
      "Episode 338 ended with reward: 400.0\n",
      "Episode 339 ended with reward: 455.0\n",
      "Episode 340 ended with reward: 565.0\n",
      "Episode 341 ended with reward: 570.0\n",
      "Episode 342 ended with reward: 260.0\n",
      "Episode 343 ended with reward: 260.0\n",
      "Episode 344 ended with reward: 570.0\n",
      "Episode 345 ended with reward: 510.0\n",
      "Episode 346 ended with reward: 555.0\n",
      "Episode 347 ended with reward: 515.0\n",
      "Episode 348 ended with reward: 230.0\n",
      "Episode 349 ended with reward: 525.0\n",
      "Episode 350 ended with reward: 360.0\n",
      "Episode 351 ended with reward: 130.0\n",
      "Episode 352 ended with reward: 505.0\n",
      "Episode 353 ended with reward: 520.0\n",
      "Episode 354 ended with reward: 290.0\n",
      "Episode 355 ended with reward: 760.0\n",
      "Episode 356 ended with reward: 470.0\n",
      "Episode 357 ended with reward: 615.0\n",
      "Episode 358 ended with reward: 150.0\n",
      "Episode 359 ended with reward: 505.0\n",
      "Episode 360 ended with reward: 140.0\n",
      "Episode 361 ended with reward: 770.0\n",
      "Episode 362 ended with reward: 760.0\n",
      "Episode 363 ended with reward: 570.0\n",
      "Episode 364 ended with reward: 270.0\n",
      "Episode 365 ended with reward: 575.0\n",
      "Episode 366 ended with reward: 365.0\n",
      "Episode 367 ended with reward: 500.0\n",
      "Episode 368 ended with reward: 555.0\n",
      "Episode 369 ended with reward: 140.0\n",
      "Episode 370 ended with reward: 725.0\n",
      "Episode 371 ended with reward: 585.0\n",
      "Episode 372 ended with reward: 310.0\n",
      "Episode 373 ended with reward: 500.0\n",
      "Episode 374 ended with reward: 515.0\n",
      "Episode 375 ended with reward: 535.0\n",
      "Episode 376 ended with reward: 415.0\n",
      "Episode 377 ended with reward: 150.0\n",
      "Episode 378 ended with reward: 735.0\n",
      "Episode 379 ended with reward: 480.0\n",
      "Episode 380 ended with reward: 505.0\n",
      "Episode 381 ended with reward: 595.0\n",
      "Episode 382 ended with reward: 495.0\n",
      "Episode 383 ended with reward: 150.0\n",
      "Episode 384 ended with reward: 475.0\n",
      "Episode 385 ended with reward: 200.0\n",
      "Episode 386 ended with reward: 295.0\n",
      "Episode 387 ended with reward: 305.0\n",
      "Episode 388 ended with reward: 695.0\n",
      "Episode 389 ended with reward: 610.0\n",
      "Episode 390 ended with reward: 220.0\n",
      "Episode 391 ended with reward: 595.0\n",
      "Episode 392 ended with reward: 565.0\n",
      "Episode 393 ended with reward: 110.0\n",
      "Episode 394 ended with reward: 730.0\n",
      "Episode 395 ended with reward: 355.0\n",
      "Episode 396 ended with reward: 760.0\n",
      "Episode 397 ended with reward: 790.0\n",
      "Episode 398 ended with reward: 680.0\n",
      "Episode 399 ended with reward: 575.0\n",
      "Episode 400 ended with reward: 760.0\n",
      "Episode 401 ended with reward: 450.0\n",
      "Episode 402 ended with reward: 625.0\n",
      "Episode 403 ended with reward: 345.0\n",
      "Episode 404 ended with reward: 485.0\n",
      "Episode 405 ended with reward: 525.0\n",
      "Episode 406 ended with reward: 670.0\n",
      "Episode 407 ended with reward: 565.0\n",
      "Episode 408 ended with reward: 405.0\n",
      "Episode 409 ended with reward: 50.0\n",
      "Episode 410 ended with reward: 410.0\n",
      "Episode 411 ended with reward: 300.0\n",
      "Episode 412 ended with reward: 415.0\n",
      "Episode 413 ended with reward: 485.0\n",
      "Episode 414 ended with reward: 735.0\n",
      "Episode 415 ended with reward: 630.0\n",
      "Episode 416 ended with reward: 530.0\n",
      "Episode 417 ended with reward: 500.0\n",
      "Episode 418 ended with reward: 595.0\n",
      "Episode 419 ended with reward: 500.0\n",
      "Episode 420 ended with reward: 315.0\n",
      "Episode 421 ended with reward: 515.0\n",
      "Episode 422 ended with reward: 445.0\n",
      "Episode 423 ended with reward: 395.0\n",
      "Episode 424 ended with reward: 500.0\n",
      "Episode 425 ended with reward: 430.0\n",
      "Episode 426 ended with reward: 365.0\n",
      "Episode 427 ended with reward: 560.0\n",
      "Episode 428 ended with reward: 435.0\n",
      "Episode 429 ended with reward: 465.0\n",
      "Episode 430 ended with reward: 500.0\n",
      "Episode 431 ended with reward: 485.0\n",
      "Episode 432 ended with reward: 500.0\n",
      "Episode 433 ended with reward: 520.0\n",
      "Episode 434 ended with reward: 485.0\n",
      "Episode 435 ended with reward: 455.0\n",
      "Episode 436 ended with reward: 460.0\n",
      "Episode 437 ended with reward: 330.0\n",
      "Episode 438 ended with reward: 360.0\n",
      "Episode 439 ended with reward: 455.0\n",
      "Episode 440 ended with reward: 485.0\n",
      "Episode 441 ended with reward: 340.0\n",
      "Episode 442 ended with reward: 460.0\n",
      "Episode 443 ended with reward: 500.0\n",
      "Episode 444 ended with reward: 320.0\n",
      "Episode 445 ended with reward: 490.0\n",
      "Episode 446 ended with reward: 455.0\n",
      "Episode 447 ended with reward: 480.0\n",
      "Episode 448 ended with reward: 455.0\n",
      "Episode 449 ended with reward: 500.0\n",
      "Episode 450 ended with reward: 415.0\n",
      "Episode 451 ended with reward: 515.0\n",
      "Episode 452 ended with reward: 550.0\n",
      "Episode 453 ended with reward: 720.0\n",
      "Episode 454 ended with reward: 570.0\n",
      "Episode 455 ended with reward: 500.0\n",
      "Episode 456 ended with reward: 535.0\n",
      "Episode 457 ended with reward: 725.0\n",
      "Episode 458 ended with reward: 530.0\n",
      "Episode 459 ended with reward: 760.0\n",
      "Episode 460 ended with reward: 130.0\n",
      "Episode 461 ended with reward: 595.0\n",
      "Episode 462 ended with reward: 735.0\n",
      "Episode 463 ended with reward: 730.0\n",
      "Episode 464 ended with reward: 615.0\n",
      "Episode 465 ended with reward: 500.0\n",
      "Episode 466 ended with reward: 725.0\n",
      "Episode 467 ended with reward: 720.0\n",
      "Episode 468 ended with reward: 465.0\n",
      "Episode 469 ended with reward: 465.0\n",
      "Episode 470 ended with reward: 760.0\n",
      "Episode 471 ended with reward: 255.0\n",
      "Episode 472 ended with reward: 125.0\n",
      "Episode 473 ended with reward: 500.0\n",
      "Episode 474 ended with reward: 705.0\n",
      "Episode 475 ended with reward: 500.0\n",
      "Episode 476 ended with reward: 485.0\n",
      "Episode 477 ended with reward: 500.0\n",
      "Episode 478 ended with reward: 500.0\n",
      "Episode 479 ended with reward: 470.0\n",
      "Episode 480 ended with reward: 635.0\n",
      "Episode 481 ended with reward: 440.0\n",
      "Episode 482 ended with reward: 275.0\n",
      "Episode 483 ended with reward: 305.0\n",
      "Episode 484 ended with reward: 600.0\n",
      "Episode 485 ended with reward: 465.0\n",
      "Episode 486 ended with reward: 370.0\n",
      "Episode 487 ended with reward: 775.0\n",
      "Episode 488 ended with reward: 300.0\n",
      "Episode 489 ended with reward: 415.0\n",
      "Episode 490 ended with reward: 460.0\n",
      "Episode 491 ended with reward: 620.0\n",
      "Episode 492 ended with reward: 355.0\n",
      "Episode 493 ended with reward: 455.0\n",
      "Episode 494 ended with reward: 365.0\n",
      "Episode 495 ended with reward: 720.0\n",
      "Episode 496 ended with reward: 500.0\n",
      "Episode 497 ended with reward: 120.0\n",
      "Episode 498 ended with reward: 500.0\n",
      "Episode 499 ended with reward: 355.0\n",
      "Episode 500 ended with reward: 605.0\n",
      "Episode 501 ended with reward: 475.0\n",
      "Episode 502 ended with reward: 415.0\n",
      "Episode 503 ended with reward: 700.0\n",
      "Episode 504 ended with reward: 715.0\n",
      "Episode 505 ended with reward: 720.0\n",
      "Episode 506 ended with reward: 335.0\n",
      "Episode 507 ended with reward: 240.0\n",
      "Episode 508 ended with reward: 425.0\n",
      "Episode 509 ended with reward: 705.0\n",
      "Episode 510 ended with reward: 435.0\n",
      "Episode 511 ended with reward: 205.0\n",
      "Episode 512 ended with reward: 485.0\n",
      "Episode 513 ended with reward: 730.0\n",
      "Episode 514 ended with reward: 380.0\n",
      "Episode 515 ended with reward: 470.0\n",
      "Episode 516 ended with reward: 490.0\n",
      "Episode 517 ended with reward: 480.0\n",
      "Episode 518 ended with reward: 440.0\n",
      "Episode 519 ended with reward: 570.0\n",
      "Episode 520 ended with reward: 405.0\n",
      "Episode 521 ended with reward: 430.0\n",
      "Episode 522 ended with reward: 370.0\n",
      "Episode 523 ended with reward: 710.0\n",
      "Episode 524 ended with reward: 420.0\n",
      "Episode 525 ended with reward: 465.0\n",
      "Episode 526 ended with reward: 510.0\n",
      "Episode 527 ended with reward: 685.0\n",
      "Episode 528 ended with reward: 360.0\n",
      "Episode 529 ended with reward: 490.0\n",
      "Episode 530 ended with reward: 465.0\n",
      "Episode 531 ended with reward: 365.0\n",
      "Episode 532 ended with reward: 640.0\n",
      "Episode 533 ended with reward: 575.0\n",
      "Episode 534 ended with reward: 520.0\n",
      "Episode 535 ended with reward: 340.0\n",
      "Episode 536 ended with reward: 440.0\n",
      "Episode 537 ended with reward: 230.0\n",
      "Episode 538 ended with reward: 455.0\n",
      "Episode 539 ended with reward: 530.0\n",
      "Episode 540 ended with reward: 475.0\n",
      "Episode 541 ended with reward: 435.0\n",
      "Episode 542 ended with reward: 385.0\n",
      "Episode 543 ended with reward: 405.0\n",
      "Episode 544 ended with reward: 745.0\n",
      "Episode 545 ended with reward: 500.0\n",
      "Episode 546 ended with reward: 395.0\n",
      "Episode 547 ended with reward: 230.0\n",
      "Episode 548 ended with reward: 400.0\n",
      "Episode 549 ended with reward: 490.0\n",
      "Episode 550 ended with reward: 465.0\n",
      "Episode 551 ended with reward: 725.0\n",
      "Episode 552 ended with reward: 630.0\n",
      "Episode 553 ended with reward: 150.0\n",
      "Episode 554 ended with reward: 470.0\n",
      "Episode 555 ended with reward: 535.0\n",
      "Episode 556 ended with reward: 640.0\n",
      "Episode 557 ended with reward: 280.0\n",
      "Episode 558 ended with reward: 405.0\n",
      "Episode 559 ended with reward: 215.0\n",
      "Episode 560 ended with reward: 140.0\n",
      "Episode 561 ended with reward: 410.0\n",
      "Episode 562 ended with reward: 550.0\n",
      "Episode 563 ended with reward: 780.0\n",
      "Episode 564 ended with reward: 465.0\n",
      "Episode 565 ended with reward: 500.0\n",
      "Episode 566 ended with reward: 315.0\n",
      "Episode 567 ended with reward: 650.0\n",
      "Episode 568 ended with reward: 735.0\n",
      "Episode 569 ended with reward: 470.0\n",
      "Episode 570 ended with reward: 500.0\n",
      "Episode 571 ended with reward: 500.0\n",
      "Episode 572 ended with reward: 745.0\n",
      "Episode 573 ended with reward: 605.0\n",
      "Episode 574 ended with reward: 515.0\n",
      "Episode 575 ended with reward: 220.0\n",
      "Episode 576 ended with reward: 710.0\n",
      "Episode 577 ended with reward: 780.0\n",
      "Episode 578 ended with reward: 320.0\n",
      "Episode 579 ended with reward: 500.0\n",
      "Episode 580 ended with reward: 380.0\n",
      "Episode 581 ended with reward: 330.0\n",
      "Episode 582 ended with reward: 675.0\n",
      "Episode 583 ended with reward: 465.0\n",
      "Episode 584 ended with reward: 275.0\n",
      "Episode 585 ended with reward: 630.0\n",
      "Episode 586 ended with reward: 515.0\n",
      "Episode 587 ended with reward: 285.0\n",
      "Episode 588 ended with reward: 575.0\n",
      "Episode 589 ended with reward: 690.0\n",
      "Episode 590 ended with reward: 685.0\n",
      "Episode 591 ended with reward: 575.0\n",
      "Episode 592 ended with reward: 720.0\n",
      "Episode 593 ended with reward: 610.0\n",
      "Episode 594 ended with reward: 285.0\n",
      "Episode 595 ended with reward: 405.0\n",
      "Episode 596 ended with reward: 680.0\n",
      "Episode 597 ended with reward: 310.0\n",
      "Episode 598 ended with reward: 340.0\n",
      "Episode 599 ended with reward: 195.0\n",
      "Episode 600 ended with reward: -145.0\n",
      "Episode 601 ended with reward: 285.0\n",
      "Episode 602 ended with reward: 695.0\n",
      "Episode 603 ended with reward: 775.0\n",
      "Episode 604 ended with reward: 430.0\n",
      "Episode 605 ended with reward: 560.0\n",
      "Episode 606 ended with reward: 555.0\n",
      "Episode 607 ended with reward: 655.0\n",
      "Episode 608 ended with reward: 775.0\n",
      "Episode 609 ended with reward: 725.0\n",
      "Episode 610 ended with reward: 500.0\n",
      "Episode 611 ended with reward: 235.0\n",
      "Episode 612 ended with reward: 735.0\n",
      "Episode 613 ended with reward: 440.0\n",
      "Episode 614 ended with reward: 650.0\n",
      "Episode 615 ended with reward: 310.0\n",
      "Episode 616 ended with reward: 330.0\n",
      "Episode 617 ended with reward: 430.0\n",
      "Episode 618 ended with reward: 540.0\n",
      "Episode 619 ended with reward: 460.0\n",
      "Episode 620 ended with reward: 405.0\n",
      "Episode 621 ended with reward: 500.0\n",
      "Episode 622 ended with reward: 500.0\n",
      "Episode 623 ended with reward: 580.0\n",
      "Episode 624 ended with reward: 725.0\n",
      "Episode 625 ended with reward: 525.0\n",
      "Episode 626 ended with reward: 140.0\n",
      "Episode 627 ended with reward: 605.0\n",
      "Episode 628 ended with reward: 480.0\n",
      "Episode 629 ended with reward: 450.0\n",
      "Episode 630 ended with reward: 715.0\n",
      "Episode 631 ended with reward: 500.0\n",
      "Episode 632 ended with reward: 500.0\n",
      "Episode 633 ended with reward: 550.0\n",
      "Episode 634 ended with reward: 325.0\n",
      "Episode 635 ended with reward: 465.0\n",
      "Episode 636 ended with reward: 310.0\n",
      "Episode 637 ended with reward: 720.0\n",
      "Episode 638 ended with reward: 675.0\n",
      "Episode 639 ended with reward: 435.0\n",
      "Episode 640 ended with reward: 575.0\n",
      "Episode 641 ended with reward: 340.0\n",
      "Episode 642 ended with reward: 620.0\n",
      "Episode 643 ended with reward: 685.0\n",
      "Episode 644 ended with reward: 485.0\n",
      "Episode 645 ended with reward: 285.0\n",
      "Episode 646 ended with reward: 100.0\n",
      "Episode 647 ended with reward: 565.0\n",
      "Episode 648 ended with reward: 220.0\n",
      "Episode 649 ended with reward: 535.0\n",
      "Episode 650 ended with reward: 555.0\n",
      "Episode 651 ended with reward: 500.0\n",
      "Episode 652 ended with reward: 525.0\n",
      "Episode 653 ended with reward: 435.0\n",
      "Episode 654 ended with reward: 500.0\n",
      "Episode 655 ended with reward: 355.0\n",
      "Episode 656 ended with reward: 545.0\n",
      "Episode 657 ended with reward: 750.0\n",
      "Episode 658 ended with reward: 745.0\n",
      "Episode 659 ended with reward: 220.0\n",
      "Episode 660 ended with reward: 500.0\n",
      "Episode 661 ended with reward: 480.0\n",
      "Episode 662 ended with reward: 470.0\n",
      "Episode 663 ended with reward: 100.0\n",
      "Episode 664 ended with reward: 370.0\n",
      "Episode 665 ended with reward: 390.0\n",
      "Episode 666 ended with reward: 500.0\n",
      "Episode 667 ended with reward: 365.0\n",
      "Episode 668 ended with reward: 465.0\n",
      "Episode 669 ended with reward: 495.0\n",
      "Episode 670 ended with reward: 745.0\n",
      "Episode 671 ended with reward: 515.0\n",
      "Episode 672 ended with reward: 745.0\n",
      "Episode 673 ended with reward: 510.0\n",
      "Episode 674 ended with reward: 745.0\n",
      "Episode 675 ended with reward: 760.0\n",
      "Episode 676 ended with reward: 705.0\n",
      "Episode 677 ended with reward: 605.0\n",
      "Episode 678 ended with reward: 715.0\n",
      "Episode 679 ended with reward: 735.0\n",
      "Episode 680 ended with reward: 700.0\n",
      "Episode 681 ended with reward: 390.0\n",
      "Episode 682 ended with reward: 630.0\n",
      "Episode 683 ended with reward: 690.0\n",
      "Episode 684 ended with reward: 735.0\n",
      "Episode 685 ended with reward: 255.0\n",
      "Episode 686 ended with reward: 425.0\n",
      "Episode 687 ended with reward: 185.0\n",
      "Episode 688 ended with reward: 500.0\n",
      "Episode 689 ended with reward: 370.0\n",
      "Episode 690 ended with reward: 465.0\n",
      "Episode 691 ended with reward: 515.0\n",
      "Episode 692 ended with reward: 750.0\n",
      "Episode 693 ended with reward: 500.0\n",
      "Episode 694 ended with reward: 425.0\n",
      "Episode 695 ended with reward: 500.0\n",
      "Episode 696 ended with reward: 470.0\n",
      "Episode 697 ended with reward: 465.0\n",
      "Episode 698 ended with reward: 610.0\n",
      "Episode 699 ended with reward: 470.0\n",
      "Episode 700 ended with reward: 650.0\n",
      "Episode 701 ended with reward: 440.0\n",
      "Episode 702 ended with reward: 465.0\n",
      "Episode 703 ended with reward: 520.0\n",
      "Episode 704 ended with reward: 675.0\n",
      "Episode 705 ended with reward: 690.0\n",
      "Episode 706 ended with reward: 450.0\n",
      "Episode 707 ended with reward: 550.0\n",
      "Episode 708 ended with reward: 410.0\n",
      "Episode 709 ended with reward: 640.0\n",
      "Episode 710 ended with reward: 780.0\n",
      "Episode 711 ended with reward: 630.0\n",
      "Episode 712 ended with reward: 140.0\n",
      "Episode 713 ended with reward: 640.0\n",
      "Episode 714 ended with reward: 730.0\n",
      "Episode 715 ended with reward: 430.0\n",
      "Episode 716 ended with reward: 425.0\n",
      "Episode 717 ended with reward: 500.0\n",
      "Episode 718 ended with reward: 710.0\n",
      "Episode 719 ended with reward: 370.0\n",
      "Episode 720 ended with reward: 470.0\n",
      "Episode 721 ended with reward: 395.0\n",
      "Episode 722 ended with reward: 480.0\n",
      "Episode 723 ended with reward: 445.0\n",
      "Episode 724 ended with reward: 640.0\n",
      "Episode 725 ended with reward: 515.0\n",
      "Episode 726 ended with reward: 280.0\n",
      "Episode 727 ended with reward: 560.0\n",
      "Episode 728 ended with reward: 515.0\n",
      "Episode 729 ended with reward: 730.0\n",
      "Episode 730 ended with reward: 685.0\n",
      "Episode 731 ended with reward: 480.0\n",
      "Episode 732 ended with reward: 505.0\n",
      "Episode 733 ended with reward: 185.0\n",
      "Episode 734 ended with reward: 675.0\n",
      "Episode 735 ended with reward: 330.0\n",
      "Episode 736 ended with reward: 400.0\n",
      "Episode 737 ended with reward: 405.0\n",
      "Episode 738 ended with reward: 490.0\n",
      "Episode 739 ended with reward: 60.0\n",
      "Episode 740 ended with reward: 465.0\n",
      "Episode 741 ended with reward: 670.0\n",
      "Episode 742 ended with reward: 550.0\n",
      "Episode 743 ended with reward: 710.0\n",
      "Episode 744 ended with reward: 220.0\n",
      "Episode 745 ended with reward: 560.0\n",
      "Episode 746 ended with reward: 520.0\n",
      "Episode 747 ended with reward: 320.0\n",
      "Episode 748 ended with reward: 540.0\n",
      "Episode 749 ended with reward: 485.0\n",
      "Episode 750 ended with reward: 230.0\n",
      "Episode 751 ended with reward: 585.0\n",
      "Episode 752 ended with reward: 655.0\n",
      "Episode 753 ended with reward: 740.0\n",
      "Episode 754 ended with reward: 395.0\n",
      "Episode 755 ended with reward: 440.0\n",
      "Episode 756 ended with reward: 730.0\n",
      "Episode 757 ended with reward: 790.0\n",
      "Episode 758 ended with reward: 715.0\n",
      "Episode 759 ended with reward: 390.0\n",
      "Episode 760 ended with reward: 735.0\n",
      "Episode 761 ended with reward: 485.0\n",
      "Episode 762 ended with reward: 290.0\n",
      "Episode 763 ended with reward: 445.0\n",
      "Episode 764 ended with reward: 555.0\n",
      "Episode 765 ended with reward: 445.0\n",
      "Episode 766 ended with reward: 345.0\n",
      "Episode 767 ended with reward: 440.0\n",
      "Episode 768 ended with reward: 515.0\n",
      "Episode 769 ended with reward: 500.0\n",
      "Episode 770 ended with reward: 515.0\n",
      "Episode 771 ended with reward: 500.0\n",
      "Episode 772 ended with reward: 595.0\n",
      "Episode 773 ended with reward: 485.0\n",
      "Episode 774 ended with reward: 680.0\n",
      "Episode 775 ended with reward: 455.0\n",
      "Episode 776 ended with reward: 505.0\n",
      "Episode 777 ended with reward: 490.0\n",
      "Episode 778 ended with reward: 500.0\n",
      "Episode 779 ended with reward: 475.0\n",
      "Episode 780 ended with reward: 470.0\n",
      "Episode 781 ended with reward: 470.0\n"
     ]
    }
   ],
   "source": [
    "env=RoverGridEnv()\n",
    "input_dim=env.observation_space.shape[0]\n",
    "n_actions=env.action_space.n\n",
    "actor_critic=ActorCritic(input_dim,\n",
    "                           n_actions)\n",
    "optimizer=optim.Adam(actor_critic.parameters(),\n",
    "                       lr=1e-3)\n",
    "episode_rwds_ppo=train_ppo(env,\n",
    "                             actor_critic,\n",
    "                             optimizer,\n",
    "                             total_timesteps=50000)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHHCAYAAACr0swBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/F0lEQVR4nOydd3gU1frHv7Mlm0ISQgmh996LYOhICQT1YsEfigJexCuiUqxYwcZVEbGj1yuWa+8NgdAUJFTpvfeETkJCks3u/P7Y7O6ZmTNts5vdJO/neXjIzpw5c86ZM+e8877veY8giqIIgiAIgiAIQoIl3AUgCIIgCIKIREhIIgiCIAiC4EBCEkEQBEEQBAcSkgiCIAiCIDiQkEQQBEEQBMGBhCSCIAiCIAgOJCQRBEEQBEFwICGJIAiCIAiCAwlJBEEQBEEQHEhIIohKxIoVKyAIAlasWBHuokQEgiBgxowZ4S5GRDJu3Dg0atSoTO9J/ZOINEhIIogQIwiCoX9GJoYXX3wRP/74Y8jL/NFHH0nKZrPZULduXYwbNw4nTpwI+f3LG/L2io6ORosWLXDfffchOzs75PefMWOGZt/KysoKeRkIoiJiC3cBCKKi8+mnn0p+f/LJJ8jIyFAcb926tW5eL774Im6++WaMGDEimEVU5dlnn0Xjxo1RUFCANWvW4KOPPsKqVauwfft2REdHl0kZyhNse61atQrvvvsuFixYgO3btyM2Njbk93/33XdRpUoVxfGqVauazus///kP3G53EEpFEOUXEpIIIsTcfvvtkt9r1qxBRkaG4ngkMmzYMHTr1g0AcNddd6FGjRp46aWX8PPPP+OWW24Jc+n0ycvLQ1xcXJndT95e1atXx5w5c/DTTz/h1ltvLVXe+fn5uoLWzTffjBo1apTqPl7sdntQ8iGI8gyZ2wgiAsjLy8ODDz6I+vXrw+FwoGXLlpg9ezZEUfSlEQQBeXl5+Pjjj31mlHHjxgEAjhw5gnvvvRctW7ZETEwMqlevjpEjR+Lw4cNBLWefPn0AAAcOHJAc3717N26++WZUq1YN0dHR6NatG37++Wff+YsXL8JqteKNN97wHTt79iwsFguqV68uqefEiRORkpLi+71y5UqMHDkSDRo0gMPhQP369TF16lRcuXJFUoZx48ahSpUqOHDgANLT0xEfH4/Ro0cDAAoLCzF16lTUrFkT8fHxuP7663H8+HFF/XJzczFlyhQ0atQIDocDycnJGDx4MP7++++A2uuaa64BABw6dMh37H//+x+6du2KmJgYVKtWDaNGjcKxY8ck1/Xv3x/t2rXDxo0b0bdvX8TGxuLxxx8PqAwsXp+fr776Co8//jhSUlIQFxeH66+/XlEGnk/Sl19+ia5duyI+Ph4JCQlo3749Xn/9dUmagwcPYuTIkahWrRpiY2Nx9dVX47ffflOU5fjx4xgxYgTi4uKQnJyMqVOnorCwkFvutWvXYujQoUhMTERsbCz69euHv/76q3SNQRAGIE0SQYQZURRx/fXXY/ny5Rg/fjw6deqERYsW4eGHH8aJEyfw2muvAfCY7e666y50794dd999NwCgadOmAID169dj9erVGDVqFOrVq4fDhw/j3XffRf/+/bFz586gmXq8QldSUpLv2I4dO9CrVy/UrVsXjz32GOLi4vD1119jxIgR+O6773DDDTegatWqaNeuHf7880888MADAIBVq1ZBEAScP38eO3fuRNu2bQF4hCKvMAYA33zzDfLz8zFx4kRUr14d69atw5tvvonjx4/jm2++kZSvuLgYaWlp6N27N2bPnu2r91133YX//e9/uO2229CzZ08sW7YMw4cPV9Tvnnvuwbfffov77rsPbdq0wblz57Bq1Srs2rULXbp0Md1eXmGyevXqAIAXXngBTz31FG655RbcddddOHPmDN5880307dsXmzZtkpjFzp07h2HDhmHUqFG4/fbbUatWLd37nT9/XnHMZrMpzG0vvPACBEHAo48+itOnT2Pu3LkYNGgQNm/ejJiYGG7eGRkZuPXWWzFw4EC89NJLAIBdu3bhr7/+wuTJkwEA2dnZ6NmzJ/Lz8/HAAw+gevXq+Pjjj3H99dfj22+/xQ033AAAuHLlCgYOHIijR4/igQceQJ06dfDpp59i2bJlivsuW7YMw4YNQ9euXfHMM8/AYrFg/vz5uOaaa7By5Up0795dt10IImBEgiDKlEmTJonsq/fjjz+KAMTnn39eku7mm28WBUEQ9+/f7zsWFxcnjh07VpFnfn6+4lhmZqYIQPzkk098x5YvXy4CEJcvX65Zxvnz54sAxCVLlohnzpwRjx07Jn777bdizZo1RYfDIR47dsyXduDAgWL79u3FgoIC3zG32y327NlTbN68uaTetWrV8v2eNm2a2LdvXzE5OVl89913RVEUxXPnzomCIIivv/66Zt1mzZolCoIgHjlyxHds7NixIgDxsccek6TdvHmzCEC89957Jcdvu+02EYD4zDPP+I4lJiaKkyZN0mwbHrz2+vLLL8Xq1auLMTEx4vHjx8XDhw+LVqtVfOGFFyTXbtu2TbTZbJLj/fr1EwGI8+bNM3T/Z555RgTA/deyZUtfOu/zr1u3rpiTk+M7/vXXX4sAJO0+duxYsWHDhr7fkydPFhMSEsTi4mLVckyZMkUEIK5cudJ3LDc3V2zcuLHYqFEj0eVyiaIoinPnzhUBiF9//bUvXV5entisWTNJ/3S73WLz5s3FtLQ00e12+9Lm5+eLjRs3FgcPHmyofQgiUMjcRhBhZsGCBbBarT4Ni5cHH3wQoiji999/182D/fp3Op04d+4cmjVrhqpVqwZsKgKAQYMGoWbNmqhfvz5uvvlmxMXF4eeff0a9evUAeDQXy5Ytwy233ILc3FycPXsWZ8+exblz55CWloZ9+/b5VsP16dMH2dnZ2LNnDwCPxqhv377o06cPVq5cCcCjXRJFUaJJYuuWl5eHs2fPomfPnhBFEZs2bVKUeeLEiZLfCxYsAABF+06ZMkVxbdWqVbF27VqcPHnSbFMBkLbXqFGjUKVKFfzwww+oW7cuvv/+e7jdbtxyyy2+djp79ixSUlLQvHlzLF++XJKXw+HAnXfeaer+3333HTIyMiT/5s+fr0g3ZswYxMfH+37ffPPNqF27tq+teFStWhV5eXnIyMhQTbNgwQJ0794dvXv39h2rUqUK7r77bhw+fBg7d+70patduzZuvvlmX7rY2FifhtTL5s2bsW/fPtx22204d+6cr83y8vIwcOBA/Pnnn+RcToQUMrcRRJg5cuQI6tSpI5m0AP9qtyNHjujmceXKFcyaNQvz58/HiRMnJD4+ly5dCrhsb7/9Nlq0aIFLly7hww8/xJ9//gmHw+E7v3//foiiiKeeegpPPfUUN4/Tp0+jbt26PsFn5cqVqFevHjZt2oTnn38eNWvWxOzZs33nEhIS0LFjR9/1R48exdNPP42ff/4ZFy5ckOQtr5vNZvMJcF6OHDkCi8XiM016admypaKsL7/8MsaOHYv69euja9euSE9Px5gxY9CkSRO9pgLgby+bzYZatWqhZcuWsFg836L79u2DKIpo3rw591q5o3TdunURFRVl6L5e+vbta8hxW14GQRDQrFkzTR+2e++9F19//TWGDRuGunXrYsiQIbjlllswdOhQX5ojR46gR48eimvZvtyuXTscOXIEzZo1gyAIknTyZ7Jv3z4AwNixY1XLdenSJYn5lyCCCQlJBFEBuP/++zF//nxMmTIFqampSExMhCAIGDVqVKm+tLt37+5brTVixAj07t0bt912G/bs2YMqVar48n7ooYeQlpbGzaNZs2YAgDp16qBx48b4888/0ahRI4iiiNTUVNSsWROTJ0/GkSNHsHLlSvTs2dMnWLhcLgwePBjnz5/Ho48+ilatWiEuLg4nTpzAuHHjFHVzOBy+awPhlltuQZ8+ffDDDz9g8eLFeOWVV/DSSy/h+++/x7Bhw0y1lxy32w1BEPD777/DarUqzsuX7qv5BoWL5ORkbN68GYsWLcLvv/+O33//HfPnz8eYMWPw8ccfh+Se3uf7yiuvoFOnTtw0vJAHBBEsSEgiiDDTsGFDLFmyBLm5uRJt0u7du33nvci/vL18++23GDt2LF599VXfsYKCAly8eDFo5bRarZg1axYGDBiAt956C4899phPw2K32zFo0CDdPPr06YM///wTjRs3RqdOnRAfH4+OHTsiMTERCxcuxN9//42ZM2f60m/btg179+7Fxx9/jDFjxviOa5l85DRs2BButxsHDhyQaCq8Zj85tWvXxr333ot7770Xp0+fRpcuXfDCCy8YEpK0aNq0KURRROPGjdGiRYtS5VVavBoaL6IoYv/+/ejQoYPmdVFRUbjuuutw3XXXwe12495778V7772Hp556Cs2aNUPDhg257Srvyw0bNsT27dshiqKkT8uv9Wr/EhISDPUvggg25JNEEGEmPT0dLpcLb731luT4a6+9BkEQJJNzXFwcV/CxWq0SExsAvPnmm3C5XEEta//+/dG9e3fMnTsXBQUFSE5ORv/+/fHee+/h1KlTivRnzpyR/O7Tpw8OHz6Mr776ymd+s1gs6NmzJ+bMmQOn0ynxR/JqXNi6iaKoWHauhbf92PADADB37lzJb5fLpTDfJScno06dOqpL081w4403wmq1YubMmYpnJYoizp07V+p7GOWTTz5Bbm6u7/e3336LU6dOaQqC8vJZLBafUOVtn/T0dKxbtw6ZmZm+dHl5eXj//ffRqFEjtGnTxpfu5MmT+Pbbb33p8vPz8f7770vu0bVrVzRt2hSzZ8/G5cuXFWWS9y+CCDakSSKIMHPddddhwIABeOKJJ3D48GF07NgRixcvxk8//YQpU6ZIfGm6du2KJUuWYM6cOT7zVY8ePXDttdfi008/RWJiItq0aYPMzEwsWbLEt/Q8mDz88MMYOXIkPvroI9xzzz14++230bt3b7Rv3x4TJkxAkyZNkJ2djczMTBw/fhxbtmzxXesVgPbs2YMXX3zRd7xv3774/fff4XA4cNVVV/mOt2rVCk2bNsVDDz2EEydOICEhAd99953CN0mLTp064dZbb8U777yDS5cuoWfPnli6dCn2798vSZebm4t69erh5ptvRseOHVGlShUsWbIE69evl2joAqVp06Z4/vnnMX36dBw+fBgjRoxAfHw8Dh06hB9++AF33303HnrooVLd49tvv+WanwYPHiwJIVCtWjX07t0bd955J7KzszF37lw0a9YMEyZMUM37rrvuwvnz53HNNdegXr16OHLkCN5880106tTJ53P02GOP4YsvvsCwYcPwwAMPoFq1avj4449x6NAhfPfddz5T6IQJE/DWW29hzJgx2LhxI2rXro1PP/1UEarCYrHggw8+wLBhw9C2bVvceeedqFu3Lk6cOIHly5cjISEBv/zyS6najCA0CcOKOoKo1MhDAIiiZ5n01KlTxTp16oh2u11s3ry5+Morr0iWPYuiKO7evVvs27evGBMTIwLwhQO4cOGCeOedd4o1atQQq1SpIqalpYm7d+8WGzZsKAkZYDYEwPr16xXnXC6X2LRpU7Fp06a+5eAHDhwQx4wZI6akpIh2u12sW7eueO2114rffvut4vrk5GQRgJidne07tmrVKhGA2KdPH0X6nTt3ioMGDRKrVKki1qhRQ5wwYYK4ZcsWEYA4f/58X7qxY8eKcXFx3PpcuXJFfOCBB8Tq1auLcXFx4nXXXSceO3ZMEgKgsLBQfPjhh8WOHTuK8fHxYlxcnNixY0fxnXfe0WwrvfaS891334m9e/cW4+LixLi4OLFVq1bipEmTxD179vjS9OvXT2zbtq1uXl60QgCwz9v7/L/44gtx+vTpYnJyshgTEyMOHz5cEk5BFJUhAL799ltxyJAhYnJyshgVFSU2aNBA/Ne//iWeOnVKct2BAwfEm2++WaxataoYHR0tdu/eXfz1118VZT5y5Ih4/fXXi7GxsWKNGjXEyZMniwsXLuT2z02bNok33nijWL16ddHhcIgNGzYUb7nlFnHp0qWG24ggAkEQRZnelyAIgqiQrFixAgMGDMA333wjWX5PEAQf8kkiCIIgCILgQEISQRAEQRAEBxKSCIIgCIIgOJBPEkEQBEEQBAfSJBEEQRAEQXAgIYkgCIIgCIIDBZM0idvtxsmTJxEfH6+6RQRBEARBEJGFKIrIzc1FnTp1DO/xSEKSSU6ePIn69euHuxgEQRAEQQTAsWPHUK9ePUNpSUgyiXcD0mPHjiEhISGoeTudTixevBhDhgyB3W4Pat6RRGWoZ2WoI0D1rGhQPSsOlaGOgLl65uTkoH79+pKNxPUgIckkXhNbQkJCSISk2NhYJCQkVPhOXdHrWRnqCFA9KxpUz4pDZagjEFg9zbjKkOM2QRAEQRAEBxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIgCIIgCA4kJBEEQRAEQXAgIYkgCIIgCIJDuRGSXC4XnnrqKTRu3BgxMTFo2rQpnnvuObD784qiiKeffhq1a9dGTEwMBg0ahH379knyOX/+PEaPHo2EhARUrVoV48ePx+XLl8u6OgRBEARBRDjlRkh66aWX8O677+Ktt97Crl278NJLL+Hll1/Gm2++6Uvz8ssv44033sC8efOwdu1axMXFIS0tDQUFBb40o0ePxo4dO5CRkYFff/0Vf/75J+6+++5wVIkgCIIgiAim3ASTXL16Nf7xj39g+PDhAIBGjRrhiy++wLp16wB4tEhz587Fk08+iX/84x8AgE8++QS1atXCjz/+iFGjRmHXrl1YuHAh1q9fj27dugEA3nzzTaSnp2P27NmoU6dOeCpHEARBEETEUW6EpJ49e+L999/H3r170aJFC2zZsgWrVq3CnDlzAACHDh1CVlYWBg0a5LsmMTERPXr0QGZmJkaNGoXMzExUrVrVJyABwKBBg2CxWLB27VrccMMNivsWFhaisLDQ9zsnJweAJ8qn0+kMah29+QU730ijMtSzMtQRoHpWNKieFYfKUEfAXD0DaYtyIyQ99thjyMnJQatWrWC1WuFyufDCCy9g9OjRAICsrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI2NLXW9eGRkZIQk30ijMtSzMtQRoHpWNKieFYfKUEfAWD3z8/NN51tuhKSvv/4an332GT7//HO0bdsWmzdvxpQpU1CnTh2MHTs2ZPedPn06pk2b5vvt3SBvyJAhIdm7LSMjA4MHD67we+1U9HpWhjoCVM+KBtWz4lAZ6giYq6fXEmSGciMkPfzww3jssccwatQoAED79u1x5MgRzJo1C2PHjkVKSgoAIDs7G7Vr1/Zdl52djU6dOgEAUlJScPr0aUm+xcXFOH/+vO96OQ6HAw6HQ3HcbreHrOOFMu9IojLUk62jyy2i2O2Gw2YNc6mCT2V4lgDVs6JRGepZGeoIGKtnIO1Qbla35efnw2KRFtdqtcLtdgMAGjdujJSUFCxdutR3PicnB2vXrkVqaioAIDU1FRcvXsTGjRt9aZYtWwa3240ePXqUQS2Iyszg1/5Al2czUOB0hbsoBEEQhAHKjSbpuuuuwwsvvIAGDRqgbdu22LRpE+bMmYN//vOfAABBEDBlyhQ8//zzaN68ORo3boynnnoKderUwYgRIwAArVu3xtChQzFhwgTMmzcPTqcT9913H0aNGkUr24iQc/BMHgBgT1YuOtavGt7CEARBELqUGyHpzTffxFNPPYV7770Xp0+fRp06dfCvf/0LTz/9tC/NI488gry8PNx99924ePEievfujYULFyI6OtqX5rPPPsN9992HgQMHwmKx4KabbsIbb7wRjioRYeaPvWfwzYZjeH5EO1SNjSqz+1oEoczuRRAEQQROuRGS4uPjMXfuXMydO1c1jSAIePbZZ/Hss8+qpqlWrRo+//zzEJSQKG+M/dATY6uKw4Z/39QhpPdiI8OTjEQQBFE+KDc+SQQRKk5dKtBPVEpcbhKSCIIgyhskJBGVnrIQWhgZCQJISiIIgigPkJBEECGg2OUGY2GDm8xtBEEQ5Q4SkggiyFwuLEaf2X9i/l7/68UKSeS4TRAEUT4gIYkoV3ySeRg3v7sal65E7n5EC7dn4ezlImw5zwpJ/vMkIxFEZPL4D9tw/xebJAstiMoNCUlEueLpn3Zgw5EL+M+fB4OWZ7BlFrdbOcCyjtsWEpIIIuIodrnx+dqj+GXLSRw+Z36PL6JiQkISUS7JL4rcqNUuzleo9MuUpCSCiDTYb5tilzt8BSEiChKSCCLIFOtokgiCiDxYv0F6XQkvJCQR5ZJg+vUIQXYSkpvbzl4u5ApORMXgcmEx8gqLw10MIkCKit24kFekuhqVqNyUm4jbROVCFEXDwouZtDyCbfxitUY7TuZgxLtr0LhGHJOCBuCKgtPlRrtnFgEA9r8wDDYrfXeWN655dQWOX7iCZQ/28x0jzS/hhd5oIuKY98cBXPXCUhw5l6eaxivYvL18P7q/uBTHzkeOoyX7Ffr1xuMAgENn/XWhj9SKw/m8It/fuQWkTSqPHL9wBQDw594zvmP0jhJeSEgiIo5//74bZy8X4sUFu3TTvrJoD87kFuKVRXvKoGTGYL9CeR+kNP6WDfuyczHq/UysPXgu3EUhygFuMrcRHEhIIiIWM+NUaYa0YMctYle38eKt0PhbNkz4ZAPWHDyP/3t/TbiLQpQDpI7b9JISHkhIIioEkRT8zeXS0yRFTlkrMlk56hsXZ+zMxsYj50t9jwjqdkQpodVtBA8SkoiIZdOxi+UyXolL54uUJtayQW0j4WPn8zHhkw246d1MLNmZHbSVaZGifShwuvD30QvcoKaEOmRuI3iQkERELGdyC/HKYr6vkdxEFklDGjs58cZaGn/Dy4mLV3x/3/XJBjz14/aA82K1gpJJ1i3icpjCAtz3+Sbc+M5qvPvHgbDcv7zCvpfOcvhxRoQGEpKIiOa9P4K3/Yg6wXVK0vVJiiiRruJi1Ndsya7sgO8hddL3/33Hh2vR7plFOH6h7Fddeusz/6/DZX7v8gz7/CgEAOGFhCSiXKKIi2RwTBNFEXd9vB7//Gh98AtVAvsRyvVJKsPxd8Ph8+j172XI2Bm4IKDG4bN5uGbOSvyVHZnbrBgtVU5BccCaA7fkWfsf7F/7PSvqft5yMqB8ibKH1QDrBX8VRRETPtmAMR+uiyh/SJaV+85i5t9WrDlYet87PaZ+tRk3v7u6QmrgSEgiKhUX851Ysus0lu0+zT3/zE/b8dayfaW6h4uZOc36JC3dlY27P9kgib9TGm77z1qcuHgFEz7ZEJT8WJ76aTuOXbiCrw9ag553WaMVk0sLl46zr9wv6oXfdmL2oj1YuD0L//p0Ay7lOzXzv5BXhH99uiEgIZc2UjaHdO82bcHncmExMnZm48+9ZzQXCISTf37yN84XCrhjfvDffTk/bDqBDUcuYPWBihdug4QkokJg1ITF23zWy77sXHyceQSzF++VHC8sdmFOxl5sOnrB2D2YjymuT5JGWcd/vAGLd2bj37/rx4gyQhFTmCPn8vDKIk8MKh6ncwrw8sLdhgNzFjhDs8lwboETsxftwZ6sXMW583lFeGXRbklwTjXk2saL+UWYvWgPDp5RXnvyYmATnWRFFEdKYgWVrEsF+M/KQ3hr+X7c87+NWLQjG68t2au4hmX24j1YtCM7ICE32KEtyiMfrjqExTuyDKVln+UbS/dpOr6z5jhLkBpaFEW8s2I/Vu47o5+4hDO5habeWR7bT1zCnMV7cCUIm4afZPz9KgokJBERTbAHep5mx3uPAqdfoGBV6B+vPow3lu7DDe+sNn2PQB23s3P4gkxpuPGd1Xh7+QFM+3oL9/y9n/2Nd1YcwG0fGIsrFCq3jRcX7MZby/cjbe6finOPfLsFby8/gH+8tUo3H3nXeeqnHXhr+X48/sM2RdpAq+JW8Uny4p1Aj53Pxw+bTijOqwmsXs7kBt4PgjV5l1e2Hb+EZ3/dibs/3cg9f9kJ/LzllO83+85vO3EJCzWEq6W7/JroYLXz0l2n8fLCPbjjv+sMX/PAF5vwzooDuOW9zIDve+2bq/DGsv14M0ANOttupy5FplatNNDebUREoyZQBDosGXUfcLlF2Kyeu/A0D3rXeuGa20zlFjzOlZjwNhzm+yhsOOLRlB07b+xrMFTOrVuOXVQ9t+6Qp+w5RrYAkXWSv4+oawID9SvRNbeVlKHPy8u51+vtOViaCbhyi0hAto4Z7P3dVhzZ4BeY5c9Pzel+58kcPPiN/0ND3ncOn81DzXgH4hzmptdAnPzXHPKYt4IhnOw6lRPQdew4kHWJNEkEUa4xGv+Enfyi7eZ8bthriziOjEYm5GCLHw6b/1UP1pdvpMeSkddSq90DrQk7QfCERj0hyHu2sNjFLZ+VHIsCRu+ZHrksbVt5f/a+J0XF0nd432mpGZh97LtO5aD/7BXo98oKU2UF9PsKj0h4BdnxLisEGvBwQ0ISUT4JcO7gTmScdOyqJVbAMAJrglm6W+lfYGRcC/aKGfarNljTbqiEJK25ojR31Lw2wIzZJuA9Mz0ZRxA8pri2Ty/imgFLI88GMulWJMz2T3lqq0XApqMX0OLJ3zGHiddms0jHA1ZI8C4I0TOjcu8fZokn0P7CjqnOYlrdRhARidHxhZeONzYUM1KSw6QmSX/5sKnsgkKcw1+HYM2dkb7aVz7oa02agcaukmiSeP5uOtdbBAH/WXkQxW4RX6w7xj0fKLxLC5wujP9oPWb+skNy/N+/78b/vZep0JqUZ8wKHXJHbYsg4NlfdwIA3li233dcrt1jr7NVQs1fRY8pRT5JRERTFo7b3HTMXBFt939LFLvcsFm1vy30t4MwYG4L8rgTF8VoklQaVRBMbiocCbp+DRShtDSKG2hVJD5JHPnCojNpCtAWqktjbuM95neW78fSEm3HM9e19R2fVxKde9ke4yurIh2zc7d8srdYBG4eckGIHVPsOmODFuVV88e2WzmtgiakSSIqBEYnOaMDJ6tJirb5tTB5BpbJaoUZAIyVNdhRuWOj9DVJZrUWkf4FqfBJ0kgbqJDEW93mNrM8XJBuiKw4XYpJh3fvVfvPal7z2dqj2HupYsx0Zp+pwtwmCNwPHqtV2j7se2C3Voy2MwNb/wj/bgoIEpKIcona5qV68H2SPHlJtiUQ2YnOn9bIZqh6woMxnyQDiXRgNwdmfZLUJm4jLSqKIlbtO4uTF68otHJHzuX5Vp9FAuyXud5SepFJ98feM4a1ZLxNUdm+oy8jCXDyVFDM+UDhXcnKYzwBYM2hC3h7Z/kPDgqY90mSp7dZBG4edplPEptGT8vsZW92ruYqTpZdp3Kw9bixtKUh0J6mZ3Iu75C5jYhotN45NviZ4WCSGgIMa/Zg5y12YjEiJOkNzkZ2Zw+GU3Reob99JJoklfQe4Un7vusPX8Dt/10LAGhcI05yzruiZ9GUvmiZEm+6vL7yaY3WJpqFzWbgqysQZVOf/L1C0YDZK3C5sBivj+qEf3Sqq3sPabgH5TE9TZIgaEd3Lo2Li575ptgtIqoC+9BI45WJivawCiJcosCkkV4vQsRRTpBGeZOxrzNriuPd03t8yGueGGBbnh6CxFg7AH6/d7tFDHt9JQDg76cGo1pclDJRmJGanCuekESaJKLccvWspaav0RKS2EGVNbex24wYMrcFQZMUDApd/rKyvi2qk6eB+XLbiUu+v9UEue1MmnDCVjOnoNhQCIDLJULwCoO+OZKI2yV/s/tX6TWplk+S2y2WzidJ57y3vJHuW6aGmQmZV8Uo2ewnf2/nLtmHXE48Lrm2RGpu82daqOIEf5n50Lp0RXtbGlbLuC9bGYE+EmCF/IqoSSIhiSi36A0wPLQ0NC4VTRI7iQXF3GbEJykIYw27UonNT90nST/P2onRvr8vquw7Vtqil8bEpIUZnySjgoO0z4iKYxZB0OwPgopP0qdrjqDjzMXYcrwUAqdOM3r7td5qzEhkx8lL6PjsYny46pBqGp4Ay6IQkmRp1AI0yptLzXGbFyMNkL43NhUfJm//YwWQUO8RF6j/m97WPOUdEpKIiMboi2smkrbaPdhzEk0SM1BdDopPkoHVbbop9HEy5ZYISSrpjQgnMUw4hECE1LJFWh9twUfU+KWOdCL2/C8ROgRo7owuQOAKKU/9uB25hcUBR0EG9E193n6tt5lrJPL4D9uRW1DsW6LPg/3Q4b2SUTLrq5YDvTRfUfbb/zcr9KiFU2CFJMnKMLYsHAFWL4J4uGDLSJokgogQAv3q0fpqVttOhH3xjWzqqjvWGvLcNpBGB3ZyZuujNnka0SQZ8ZUKqfmGKeOTP25DboG6oKYIAaCRbcCr29h+wtEkiaKoLSQJUoG8NHy38bgk6CH3cXJMyjzH8VA8ww9WHtTU/JjBSF9la8DrtzZZHloO9ADw3h8H8EnmYcVHEDs+sLdRFZKuFGmWi82TXXyRdalso1l/s+EY5mRob8AMSIXGSI+dFgjkuE1UKjTNbSL/Zdfbi01xj2CsbguClMQO0hLlRilCABjRpof0W5LJ/H9rjiI2yobH01tzkyq3JTGUrSLtr1tPoloMf6hk+4nPRCKbNJw6S/yDFUqB3U9MDRdHqONpkoyWKa+wGF9vOIZh7WojhTHFyrmQV4Tnf9sFABjVvT5io0o39ehqydwi/rfmiO8399nLstCr86zfdwMA3r6ti+S43EHci1lNkiTPkkvZvnQmgCje5pA2yMPfbgUADGqdjA71qqpeJV3wQpokgogIgrFc1ZdXSWZuFXObfNIL5B4sZeaTJCmsvibJiHYu0mIjHTlnfPNhzYjbKqf2n87FfZ9vwm3/Xc89z1vdVizT4GlrkoSQmbt4z5nnZFvMKZ/R5/z4D9sw85edmPjZRs10rBOzltCoR26BE+sOndd9/7/ecAybmSX2Rj5ujPpmFbmk2mQ3pw8A6o7bFxkztVq5vOMPW6ZwbfmhZ1bnhQA4demK7gKO7Scu4XxekWaaSIA0SUSFwLAPSQAhANwmv5SC6ZMkiiIu5DsDWvrrVNEkqWEk4q8hM0wp53wzplStuDSKfDQ1SfyTvCXgkuuY9vCaUST9SBQ1t/oQEDrB01v/3AInYuxW2KwWqd9dibDi5Nyfd4zHT5tPAgA2Hb2InAInom1WROnsdVgaU97IeZnYnaW/yuvvIxckv3nCiLx78IRFHoVOaTperCxAXZN0Kd8vGEj91/wl8mmSXPyPtVBx6tIVRNussDPPUM9Xkbd4IXXWMgDAHw/3R8PqcYprDp3Nw7VvrgIAHHgxPaI3ci5XmqQTJ07g9ttvR/Xq1RETE4P27dtjw4YNvvOiKOLpp59G7dq1ERMTg0GDBmHfvn2SPM6fP4/Ro0cjISEBVatWxfjx43H58uWyrgoRJrQcCw1pkgwM8EGJuF2S6KmftqPLcxlYXrKVhBnYL3aJT5LKW2/MJ8l0MUKKXaPQ8sE9EJ8kdt7k1Z191vd9vgmncwoUk4YZn6RgmisEQcCRc3no/dJyX2wryVe/z9wWuCaJpcOMxRgwewX3HNv/SqNJMiIgAcp3kFcd+TM3qtGT+yWqmePlGicvFwyY27zlZ9sqWL5raqzafwaps5ah83MZaPfMIsPXSUy4skbdpqJNOsxogJfuyjZZ0rKl3AhJFy5cQK9evWC32/H7779j586dePXVV5GUlORL8/LLL+ONN97AvHnzsHbtWsTFxSEtLQ0FBf5VAaNHj8aOHTuQkZGBX3/9FX/++SfuvvvucFSJCCJGP041HbdVlgzzJhYtghJxu+T//605CgCYzTjkGoUdpNn2UTe3GfFJMqIFC95Er6d1MBrhWC8vhU9Syf9sjKycIuCaOSvx7xLfFM956ZXLdp+WmbR0fJJkq9smfrYR/3j7L41aGEcA8MzPO3DpihNrDnoioRdLPgSUE7HvnAGtCk+gO3HxCjet2srRUCEvG+/Zy0thVFMjN6NJfZLU03k5cs6vnWSbgi2jt414mr9QUeAM7LlojY9qYyE70pxU6TORQrkRkl566SXUr18f8+fPR/fu3dG4cWMMGTIETZs2BeDpYHPnzsWTTz6Jf/zjH+jQoQM++eQTnDx5Ej/++CMAYNeuXVi4cCE++OAD9OjRA71798abb76JL7/8EidPngxj7QizBBzTg/PSLtiWhd1ZObKXHczf5oSkKzoBJ42tENP+rcXcJXvx8DdbZI7b/gzUI27r561W9lCtaJNP4PK78PbK+v7v4xj/0XrkF0nDNWhrkviTKtsPlp+y4NiFK77NYD3pZPkggNVtTB0X7cg2vF2FEQ6dlfpscTVJHKHFiMBwhdGosM+hsFjZ/4tDONnvzsrBHf9di7+P+k1s8uI/9t02xTOWpzGqPdMSkvTMbUt2ZmMJozlxiSJ2nvSUf9PRi/58Si5l+45WPwqU//x5UDeN3ljLM7d5UXvWLo6wDgAzft6BZ39RD+sQDsqNT9LPP/+MtLQ0jBw5En/88Qfq1q2Le++9FxMmTAAAHDp0CFlZWRg0aJDvmsTERPTo0QOZmZkYNWoUMjMzUbVqVXTr1s2XZtCgQbBYLFi7di1uuOEGxX0LCwtRWOhfVZCT44lb4nQ64XQGN06MN79g5xtpmK2nNx07yLlkA4Youg3lV+Tkxzm6/YO1eDSthe93YZH/+RYxg/6ZnCt47pftuLFzHbSopdx6Y9GObOzRiYxbXFysW1a3rD5utxur9mZj1f5zuH9AU02/j7lLPCbmKGbicskmQr37e88XFrvxxrL96N+iJq5qlASnSvsVMfkVF7sU+ecXFeOt5QdxXYfaaF1be8sS9jkXFBZBEP0BbeRaKgunLtO+5q/y0hJO5WUW3SKcTifyClj/EX96X9+QtYfL5cKVIv81RcXFyC9Ud04V3W7DvjBFRUUSbd9Pm0/i4hUnxqY25AqpgiCClSGX7Twl0fQUFBXB6XSioFDZF64U6o9v+Uz4BYfNCqfL0xYXLhegusyH7grTBlcKi+B02jXzNsOY/67D6dxCrDl4DjtnDAYAFMtMXQt3ZGHXyYtonlwFgOf5yWUip4p5TM4VWXsVOf3vs7PY3x/yC5RtKHdwLypy4p+fb8L5PGm6wqIiOJ1WFBT5jztd2mOc1rltx87jx80nMbFfEyTGeNq+sNiNFxbsUr3Gi954VVgkNR+yaQud/GvZev28+QQKiopxe4/6+Gj1YQDA7T3qon5SrG7ZAHPzSSBza7kRkg4ePIh3330X06ZNw+OPP47169fjgQceQFRUFMaOHYusrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI019hDNkpGREZJ8Iw31ejLdUhSxYMECAN4vP8+5ffsPgFWEZmdn+9JpseWcAEC5h9fZy0XYtHmL71zmmrU4v9szih4+YvHd660Vni+v//51BK+nKgWGyZn6r9T69RuQv19twvZcf/HCpZL6eH7n5Obi9g89/nerth3AgDpuNEtQu4Pnmg17jvjKffbsWd/f+Xl53LYqKrTCq2fynl9xSsAPh614f+VhvJ5ajE1n+O23OGOJ775bt21DldNbJef/yhbw9UEr/rPqMOZcXQytzdIvXWTKsXAR2NX3xcX+cwBw/OgRLFhwiFt/Oa5iF9T0aJs3b4btxCbftSdPncSCBcexPstfX3ZSfe/rBbjkFHDZCbDtsXbTNvxyRYC3rXft2o0rx0XVMh08fASXcgXVcrH8tuB3ibbvoZK+tnn7TrRLUt4j51IOPBYUz0X//ORvyfmVK1fhcBXgcC4U1/65ciV2qq/o9+Rf5L/OIyR77vPboiWoIbv2RJ4/7bIVf6B2wEOnsh1Pl2xe7HT5x4oTJ/3vrJeM5X9iHyOfi7J+fPrseRh5Drv2SceetevW4/I+T+fYfNrfX9Zu2AjnYel77nRJy79q9Wqcz1PWaemy5ageDRxins3ZcxewYMECFLuBv88JaJEgfebKd9p/7rq3MwEAW/ccwu3NPUL5gRxpGjXWrVuHi3vUPzB2X/TXOb+gQDJubdm6FXHZyo+WTcw4vPVEDraeyMHl47t9x75e8AdaJ5nTOBqZN/PztRdi8Cg3QpLb7Ua3bt3w4osvAgA6d+6M7du3Y968eRg7dmzI7jt9+nRMmzbN9zsnJwf169fHkCFDkJCgOksFhNPpREZGBgYPHgy7PXhfWpGGXj0nZy72/S0IAtLT0wF4vlKmrvG8CI0aNwZO+uOgJCfXQnp6Z/2bb8sC9m7lnmrbrj1wwKPq7XrVVejbvAYAYMX324EzSnOst1xqZVcjoX4rpPdtzD3nvT6xaiLS06/2/Y6PjwfyPQsMtl+wYPsFC3Y8M4irUfJeUxwVD8BjbkmqVh245DFHVKlSBenpvRTXvbj9D+Q4CyV12/jbbuDwUd+xK3+fAPbvUFx7zTUDgTV/AADat2+P9G71JOdPrjoMHPQEpktuczV6NK7GrT8A/PfoGhzN82hsBwwchKRYO3Zl5aJx9TjY/l4h2ZOuWdPGSB/aklt/OYLVKlUHMXTs2BHpner4rq1duzbS0zvixKpDwCGPZo69cvY2z9A5vldD4IC/H/5yVDrxNm/REh3qJQI7+Evk69VvgGMHzwFX9P0yBqcNhYN53t6y/nrUil+PKtNXrZqIYpeIrCt8zWaP1J7oVL8qNhy5AGxfrzjXsnZV7nWiKGJXVi4cNiuw0eM/5WQ2iu16dW+0rSMdG7efyAG2rgEApPbqjTa1Axs79d4vb7/99eJm4Lx0scNVPVJxVSOPD6vT6cQzG5dJzscnJgK5+hHO69RvAJw67vvdpWtXDGzl+fjO23gcX5SMIW3bd0R65zooKnZjb/ZltKkdj07H12HzMb8zc/ceVwM7NkBOn3790Kh6HNYeOg9s95yvkpCA9PRUvLPiID5bux9JsXYAfs3I4LSh2JPluY/FInDbKseagPT0ngCA+auPADv0fR27dLsK1WKjULtqNC7lO9GkpnS1WuzeM8CuTQAAmz0K6ekDfPdu3aYt0ns0UORZvOUUsHeb5FiDlu2BXZ62q96kDdJTG+qWDTA3b3otQWYoN0JS7dq10aZNG8mx1q1b47vvvgMApKSkAPBoFGrXru1Lk52djU6dOvnSnD4tfXGKi4tx/vx53/VyHA4HHA6H4rjdbg+ZIBPKvCMJo/X0phHYjUMFqXBgsQjG2kxtaZfsnGCx+PJTs9IE+oxmZ+xDarOa6NowSSOVtD68IghWK+x29Vc4i9l7ipUNrCptZWHUFN7zCTF+s4nVaoPFotQiAYDV5i+HxWJV5B/NBA88m1cMu90OURRxxelSBBZkhRHBYsXi3Wdx3+eb0LFeomLFmoV5TrpofJharNIye58/uwsNz2Xl6AXtrSIEwQJR0/VTMByl2Gq1wW7ntz8Pi8UCu6DhNF7ynERBWT6B8wy9LNqRhX99uhHx0f7nxr4jBS7OuyF5t9Tz1sKIT47vneVphARpX1HuwWa0HPJs/fURmPfDVfIOT/t2E37ZchIPp7VU+HoJKu+TYLF58hSY/Nye+v2x7ywA6So5AHj8x534cfNJPDi4Be4f2Jybr5V5XwqKjVV46tdbkcNs9LvykQGoX82vChQkZRSl45ag8n5y+hzbD4+cv2K6jxiZTwLpd+XGcbtXr17Ys0cq9e7duxcNG3qkzcaNGyMlJQVLl/p3hs/JycHatWuRmpoKAEhNTcXFixexcaP/q27ZsmVwu93o0aNHGdSCMAv7GrPjS6B7BGn5pby80N+/2PE4FPFJFu/km3e9GIqlxEnCOk7mMQ7krBOpmiMm73C03T9EnM8vUt9GQaeN2PPnSgLIPf3TDrR5epFifzLW2dPpFvHlumMAgC3HLyl8b8wsJ9dqU0W1Sn6zzt9GlpHLcYvqG50Cnr5l1GFYuv2F/jUCoBl/xrfBLacNtdr1h79PAAByC/j+aZc5xyVBEQN03M7XWRDBatl47SN/DvJmN+pQLnfcFnUct3/Z4tFCv7vigOIeqhG3fdHbGcftkr/VSvljScwqdmGBHLY/aMXvYsmRPU/5sn5pXDDptWr14y4WYPfIVOlb4aDcCElTp07FmjVr8OKLL2L//v34/PPP8f7772PSpEkAPGaZKVOm4Pnnn8fPP/+Mbdu2YcyYMahTpw5GjBgBwKN5Gjp0KCZMmIB169bhr7/+wn333YdRo0ahTp06YawdYQR2kgt09ZfWxygbWZZ1dDayGs0segOykfrxyqVWVomQpOJ3wQsBwE4I2TkFqsIpOxbyhBF2Yjyf5zHpfVqybcTrS6SxzKQrodyaGgQzK360ZBG1U+zEzBeSdIRDndVtblE0LIS7XOqTEQ9B0N6+Q2t1m5bgxgrOPLybQK87dB4DZq/An3vPSPq7UUd1OXqrRmOZHWt5/VQunAUeAkAeJ4nJU1RPV+RyKwQ1tfep2CVi/l+HMG7+eskxI1gEQTXe1rYTl3Dzu6s9TuABPodY2c7AauFSeL+98NqaLU+g4QhCQbkRkq666ir88MMP+OKLL9CuXTs899xzmDt3LkaPHu1L88gjj+D+++/H3XffjauuugqXL1/GwoULER3t9yL87LPP0KpVKwwcOBDp6eno3bs33n///XBUiTAJO54EuuRcvspLPZ3/71DEJ+ENHqJEUyA9xxWIOFVRG3SdLgOaJM7xy4y96XRuoerkrBYrxgs7Mcq3IsiRbVJbLFn2rK1pCdazUYQAKBGbWCGJdyc9AVovBIDLLRrvkwFokrTSeduVGydJU0jSNvnllvSZO/67FofO5mHMh+tUg7Pq4XaLeOy7rfh0zRFFSAc5rNmW12fkwpm8aQINAaD2XOSammKXW9Ff1YQZtyhipmwpvLf8eo/eE6BUPdGGIxewat9Z1ThOesQ5pOZxrWC73nP5RcW4/4tNWLDtlOe4Tp/jhZEIF+XGJwkArr32Wlx77bWq5wVBwLPPPotnn31WNU21atXw+eefh6J4RIhh3z/5GGB02DX68cQO6kYGz4NnLvu2aDCbvxeJECg/x8mDJxCpzbfsF6zaxM4TkvIL/YPV8QtXVCddiZDEOc8OgOcu6whJslg+WltkfLXhGB5Ka4ma8Uq/QTlmgkl6YSdmnjym1zNcbhHOEt+Pq5tUQ9s6ifjvqkNMniY0SRpmDTW0kmltcKsW8PFMbiG+XH9M855eUwk7Cb/3hz8ejxkNxrLdpz33W38Mv97fWzMtq+Hg9fFdp3KwJzsXd/VpAoeFY24zKKzKtyWRmNuYTOVCklv01z3KakGRy606tvCEBO97oPforRZBd8wqLFZqtYwiHya0tm3yluODlYfwy5aT+GXLSRz+93Bun5+7ZK/v70jSJJUrIYmofLAvpFrQNjMY9WVauD0LqU2r48SFK5KNMtUY+vpKwzZ+QGXndS1NQRDNbWoDqEWyd5QIi0XAZUZI+HnzCaQkxnCvlWTJKQM7ASk0SVekGgKJT5JLP47QlK824bO7rtZMA+hMLiJfk3fFyQqXnMt0upNb9D/X+Gg77LII4W4zPklskEoDnwVuUbvOPp8kHf8Qlvu/+Jt7nOVySRwhm8UfTXzV/rO6efM4l+ePUafrk8SYAXnyzhvL9nvKsu8spgxsGrBPUoHC3CZizcFzSIqNkrR3IafferV2DptHSFJ7XzN2KrchMtpPLILg819Swy2KAW+YKy+HPIo7u+m0N+3Zy4XSazhtwwpGpEkiiABgX0354GLU/GZ0b6zft2fhz71nJM7PWpgRkAC+iUNrEOSaemTpj53PVzWFOF3akz0gFZJcoggLBOQx5rb1hy8AuMC9Vm0ndC/sBHQhn69JOnouH8kJDsmkvf/0Zd3J66/95wB4+sBBWYRpFq0uIoIvrEjMJ5xHrCessz5HNougiBDucpvQJOmYNHn31or6490Owkxf9G5vooX3XYiyWVDMeX/UNDYX84tQ4HQjJdHvHsGWTc/cJvF70hASNhy5UBJzTNo6Rh3K5Zqko+fzfQFMn7rWvwKbNyZ430OH3YrcwmLVZ89zvva9wzoP32IRJP5rPIrdYsCaJJcoQhRFHDqbh4bV4xTjUL9XVvjTlpyT+8bp9flATYGhgIQkotwg0SQF+A6Z2bjTqIAUWDl0zG1yRRJXa+T/e9PRC7jhndVoWJ0fpY8dsNUmEHYcc7lF2K1Sc5sWWs6bHudrVjskPZ9zxYltxy/hurdWoXXtBMkAOuWrzZK0vKdnK1mx81rGXp+2wAjxDhvqVYvFrlM5EEW+lpE9VORSihx6ApzbLfqiw1stAmyyEBRu0bgmyfsM3W7RsJCk5bj9zM87cH3HOtyvermJs9jlNrxPnrecHq2Z9hYlXkRRRO+XlqOo2I21jw9EUknEbla412vrolI6/hr1DZNrOQ4zgjn7nvImem9be53fzYxH3vrrXWHR8UkCPM/I7IedF7cb+HL9MUz/fhtu7FwX3RqpxzzzlkPeDfWepXwT4XBSbhy3icqJmhUnYHNbCJbzB+JEzvOzkWgKZEMh7w5seu8yeXbzTBaJT5LK2MiOY97BjXXc1sKt8mwKi13o98oKfPjXIX+5ZXV3i57YO4DHb0RrAOU9d++yZjMCEgA8O6It6lb1mA9FyDcbLfmfaXnevKvnX+OSaZIcspVhLhPmtgGzV+CDlQfR+bkMzPxFGdBTcW+3vsZp3+nL/L7IPINtxy+h3YxFeHu5sfb19jW1rXN4z3f/6cu4XFiMIpcbnZ/L8Gm5pJsF60/8XgIx13ifE28/QBYtLQd7jq9J8pvbAHPjmFGfKYsg6KbNLyoOeHWbSxR9/kPfbzqh+VyKXW7c9O5qzP/rsDQPnfJFkiaJhCSi3CCNRyI7V/L/j5tO4Pq3VuH4BY+wsGDbKQx7fSX2n/ZEHQ40vpIWRgUJFvbrfcnObKS/vhI7mPgjhkIAMI1wXmbCkuOUmSJ+2HQc17+1SrKXF6t1GDkvE3OX7NU1cfjKoqJJ2nT0omJneN4AXjfJ7+uk9RXJEyjkfj5Gcdisvi9cI5qkwgCEJFH0l9lqsSBGZg41a/J4/rdduHTFqes8DXgETnlMGzlRNgtXk8Q+oxm/7ECB041XFulHZwb8E1yUynPhtdmaQ1Iz3vy/DuF0boFkbzE97YPT5caKPadx7ZsrsTf7sqGysnjjPumt3pNrqdjQGez78u3G41h94KwkrddXyHsPl9vYxtKA5x0WRX0tokUQ8N3G45ppnv5pB5bsUvo9GcHldkuEGPk+miwX8p3YeERpotdajAFEluM2CUlERMOOH0ZCAEz5ajO2Hr+EWQt2AwDu/exv7DqVg7s/8QQQDYUmybt3lBnYAf+uTzZg56kcvPj7bt8xeSl5jrqsYHJRR0hicbmBqV9twdbjl/D0j9t9x1mV+K5TOZi7ZB8uGzS3SXaXZ8rFG/95Y2o1ZkNULVMB75xWwEQtHDaLr3xynyRve0vNbco89L54WZ8jm0VQxBgK1OQRLOxWQXc5tl5cJDneOjnUNEmcZ3jsvFQDahEEvLlUqrnS0w4VFbsxbv56zxYopSDeoe2FIi8H+x7myd6X2/6zVvLbm9SnSXKL3Phkarjcoq7TvsUCz3YmIcLllvplacmuauOS/uo7MrcRhGnMrG6TayO8Dr1GHbfNwBsIbDoT99Ldp5FXWCwL8uhHEbeHU2x2oJFvUaAF23ZnmFUnvKYxqkmSmEJLMtp09AI+X6fcVEzPH8vofbzomUfUiLJZJJokXt9gJ6QCzritpwlifY6sVkGhpQi3kKS2EsorOP2w6ThXE6AF67jNg6u5ks20dqtFoXHU0y4Eqy2rROsJSfJy+TuGXsBLLz5Nko5zvRwjTv5WQQhJAFwvLrcoEWK0TGfn8vhCkp4GNpLMbeS4TZQb2Ndeb7CIslnw594zkmPFLndIthgp4uyBZGWWP6vxyqI9uKVbfd/vZCbWj1s2afPGvL/2n0VijB3VqzhwQWUw4sVMYSepK0UunM4pwMGzeVwhQW/Ztb+8rLnN8/8N76zmpvW2i0VgBbPAn0vgmiSrL/q4CKkGbF/2ZezOypFqktzK++gN9vLVbUpzW+gmMyO43KJqnKRDZ/Mw9SvlDu566Pkk8VfTSdvRIgBxsj399LQLgW53IqeKjiZJLoyxwlse56OC9w56NUkut9e53ljZiw047VsE/ThJpcEtitItojRegUA1SUXFbl8YknBDmiSi3KC1gko+cPy+PQtjPlwnOXbxijMkX1i8F15PkwR4VOJXmK9Q1rfJyNLwp37agcGv/QlAuazeC88vhM32itOFnv9ehlHvr9FcPq+HmrmNh1cYY4Wb0jwW+YoxozgYTRJkq8wOns3D0LkrJc+Hh572wu32CwBWC0+TpJ6/CStMwGTnFHCFj2K3iDMBmJEB+eo2JdxtUGQdILewWCFw6GkXAl3SLicmyvgmwoBUk8T7qOCNBX6fJJFvk1bByJYughAatwIvyq1HtH2S5Hii0OuXL1jPs7SQJokoP0i+XswPAufzikIyePDMFUb8DDz+IP5rpXvHiZLJRM0HyxuYUa1aUTaLYqJn8y1wunSFMb0IvnZBVJjbtFb8FTNCktPgsmYtbAGa2xx2xtwGfp/S22hTb7CXr26TT8BaE0FijB0XTZhRA2H8xxvQs2l1xfFil4gA/eH9oQpU+oC8v4mcMAjy1VCAMj5RqDC7EIAV3vI4iziirBZJGqtF8IVTcLnNmds8ztvaaYxE3C4N8udqdD9Mf3pjW/EUOF26TvRlAQlJRETDChvsq6nQJBnI69zlopCsbpObK6wWwZAWwG61SCZZdnsOuSYp0DGP5zzLjk9GzGlxUVbFTuAsgiDVBLhEUVMD4/PRYRrJrBnUYfNPPEExt4l8IUlP3a+rSRJF33J63uo2rYm/ahkISQCw+sA5xbFitxiwX4hX8FMzRbLvy+mcAlz75ipDix/KypnXIgimBA2JTxKn38uFeJtFgPeQXiwrOcVut4E4SaEVksxokng4XXwTr5xI8UsicxsR0UiX/WubdNgJS75TNVCiSQrJZrXSl9kqCIa+Du1WQTKR5DKCSLHMV8TINhQ8eH4hrCZJz5wEKDe0lCNCHuhTVGw1wuJ9dqxwY8bpNspqwQdju/l+GzFt8nDYLD5Tx65TObjlvUxFGj1Hf13Hbb3VbTqapHDx31WHFSuzjOJ9lk6Orx4gNRm9tmSf4dWhZTVpOl1u7vihBisk8TRJcs1UlNXiE75dbtGUWbXYJer2SU+cpNAJSfK8zX54Fhn0DS0rzaEeJCQR5Qb2XeR9KbEDFE9lfj6vMCSaJLnJxWIx5k/i0ST5B4IciblNumeZ1lz8FLOMXw5PSGKbzkhz6AlJnn3P/D9dblGxaa0keYlTeqBCkly4DPSrmQ0B8OX6Yzh1qUCRxkjkYi3cjIbKwvFJ0tIUJYRRSMoO0B8JAHZn5eLFBbsUe5x5eWPZfox6PxM/bznpCxrppU/zGqr5lpUmyeUWTQlJrPDG08zKxyKbVfBpUQNZ3aYnmFss/j7Xr3bwBQ25kPb2cuUWKlo4XW5DgTHV+k9ZQ+Y2otzAaivk6lpRFCWOz7yvrXN5RSEJASB/4S2CYEiFLje3sUUrdknNbVqrqD5dc0T1nFpAPzPE6UwYbigdt3M4vggsn2QelvgrmIn+a7dZ0LRmFd/vQB08HXarru9Yac0WeqvbtEiIDp+QVFre//Og5vk1B89jzcHzaFGriuR44xpxWLnvLPeasgowWOwSS1bWGRMU9Ry35SEq7FaL7wPB7TZpbnMptxOpGis1y3rMbSWm6BA4/5f2Q7PYqLmNNEkEYQ49TRI7QPF24L6Y7ywbnySDg57NIqgKB4XFbkm+gcaACTQaNYuuJglKc1uujsPzjF92SoRCc5okCxpWj8Mz17UxfS1LlNWi+xVvdCsINTxxktRXt2kRqEN6eUKuvWtRKx4pCdHctGbNbfWrxegn4uB0u02tcLsiEZKU/V6+5x0rJBWbXN3mdCk1Sbd1b4Bh7VJ8vy2C4BvnbAbyHpva0Pd3dSaoqxql/dBctf+sITN/kSsyNEkkJBHlBomQxBF2WE0SO3F6VfhFLrem2cos+UWeYJByk4zFqOO2zaKqBSlyuSXmhUBVz8EIMxIbpeOTJEq1YC5R9G0LYxQz2iB7SaV6NSt5rgELkPrPqbSapLxCl08DYjMpJBkVtsszcmHaZhHQv2VNbtpCk5ue1k/ib/ash1+TpKReklLwYjVcctO7zSIoPlTsVkGiSTLTx3ILnMiX+T3F2K0Y0CrZ9zuvsJhZHKGfdxojYLWoFa+bnhfb66Yu9XSv8/LQN1tUtYWS+6j4tJU1JCQREY10dZt6nCSA/xV3Z69GuLqJZ4mzy2Vs6alROj2bgWGv/6mIXWK1CDDkui1q70fFCn2BKsCCEYwtzqE9scsdt/+35iie+kl/A1YWM1oCb5/wmhKNCknt6iYo8tHXJJVuoP5j7xn8vOUkAE+/UFuJxzOLRkIgvbLGYhFUNWhmNUlm/IpYnC51TdLwDrVN5WW1CIiSr26zWnwmNjZEhBbejZj/7/01yJOZ9KLtVkk/3nf6sm+jayOKZPb9aZZcRSOlB7kfmdHrzBIpcZJISCIihr+PXkCvfy9TPe/WMbfxJkubRfCtfvpqwzF8vUF740czFBW7ceBMntJxWzDmuF1Y7Nb0xZHvAxUIZvwd1HDYLPjf+B6SY1c3qYakWI/PjIjSLzk245PkXfHodUo3OpgG0hbBXA2ptQrPwdkfLVSapEGtawUln/4ta6J5chXUSnDoJzYIT/PixazjdoyGBlSrzMUqjtt2q4CuDZJMlcHlFhUCF2tuc7m1A0R2b1wN/+zVGA2rq2vF+rWsqepbp2exHd6hNno3q4Grm1TDuJ6NDO3T5xXAWGpU4ZvpEmPsaFozTjdPHk4KAUAQUu75dKNix3g2BAD7N29S5m9+agk4jo5R5Mt+XQadMYtc2kLS5cLSx8gJRtWtFgG9m9dAx/pVfce6N66OjGn9fL9LG8n83RXGV8h47+QVkpwGlkUD/ACfeo7buZwl3Xoc/vdwvHxzB8Vxa8nkP5AxjXjhmeGsIfJJ+mBsN/Rqpgwg+fldPfDiiDaG8xnWLgUZ0/rhh3t7Ba1sVk0hydykqbbB7l+PXYOhbdUFRZdb5G5NEm23So5r7Rk4ukcDAMpQHt7rfD5JLrdqDLQXb2iPr/+Viqeva4MejZXPC/B8rGiZyLTe/+s61sHbt3WBzWrBl3enYsb1bQ1pL4+eV0bmV9P+bXlmCJ68Vr9PybW8QORokmh1GxEx6KmdtTRJasEAtb5Mg4U8qqxRX8yiYpfmQKDn/GyEYGiSvHmw46BFkOYdjvGMDW9gZEDljeOhEp95WiCvJumDsd2waEc27vnfRt853hd8KH2SeP3CYbeY85kq2Q6mloqjdSDYLBZVjZvWaicbZ69ENSHGZhE0Y1A5XW7Ec1YWOmxWxEqEJAucKs7FrCZK7k9otfhXv/L67Ru3dkZa21pw2Px59GhSjXufKYNaAFDvx1pytp3TzkbGi6PnlZok3nXeQ0bimLWtnYjtJ3Ikx8K9+bMX0iQREYP+bu7+QXBPdq7iLE/IslnV/UCChTwmkFs0JiUVyVawyeEFpjNLMIQkb/ux7WiR+fME09dLD6/SivXjMSIkcdsiRF2Dt52ct/0EQVCYIKJtHE1SCPstb+Jy2KymQhTYOP1Ci8Y19M0u7JYdcrQWL/B8iNT29LNaBPRorG42K3aJqBKt1B84bBZUYfzztD6+WGHzisyHyCoIPl8hr78aS4zdKhGQAKATo8X1kjG1r8/fslVtvjZJa3Ub77kZEcx5oRh4be3NyUiebSNYk0RCEhExcF805gXTs6jwJmrWJylUyKNLG5SRdM1tWluBGCXAvV+leZQ8A1bIkGuSQhnhV47XgZ/doPb8ZekGv7xnzo7VXoHcWGx08/AEMrZMzWvF4/qOdZjycBy3Q6hJ4k2QDpvF1NJ3s0Jcvxb8VWssNo6jsxctTRJPuFMrn80ioHujapjQki90FbvdSOAJSXaLJByG1kedzWLxnZcLFZ5tTzzPmxdMlCd78TR8zRkzW9s6ibinX1NlXhqPiCeMBrpYgFdm79htJM+2dThCEmmSCEIKLzo0i5bbSxEnyBrgMQmofZkGC7kmybPVgAGfpGK35tdSVo4yArRZAplo5ct5vZMN63dgsQgSSTCUe0WpIQiCb5n3bf9ZIznHEzrYZ1KziqPkWHDL9P29PQHw210+aae19S+95vl0hDZOkjLvKJtybzktWKHvl/t6474BzfDyTUpfLC9GVptpaZK0fJL4miQVZ+aS4+2qiVxBx+ni+yRFWS2ScBha45FF8GsHC2ShCwRBW7uipgHLmNpX/YYABrdR+rppySe89gn0e9LKKbPXh5QnrH4wphumDmqBmde3xeujOqFtnURFmkgRksgniYgY9MxtWs7B6w6dx7pD5xXHy0STJBeSDG41oGdu4y21NUsgQtLj6a1QvUqUL2qyd5CTapIEyYBalkIS2w2aJ1fB0fP5OCkLShhlsygC1rHlrV2ypNpo61Rx2CQhGdToUrL6iTcxyCc/9qOAlz6UmiTeltA8c9voHg3w2dqj3BzYMrevl4j29TwT3fGLV/DG0n2K9DaLgAcHt8CrGXtVS2XVeF+1VrfxhDs1YcvzHDwTsEdwlm/YKvJ9kuxWSfR5rUmcDWUg/xCyMOY2HmpmvOY6MYz4grlWeuUxo35wnq2B/O3Gu4/oO6fMc2DrZAxqo73K0syK11BCmiQiYtBzsA5kAZVWbJpgoTS3iYa+yIp0QgAER0gyfw3rWOrJg+eTJNXMhNLc5o0Rw6NZLX58Fp5Wkq1TSqLH2dioHMLGimpuICYMdwKSHWRXX/EEg1AqQHnvksfcpowOrYaaEKe2jNxqsWBC3yaa5dIOARBcTRLAf05Ol1vVJ4kVvHhR/b0Igv8+8g8hi0XbBKXvm8mHp4EyEnGbxai5Tb5ljtViwbTBLSTHvH2MJ3jxNO2vj+qEOonRaF3bY3qLFE0SCUlExKArJHG+fvWwWYWABx2j8Fa3GZl99XySTl4MvrlNbx82wDOAsY/C+7c1CJoknhlDj7dHd5H8Zu+kFlWZG5yRKX8dr5BkUJfElrtn0+p4aIh/QqgZ7zHdTRnUnHsvL/JJW0+TxDNhBAve03LYlea2QN4dtp7/YoQim1XQ3UtQKwSA1qTJ1ySp+yR5eXFEW8X5YreIbg2TYLMIkiCJ8pACmpokZv9G3t6OWhqbQFfj8rqLlszD6wNGPyjlmy9bBQEPDGyOnc+m6eb5yT+7c/P8R6e6WD19ILo38mhjyXGbIGToDaCBa5L0u7nWkmA9uD5JBq4rLHZrht43Yt7RQ/7FphVgz4vVIh3EvX9bLFIhiRUwjGqSAmlneVuy/UDNz4WnSRIEf9C7azvU8R0zAiskCYK0T916VX1snTHEtxwbUDF9WNWFJJ4WoDQhAG7qUs90kEeeuU3Ln0/tibNdoWqsP8ig1SLoaipsVvWI21rwnreaJoktw3UdauPRoa0k5+/u2wRxDhu2zUjDggf6+I6rxV0CgJdv7iApg0Xw318ebNbTfzR8koKoSdLKijeeGtU8K4Qkjknen6f/2MT+TdFXx4HfKySSkEQQMuw6uuFAhCSjPkkJMYG75/HKZSjittONxTuzAr6vEeRV19tixHuNRCDyOm4rzG3+a4xokq5qlBTQBKDVlmqOxjyB22oRsHhqP/x6f29fYMxAzG0WQdqnEmLsHPODvibJoatJMlY2HnEO5TJyFlHWaWdc14a7AS8vlo5aHl7YvhDPmK2MvIcWQan51RJOvPAESqOauFzmI+e7ial4sMRsFBNllQg+Wu2ZkhCt1LSqCWmCtr+Z1sfigJJ97Xj723H7nMbebTzNvFq5aiU4MKKTfzWmfPWfP7yF8lq2XEY0yb5I+mRuIwgpaqs6vAQS1dmzuk1/cNbTYpnFiBmnyOX2BYx8bFgrnwkomDSSxaZR27iTRW4O4GqSZH5LepqklIRofDDmKsPq/Gi7BXNu6YiFU/pw2tJ/L7Ul61xNEoBqcVFoVzdRdlRJqxSpkyzbbhZBOvDLBSSALzTKJ3J9n6TA+6THr0z9vLx0LUrqKy9HIKYfNvo5K3QZefaeYJLSexoJS8DzcTFqKqwW59d2dW1YTVV7JhfWxqQ29P0dH22TtLcgqH+c8QRBFi3t3Wv/1wnPj2iHuf/XSXEuGIK22jNqVD0ODar7xxIzmiQ2TyN9wNvnyHGbIGTo+ySZx2bQcZv9SrytZEsBLxYBeIWzzYQWZi0liTF2LHuoP8b3bhy0zSIn9GmM23s0lBwzugybp0liJ3lBEExpksb1aoTEWLvhlYaiCNzYpR5apSQo2pKVldU0SbxJSCsqMMs396QqjklMKRapSSie4+QrN8ECPMdtbQGiNHI76xPDQ/694W1HufYjEHObi8k8waQmieeTxGtfOXoaDC1G92iI8b0b48u7r9ZM591f76u7r8b43o0xfVhr/GdMN0we2Byd6ldVxhHT0CR5/dh4aLVT1dgo3H51Q4kZU+s6TUGZ8wDV2kxuglfTnOoKSQYGRtIkEYQKUTrmtsA0Sca2JWEnwRs710Wf5jV8v2f+ox1apmgvv5VjdlWZrcTU8dS1bXCtbKdxXmA7PXo1q44nhrdRaFRiDai75RMsP+K2fFsS7Wdj0xhEebDPWuuSWBXNGG9y5+7dJvv92LBWuKpRNcUEwpqd2JVLAFA3Sbn6bkjbFIXvhVyjKfFJMijUGUUUoRnfQP601NqxtIse2MncSLwy3kKLKg59Pzbe+2ZUII+J8rx33ujVaniF2h5NquOpa9sgJsqKwW1qYergFhBk5jUt52xBEFBPZcEBoB8vTg2eUKY1pPLeWLX4bhZB+mEgd0/wv9/Ka6UfV+rl8eIgIYkg+HADADJ/B+qTZOSLUr7SSJB9FZpf4W5ucmGja7MDaM14h+oEpoU/Srb0uJHVbR5zkv+3d5CTfxGyWctX8Mjxtq9RnyS2veXmNvZRyJesezH6VS0ftL1p5P4arNO1RRAk++o1ranU/FVx2PDJP7tLBFy5+czISq/SYEbIUtPIaZVB7X0ck9oItROjcVfvxqga6xdwjNSHF0zSyEcCdzVhkEzo9/ZviloJDtw7QBnRWloG/99yQVqeTiusRaBx3YKiSVIV7KRtLNckec/xhCy225szt5V9gFoeFEySiBj04yQFpkkyMujInWjZKwQIimX+XmLsVkXQQsC8ue00E12bHUDrJcXgdE6huczgHwCVq9uM+XdITAccc5tFbm7TGdC8fiZG/WxYzZRWW6ptyGo0OKNcAPP+lnc11k/GIgCHzvh3Qo/T0M6x5VA4bjPxhJI45pPSCEkitGN1yd8ltX4RSBmqxUVh9WPXQBAESb82IrTZLILCWZwX2NEIwYqP9sjQVng4raVuFH2LRGOi/nFmEQSJ8CjHHqAmiXc/sy2gpq33rBL2/5avUtX6+GHfHTMfrFpxscoS0iQREQNPtS+q/G0Um1XQdQj33JudBKVOrxYBaMLZnDMuyooa8crJDTA/OF3d1K/qr8eYbxpXjwtosPdqdthx3WoRNFfosEi1Rp7/WXW+IJgLJukd+Hhj6V29G2teK59cb+vu9xlTNbcxZY0vEWKGtktRpJPPe2rzoF2mSerTwmOOrccxtbFoOa06bFaf0/BdfZRBFstUk6QiJGnl0VplU1XA3zdYB1/exwTvfnIhQe6TNIQTqZk3uQcz0r6RbYbk2mctx22t/OwBOuzzgzZqXaFsMzUhSW6Clztua/UTtjpG+mRUhIUAIE0SETHorm4LIKqz0dVt7IBmsyojTtevFovHhrXCv3/f7TueEGNH1ZgoHIMyMrYZTVLD6rHoz/ivpDCr3EZ1b4DNxy4az6wEb5RfuW+RkeXU3rTyv62cwc5ritTzSaoW5xlUec+4jobpAVC25WQmaKOamYg1tSya2heHz+YhtanS50T+mLz1ktfGJhEQBaS3q43/jY/ibszJoqVJsloEfDexJ1xuNxpzhHA100f1uCicyyvinvOip3RVc9yWw5vUPhjTDTXiHWhYXVlmOaym77KBDZs9HzXSe8rNbTU4Ts+87hfqPRvlyN8PNcdtb5Muf6g/BsxeoTgfqB+YPA4XoP2xxusjau+xRaYZS5JpwrQEUrkGWg+vkOyMEE0SCUlExKAXUTuUq9tYQcoqMyV5R5pUmWNnfLRNVW1u5iu+T/Maki9Lu9WC/43vgcuFTnRvXC2gnbm9y2fZSz1bPmjn5V39xjO3SUxOJX8KggCIogEhyTOx8VdxaZeJPZvapLpE66e2BQZbz2pxUaqCmPyL3ueTJJtBbFapuc1iEdCbce5XwyoTUuXwhCPffZj0TWvG4clr2+DA6csY1LoW+nMmV8X1JvzqtPxn5DSsHqu7jxiPy4V8k7W8HMrVbdJ3jBe7iTfhh3rPRjny9tbSJAHqfkmBahC5miSN9Lw2U+sjHj9Ff26JMXZJn9IqM3vOyLAYaZqkcmtu+/e//w1BEDBlyhTfsYKCAkyaNAnVq1dHlSpVcNNNNyE7O1ty3dGjRzF8+HDExsYiOTkZDz/8MIqLSx/ZmCg9el+/gaxu8/g4GAhGJxEA5I7bnr/lJgmHzapQO3sxM8zxtCu9m9fA0Ha1S84HIiSJJeWQTtJ6K2e84Qd4y3Z5+7l5k+mZ26qXmJXkWj1BUF8qzabh/e35zdeOsWZFM91GUNEksROzGQGYrZvZyY+d9EZd1QADWibjrj5NdE18QMn+gUyzeIVU33mDnxx6S7rN4M3rs7t64P+61feZQVlsHM0vG8cI4GuIeM7dod6zUY7cJ0mtn3jLpfZeGzHt6d3fn5e5PNS09fL9HOOj7YbjH5n9yKsZ70CvZtXRoV6ifuIyoFwKSevXr8d7772HDh2ksWumTp2KX375Bd988w3++OMPnDx5EjfeeKPvvMvlwvDhw1FUVITVq1fj448/xkcffYSnn366rKtAcOC9n5LXK5DVbVaBq4ZWpNNYueU9JTdJWC0Cqqpts2FidNITXAJZCu7zSZKtLImy8s0qbWonoF3dBF+QOomKXMPc5h3Q9TVJUZLr2Hz0xlCewMrCc/ivWzUG/+hUB//Xrb6ms7ra6jZ5X5N8DWsXV/U6s4EZWWGBLafR/sD24tf+ryM61EvEvNu7AjAuOPImOLPCx3P/aIvODapifInvWa9mNfDSzR24HxiehRb+dmqVEo8RnetK0vDM54/IthYBlGarbg2T8OTw1qbKbga5741aO3kfXyAaYi1ioqwY2bWe9F4a6XmCskvDJ4ntdgnRNsNCEju2Gul3XRsm4bO7rsYz1yn31QsH5U5Iunz5MkaPHo3//Oc/SEpK8h2/dOkS/vvf/2LOnDm45ppr0LVrV8yfPx+rV6/GmjVrAACLFy/Gzp078b///Q+dOnXCsGHD8Nxzz+Htt99GUZG2jZ8ILjsuCBj30UackOx0H3xzm9Vi0dXE9G1RU/HCS78KPf/LJ1ubRVBdeaM3/Gn5qsgJZCsPJ88nSRBUt365vlMd/Hp/HzQpWc5ukQmN8mM+Iankt54myWvGk9fVIkgn8xi7ZyuI9+/o6jvGXsGTD7gr2SwCXh/VGS/pBAFVrG5T80mySjWNRmGFTbPPUU0YMiIjiZCayprUrIKf7+vNdV6/sUtdxTF/GZTHzApJd6Q2wg/39uIGQJQjN49/effVSIq1S8yqPM1wSmI0HhnaUlZOabpvJ/bkOsgHC7m5TWt1W6h4ZWRHDG3rf8a8W/VuVgNxUVbcN6C54pzax44gAFeK/I738dF2XVOyF7a+gWxSHm7KnU/SpEmTMHz4cAwaNAjPP/+87/jGjRvhdDoxaNAg37FWrVqhQYMGyMzMxNVXX43MzEy0b98etWr5V0ekpaVh4sSJ2LFjBzp37qy4X2FhIQoL/Uuwc3JyAABOpxNOp76N3Qze/IKdb1mxOysXP2w6iXv6NeYuafbidDrx/m4rgHN49ufteOvWTgCAYhUbtLc9ipwBmEXdLohu/8s9+6Z2+PbvE1hz6AIAYPHkXmhUPRZP/rTTl8aTXmSycMPpdMIG+W7ewPHzeeCjPRhYBMBbKgtEzWceyJDqLHbB6XSimGkzq0WAiguPsgxMm4mip/4C8xnodnvy946NzmLtlUtekzZvLGWfz7UdUvDsda1hs1p85XG5/HUQRWVbRfGEj5Iy6yGK0mfqrZfcJ8nCPHvRbSxvb3m9CCau89zH3y5uk9e6ZXGrXMXFkuvZ8y/d0FZ17JHn4y1XMMYogbe6ylWM4mKmnC4XiosF/DQxFWlv/AXA01flOJ1OiPKyul2KNPK/gznWsr3Q7XarayA4fZiltGVi25U3dkwf2hxNasRJ3jEvxSrvsQAROVf8igRBdEkyd7uK4XQqa+x0OuFmxnWXKzh9R34P9n8jac1QroSkL7/8En///TfWr1+vOJeVlYWoqChUrVpVcrxWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNhY9aippSEjIyMk+YaayZme7rRpzyGMa6HndOdJe+hEFhYsWAAAOHrUArly0+12+87vvigAMLaE3cvqv1YhyeG/37atW3DunOC7z6o//8CuaODEcf+9Vyxfhqws/++tWzbDdmJTiTnQ/8pcOH8OzawiACuqO0ScK/SPGrm5udAUb9xu3/lDB/ZhQeFe1aQ5l6zaeXHIzbuCBQsWwPPx5ylzUWEBDu/ZCV4b7t29Ewsu7vD93nrW39bbtmyG/cQmHGKez6a//4b7iAiXy1O2zN3HNcvofYans6XPuNjlxvbt23z3On7sGBYvOiK59myBvw7nzp7x5eVFLFa2z4F9e7Hgyh7V8ng5dFhanh3bt2PBmW24nCfN8+D+fb4y7t2zGwsu79LNGwBymXyWLc1AtGb3lQ7HmzZt8t1z1y7p89Ebug8fPoJLeYLv3suXLUNVxi3p7Dl/veXtyea9dctmyPvLimXLkKCvFNLlyhXlc8tYtAjnC/1lWJqxGFFWSI4d2L9XUaYFCxZgzwnp+LBh/VpJXZT1DO5YeyXfX5+tWzbj3Fn/OMNy4vgxLFjg7ePK58grpxmymbGL90b+tWol9qu4te0+xh9jT508ibwzANtnipn3btmSJfAH4Za2OTtubi95v0KBkWeZn59vOt9yIyQdO3YMkydPRkZGBqKjg78RqBrTp0/HtGnTfL9zcnJQv359DBkyBAkJ2st/zeJ0OpGRkYHBgwfDbg8sgFo4mZy5GABw1h2H9PQ+qumcTieQuRwA0Kx+baSndwQA/PH9duDMSUlawWJBenoaAKDKvrPArr9Nlal/v76onRiN6euXAQC6dO6MfRuPY1/OeQDAwGsGoE7VGKz/dRf+yj4GABgyaCDW/rYHm895BOfOnTsjvb1HhZ3U6hzGfbQRAJBcsyaeuqMzeu4+g64NqyL1pT98962amIDjebmq5bLbbXCWqK/btG6F9D6NVdP+79R6HMq9YKre1qgopKcPQKHThYfXLQUAVImNQe8erfDZgc2K9J06tEd6N8afYVsWPtm3FQDQtUtnDGuXggPLDmDRiQMAgO7dumJg62TfMz98mS8gjbm6Acb3auhbXbY4dyu2nPd/kIgQ0KFDB3xxwCMANGhQH+npUl+Eo+fz8dymVQCA5JrJSE/vIjk/71AmzmZJ27p1q1ZI76vepl62LtyDFaf8QlnHDu2R3rUeXt2zEijwm4LbtG6FH4/s8+TdujXSezfSzRsAZu/25zN82FDNEAzetvTSrWsXzN+7BQDQtk0bpDMbqsrTymnQsAHysy7j8OWLAICBA69BrQT/uPl51nrsz/H0qfT0dN9x9t0EgK6dO/v6gZchgwcpnKkD4Y+C7fh+k/R9H54+DBeuOPH85hUlv4fCbrXg3OVCzPzb8361bdMKvx3bJ7kuPT0dJ1cdxs9H/R8bvXv2xJs71knSeAnFWPvm/r+QfcWjWe7SuTNObcvC9gunFekaNGiA9PQ2APjPkS1nICzN24a/z50CwDe3XdO/PxpW53/g71u6Hzh+UHG8fv16nr576rivjI//vRSFLs8YNjRtiC+oKlsnb12mrvEca9u2HdK71w+wZnzMPEuvJcgM5UZI2rhxI06fPo0uXfwDpMvlwp9//om33noLixYtQlFRES5evCjRJmVnZyMlxTPBpaSkYN26dZJ8vavfvGnkOBwOOBzKuBx2uz1kgkwo8y4L3CIMl79qnMOfVmUJq/e8RcXpWIvoKDtiHMz+UTabxFchKsrT1jYmb0dUFCyMD4rdZvOVoXMDfxgAq9WCmGgHru0kdZb0VEVb88Pa6R12m2Z7BbITe7FLhN1uh5vx3LZZLagax//AiI6S9rkou03yt91uh51ZMWbXKbOXoe1ro2FN/8eEjSMk2G3M1h1WqyLfKOa31WpRnK/CWdlktynz4WGV9Smb71lLnx/bHkbzBqRG11hHlCl/JpuNvaex9vYiCBaJn0iUYkxhHMpl+QoQIZact9uVbRsdFRWU8WnGP9qhQfU4zF3iF3gcjiikOKLw6siOcNgtiI32jL1xjOZDEJTjgLx/AoAjyq5Iw70uSGMtO67YbTbVOE02Th+Wl6k0sO8Yr7c5ojTqLKiU2WJB9Sr+edBut0v8+aIdUbBzYm3J78N7v4OFkWcZyL3LjeP2wIEDsW3bNmzevNn3r1u3bhg9erTvb7vdjqVLl/qu2bNnD44ePYrUVM+u3qmpqdi2bRtOn/ZL9xkZGUhISECbNm3KvE4VFb2VTgVM5F3J6jDdAHiBhACwyAIBSs/znCgtFmXEbd/1Fv5xOXpFZa/VW90WyJ51XkdqeTBJ+caUXuQrgXhO2rxjckZ0qiP5LQ9vwN8ahP83D955XtRto87F8lRqV0k3uDUu6LBLqs2uZuItHjCDpJyy6zVX/EnKoDxvZLWoERKi7ZgyqAU31tVNXevh2g7+vsSGdGBDgdROjMZr/9eRm39Zx0kSZGNGOBy3Af0NZbUWEKh9kFktAv7Vrymu61gH/xnTjXu+olJuhKT4+Hi0a9dO8i8uLg7Vq1dHu3btkJiYiPHjx2PatGlYvnw5Nm7ciDvvvBOpqam4+uqrAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNImrLSICQ20ZqZcL+X7nOXZZvVYcpNUHzuKfH20wXRarVVAs3xY4gwg7mNgssr3bJIOfvqAASFdxPJHeGs2Sq6BJTX/gQOnqNu3X0BlAUDW1iNvyjSm9yAdH3soVLWET8AR27NVMGmBRPnjyrmOrzz+vLaDEOZQTvuGJSEVolq/CsUm2JTGWNWBuY+TP7+ohK4v/b71bfjium2TrHBFyYUeaw8zr26JZchW8fBNn9R97X047Blv4MLKRKSvEs4Lna//XCTd09mhy5WUNZFVoabDK+qmZAJ0hK4fOeTnjejVCq5R4PDSkBZ5I94dLEATP2PHmrZ0xmLMtjFp0eDnlb21bORKSjPDaa6/h2muvxU033YS+ffsiJSUF33//ve+81WrFr7/+CqvVitTUVNx+++0YM2YMnn322TCWuuKht33IeWZLBVag0rrqtv+sNV0ObxwjuVCkNXl4r5MHhvOnB/dvOexCm//rXh9LpvVD/SS/HwCbv95g7gxgOxZvtFo2Z5vFIolNwwbgUwhJrNbIFydJKTixOGxWDGkjNVsrtuLgae7YtuYM62oCq5cYjknI6EQkv59XYNPe4Nb4LKf3wcDSs1kNdGlQ1V82vYozXNWoGpY91N/3WxRlQThl6RtWj8OSaf1wy1VK/xA2rd7zCgZ6mmdA+g6ybaqlhQx3xG31OEmhLZdFR0jS+ihLjLFj4ZS+uO+a5grNmOI+7HmjbR2IWjzMlGshacWKFZg7d67vd3R0NN5++22cP38eeXl5+P777xW+Rg0bNsSCBQuQn5+PM2fOYPbs2RLbP1F69CaGS1f8miR2gAxAFtCkXZ0Ezg7tsknRF+9HqiFSC2CopUl6YKAn7sjNXetJtGK8uC7soBKl43OktYfRu6O7oEYVdS0oW8SYKCuqMO0h8THQMLdpRdxmsVoEJMbasWhKX8kxSb66vlradeCd52mSDJvbVDRJcuwBapICMRF7kQj3Omm95fY65F7bobakTwccxZnTNcta+JCjZsKUV9HIxtbBRPoBJahqV0JtbruuxExZLynGcFwxHnIttJwog5tll3fKtZBERCYuHfU5uxt4sURIUl5XmvGkS8Mk7nH2Lt53X2FuU/kK14p8PGVgc/xyX2/8+8b2krp4Bxj2vmaCDBZzYtV4qRJtg5aMxU6ODpvUmbc6s0LJiLmtCmcbCcm9Sv5nhRZ53XjzlprWzp+vtqapJ2fjWqNftmqptDRJZgQOI1oSNcz4JHnPL3igDxZO6aMwe5p5jdhHxKtrsCNFm4VtUi2TpNUi+PZbHMYJohls5AJbuMxtqU2rY+GUPvh1Uir3vFEhV6JN5vQDo5tll3cqRy2JMkVPk1Tg9E/63q/C4xfykVeoDBZZGu1scrxyJVdygkMa4E8WORrgOG5ztuOQH/de175eImxWC1g3Iu+gxN6XzV9v9ZqWz4ZV44tVTrRs9Um7uv69keRl4NV5SFu/L4LWAMkKFMoI2xwhSKf4komQkzatbQrevLUzPhzndyg12iZGNUlWq/aEoUZptKNSU5KeBs5zPs5hQ6sUZWgSM2XW+hCIBFIS/e+1oCFgWy0C5t3eFbNHdsQrI/nO3cFErmlVFZLKQMhsleLRovPeUuOaJPZvniapcogPZGcigo7eFhVyTdKhs3kYYGBXc7PEMz43747ugsPn8tGlgVS7xNMkAVA1VehpPbywmiTeoMgek5u65Gg5blssAuolxeLkpQLJ8XjOsnjvKqL5467C5mMXcU2rZHy0+jC3DDxNUtXYKHx2Vw/8feQCunK0dN5LpL5L+qvbdDUmOoO1IAi4rmMdHD3nDxRnXJPEF+LkZjLpBreGsgYQ2KbM8rIYuSev3aQ+TYGVwaiwWRbMv/MqbDl2EUPa1sKTP24HoN13LILH/HtzV2WIjlAgF+b19m5jaVg9FkPbpWB4+9pBLRN3dZthU7R2/9NzE6gokJBEBB09x202BIDLLWLlvjMhKQfrpDxMZfCRb9TqO86uuAL/b60JRM/MEqzVbVaLgFdv6YgnftyOP/f62/GLCVcr0kaX+BAMaJWMAa2Ssf+0PwCjluM2e6pXsxoKU44cm4ZAwd1nTU8Ikiy3Ur8ve2mgmiS1ywJdKWVWRuKZggED5jaew7uJ66V58csQavQ0EwNaJmNAy2TJwg/Juyl/h8tYvpN/TJkJARAXZcP0YaHbfJcleD5JAQhJESR0G6VyiIJEmWLG3FYanw09EjjaFEA6calvIqqmPfKn0RpseBoEtfvqmduKNcxtFkFA/Wqx+OSf3X3HUhKiJaY0Lw6ZuY2NL6Q0twViXvKk04qjw89K4PzFv0arLBJn8wB9kryXyVuczc9Mjy1V/5bIhnrmNsNZmbtvGU5qMZxghDzYurKtqyhpGc/HVrmQpOq4XVYlUjZBWttahp+pRacfmBGS7uzVCE1qxuHGzuqbKUcqpEkigo7e17Pc3BaqMSNeJSYQGwPH++7LyyD9muab2LTGGr25UeqTpN0CRRqaJJ7qXK1c8qB9sUxAQfk1Rnf45t1XS53PN7cp89C7hp8387fhGACC7Kfnt1zIZVcomjGhmTW3qfU7vZfETIR3PdheUpYTOi+oJA+1usoXX1TT2GQ7FEj9+MIXTFJ6L//ft/VogBdvaG/8Wh0Tsxlz2zPXtdVPFKGQJokoc6TmNremtFGa8SRRJbo0V6PD8WfQK4PWYKdncpSY20qhSTIzCTtkS3bZqMtyk57eyhYttNLzzW18IdR3zOB9JYKdUXObRlkkeTPlNqMcKs3CA2n8KL20ymNSv7rAylCWkZTlCwvUUCsSW99tM9J036tgI419ZtEQ5ox/2IQTvQ+lyuK4XTlqSUQUVxhzm56Td2lQiy4tFZL41xrx59CaP3gmR1aDJTW3aY+QWj5JyjhQ6hOq/Eud/RJMkn116/kj8PCmYjVJ8meg52Cse17r/pIyayTUKI/3pyIEAPOMzMQ+MhNMUo60XbSfgd7Eq2euk1ynk2+oMG5u09ckaW27Eirk74zaB0yZmtuMKyMV2Nk94Gh1G0GUHYWMJklP42J2jhnXs5FvxZYRcxsvmCR7XP63Who5er4opnySOHl9dlcPnM4tQIta8YpzahOb/EtdEAR8PqEHcq44UadqjOScXnRtLWxWCz4d3x2FTjeS4tSFL94xfsTtAMxthjVJsufujbgtSycxt5kQ7M2a21Qdt03losSUrCNpx1Le2ARt6ihDF/BQe7bJ8eHdWoptK5tFUNUA88rPe4+DQWkeXxTzYcDTzJKQRBAhQi2YZGlplRKPEZ3r+oQkNR8Hdt7yWds0RhO1U1p+L7y5kT0mXd1mfijr2jDJsHnCSzRnUOvZlL9SzSrxrzDnkwQAfZrX5OfLVRXx8/AdMzgWGw3PIMlbrklSE4jDYG6TLB4o5XwU+Oq20EtJ39/bE99tPI6H01oaSq9WpGtaJeNf/ZqgPWfRQlkQiCbpx0m98M2GY3hoiLG6m0WqFTR3LfvxxhuiHBQCgCBCg3x1W7CGYYsgoEPdRAxrl4JGNeJUJzzJihgDWiI1Yci0uU3FzKenSeIRiK+IfHWbFoGZ2/TT8feA0va9MVpTMz48aun8cZLU05Um9pEZJBNcKd+SQM1tZeGT1KVBkiJ+mRZaK1LLahm92v292KyCaqR8Nl2n+lXRqX7VEJaJ+dtkH2I1RbwxsLJokipHLYmIosCEJsnUF7DgeZnfvb0rHh3aylSZlJMl/29pGvXC6U2k0mCS2q/h/HFXId5hw6DW/ojXWo7JRle3aSExtwVRm8ANrKljJjO6opDVOBktsppPktzgxqYrqz06zWxLokeg5jb5dWNSG5auIEFAEgIggjZMZV9jqyComtwjMYo5D6kmiYQkgigzrpjwSTKD4cGHc0ul2UXyy/T9ePUK1HF7QKtkbHlmCNKYbUG0TH3yYnk3wO2lYlrjobX9ihoPGTCX6AWL1LHGaRKIMKcMQOj5LTf9SIQkU5GSAqe0k6mZDXIl16mUYf64q/DsP9qVqkzBIFKFDLn2VV1IKqsSSQm2ue2WbvUBAJ0bVC1FqSIfMrcRZU6BbHVbsMY8o4MPdyNdTcdttfup35Dns8neli2DkaXKFosQ8NS88pEByCsq9glLRjDruN22Tryh7R/45jb/37w7GY+TVPqO5C3L/13VAPP/OozdWbkl5QrMJ6k0mFndpoepvdtUrivLcABaRKiMJA0BYLGoasnDJeSZvSu7PyPv2berm4g10weiepWyjUdV1pAmiShzrsi2JSmtv4UXoxMJb+hqkSJbXaJjAvIcV7+HnoaMPa2nSfJi1LQgb8+YKKspAQkwb25rkBRrKF+uBkzHuzQQ01mg5ja2LPWSYrjHy8wnSUd41L1eJS8z1wXiwB9qyjIsgRkkEd+tguoYEKHFV8BqktTaPCUxOiCfyvIEaZLKOZfynUiM5S9110tr5lpeXgkxNuRcKUZirB1ncgsl5y8XFqMKE8PnQl4RXKKI+Ggbcq44fceDuS2J0Q9dnrBxbfvaOJNbiC4lqmMj/iBaX9b8OEl+2AHU6CBjdG4OxiDM5mEkenUg+0HxjpVGWaEXSoCHlgaRFRfYo+XTJ8l4BrViRVy6JCiuKy+Te7hQhACINE2SyfvaJSEAgl2a8gMJSeWYr9cfwyPfbcWjQ1thYv+mmmk/X3sUj/+wDU+kt8aEvk3w0+YTmPzlZkwe2BxTB7cwdd+F27Nwz/82+n4/OLgFXs3YK0nT69/LsOrRAYiPtuPgmcsY/NqfEEVRYaoIrpAUuCbJYhEwvndjJi/9fLUGHe5Eyhxj6200BEBZmXkAmZ+QgfRGtWH6q9u0NUlad7Hw5RtN5I9QTTBh/zbjR6flm6KHkVhdWgQ6F49u6sbG4rq4s3fjoApqoSBSTIBA5PskmUXik1ReCh0CKraerILzyHdbAQAvLdytm/bxH7YBAF5YsAsA8OQP2wEAry/dZ/q+M37eIfktF5AA4NIVJ05cvAIA2JudC5dbKSABUF0mGwiGhSQDc5aRLR1KM26wJhujX3hGzTzhGM6sBr27+avX+H9rXaOXt9E2kKdT848K1Cfpy7uvRquUeHx599XGL/Les5TmtkCp6gBeHdkenRskBRSgsyy4/eoGuKZVMtrVCU9MJD1sWkJSORE4HDoRtysLpEkiQoaz2DNIFGnsPeYKouN2KRa3KZBOlvyMS/MVG4hfi9ErwjGglc7c5v+bl4vR2gQy+WitalT728zqtqsaVcPCKX0Np1eLpRWuOaq02qxQ8fwI4xu1lhXsO62lSSovAofEDSCCQi2UNaRJqqAcO5+PWb/vQtalgqDnbfQd9+5e7yxW1xaVZm8rOcZDABhRJTGTg8pbYnawYyfXQEwwZRkTJjHG76umtr0LADStGQcA+EfH2oby5QlT0sjS2ueNYjjitkwEky6b52umym51WwD2w1JdoURvJ3jCD9svbBYLbu3egJuu3IQAYDRJodxjM9IhTVIF5fb/rsWRc/nIPHAOP9/XW3G+NF3e6Fzt3Zi1SGOD1mJXECNuB1HkN2JmKJ25zfw1hh23zWetIMpmwbonBvr+VuPHiVfjy58X4apGSYbylbdZXJQ1oB3u9TBsbjPsk+T/UVZxYSQiUiBtEMSQCMHKryIj1yQNalML/VvWxIo9ZyTpgrWa1yymI24zmqRg+o6WN0hIqqAcOZcPANh6/FLYylBUokHS2sU+mC+f0UHAyB2NOC6bNT+oxUkyimRJuhZBGoOT46N100TbrUg2WCxAOtHe2asR7u7bBKdzCpnz2tcYv4/pSwBom7ie6lyMOq27oX8L/r50wSYQH6tQloE0STpINEmexmpWs4pCSCovsIsxSEgiKh2lGe/0JiCHzYLCYrdfk6RlbtPxSTK151QQrW1GvqDNThrsbQMZdK5plYxHh7bS3cAzkucy1tw2vH1t1E6MkYSPCFrMLKMhAGTPVuqwL9Uq1YgGBrVOLjONSiAb9oayDJHkkxSJsB8+XjNlJDlpm318bJ8jcxtBBBGFkKSlSdKRWMw4yRoPAaCfJzu4qWVbmr2LAtmORRAE3VAPkQ5P+DSjrTAqLBg1vcpzU1tRFo6pThKrKoQmRy0iwXm8vMCP5B85lKYslVmTRI7bhGn0NDHe3eYLvea2YvULijVWvpnFeDBJs/lKM540oCla1orHbT3MbfbJOl6HcsyJZN8RgSMQBRIpW41butVDlwZV0b1RNYPlkf5W096Eo01L2y7BKDLbHpV4gZMheO0Tye+iGUiTRBBBxBtfw1kiAJWVT5JRjJnb1LUbD6e1wsNprczfl/k7mKv65ETysGzlCB5S/6/Slf7lmzuaSh/JmqRAIoiHsgyVd5o0Bm8oiyQZqTRlcQUxnl15gzRJhGn0XrboEk2SVzjSEpKycgrwxbpjQSmXUXnLkOO2ZLIM/kgXiLmtImCR7AWmPFbWk4r8S99IxO2yopQRAIJCMFeMVnR4IToiSEYqlVarMmuS6BWopIQyBIBfk+QRjgo1HLcBYPOxi6rnzAgoRleMGYk3FGpfjFBukhpJX69yeI7Aas7SPIJdNaW5jX+v8GuSAiEYIQAiuDNFGFyfpArSfJX1ow4gIYkIAV5NkpEQAMEkmIKHZDIP0goVtnihNDOGyzRjhEAibocSpblNpQRh90mKAHMbOSVpwt0TsoJISZVZk2TIJ2natGmGM5wzZ07AhSHKjlCGAIi2e2TvIgPmNj3MrG4Lldk8FMNcaB23Q5d3aeFqksK5iao8BICajFQGRVHes3SapGC0ZST3pUiD65NU9sVQpTRliXdUXvdlQzXftGmT5Pfff/+N4uJitGzZEgCwd+9eWK1WdO3aNfglJCIOfXNbiU+Sd+82HXNbae7FYtzcpp8mFPFh2NuG0twWybDbQXn9XcK1kSvvfmrPuqyEBbZXRMLy+9LsT1jZ4PokRZKUGUBRXrm5A37degoT+jYJfnnKCYaEpOXLl/v+njNnDuLj4/Hxxx8jKSkJAHDhwgXceeed6NOnT2hKSZQr5D5JzlIs8zcjTBhNakQ7VdoYNfwbl27vtooAb2+0UJg2jZdH+lvt9uEwYZZWOA9OnKQImuTLIeW9/UZ2q4+R3eqHuxhhxbRP0quvvopZs2b5BCQASEpKwvPPP49XX301qIUjgA9XHcI7K/aHuxgSjK5uKzIQTFIPM6KE0WX1ZjVJoZgfQ+u4HbkDMy+0Qnh9krRWt5W9GVDiLB4Bj5F9NpVTrDdOpDtuR7KvYiRjWkjKycnBmTPKvWjOnDmD3NzcoBSK8FBU7Mazv+7Eywv34HRuQbiLYxifT5KO4/YNnfR3jjcjSxjVzpgNAVCar0G1SSakPkmhy7rUWCXL/ZWr28p6VjF6u7D4JJUykGNwfJJKV4bKBM8nMpLexUgS2MoTpoWkG264AXfeeSe+//57HD9+HMePH8d3332H8ePH48YbbwxFGSst7JdJoTNygnkZ9knS2btt1g3tglyu4IUAYCmdkMS/lsxt/kHblNIuyAO9widJxd4WjgmGtDjli0jXJBGBYVpImjdvHoYNG4bbbrsNDRs2RMOGDXHbbbdh6NCheOedd0JRxkpLICaZ07kFpV6qK4oiTueo56Nn1vL6JOlpkqwWAd0b628fYbQ+wQwmyRLIOOfdBbx17Xj/fctopovkgdkqMbd5V7dBcSxcqLtElU252C4SaWbT+OjKu8LJCLzXO5KeYeSUpHxhSkhyuVzYsGEDXnjhBZw7dw6bNm3Cpk2bcP78ebzzzjuIi4sLVTkxa9YsXHXVVYiPj0dycjJGjBiBPXv2SNIUFBRg0qRJqF69OqpUqYKbbroJ2dnZkjRHjx7F8OHDERsbi+TkZDz88MMoLi4OWblLg1ltQ8bObHR/YSle+G1Xqe775fpj6P7iUvxv7VHueb0l/Q5ZxO0imeO23SpgajtPm0dZ9bugUeHCsFBZyr3bjPDDxKvRo6Ybb43yb5PBOoxXjbWbztMoETQuK+D7JIUvBID8fpHktyHRJAUgYQerLs+PaIcHBjZHi1rx+okrMfzVbWEoiAqxUdZwF6FcYkpIslqtGDJkCC5evIi4uDh06NABHTp0CKlw5OWPP/7ApEmTsGbNGmRkZMDpdGLIkCHIy8vzpZk6dSp++eUXfPPNN/jjjz9w8uRJiQnQ5XJh+PDhKCoqwurVq/Hxxx/jo48+wtNPPx3y8geC2bg/Ly/cDQD4YNWhUt13+vfbAABP/bide15vSb987zZ5+lduao9GJeOt3ao/ihidHkJlwRICCLnaKiUetzVzo07VGO75T/7ZHR3qJeKLCVeXsnTlC6mTtnJ1W7jnFNWI22Ext4W7NTzcfnVDTBvcItzFiHh4408kPMMn0luie6NqGNercbiLUi4xrT9t164dDh48iMaNy7bBFy5cKPn90UcfITk5GRs3bkTfvn1x6dIl/Pe//8Xnn3+Oa665BgAwf/58tG7dGmvWrMHVV1+NxYsXY+fOnViyZAlq1aqFTp064bnnnsOjjz6KGTNmICoqqkzrpIdZc1vD6nHYd/pyiErjR0+TJF/dJk8fZbXAWfK33ZAmyaC5LYiO2yzBGuZevKE9bp6XiQcHt0CHelXx8329g5SzlEjShshhfX64Pkk6RQ923eRdS808Eu4WJZ+kyCdS924bl9oQE/o2C3cxyi2mhaTnn38eDz30EJ577jl07dpVoUVKSEgIWuG0uHTpEgCgWjWPT8vGjRvhdDoxaNAgX5pWrVqhQYMGyMzMxNVXX43MzEy0b98etWrV8qVJS0vDxIkTsWPHDnTu3Flxn8LCQhQWFvp+5+TkAACcTiecTqcifWnw5uf9v7CoyHeuqOR+P20+iaycQuQVSk2Eu05cwJJdUtOilzH/XSP5Pemzjchlrh/9nzVIiLahS8OquL27NCbGre9nolpsFNyiiJyCYrSoVUU37pHd4jm/+egF3PXROuyXCW4WuH31tBnQ0hQWSdu5V9Pq+OvAOUU6l9tt6JmwwpRaepfL5f+7uBhmH7X8WQJA61px2PLkNbBZLUHvO1LEEOfvh1dPLdxMu7pdxXA6nXAx5m63zjN0i8aesVHY5+z5XQyn0+IrixevST7U7SqK/nuy7eLpg+r35p1j8zJabrPPs7wSinq6OOOKm2MOcLlcZdK+kfAsI62egZTHtJCUnp4OALj++utly0NFCIKgGHRCgdvtxpQpU9CrVy+0a+dZIZWVlYWoqChUrVpVkrZWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNjY2NJWhUtGRgYA4FIR4H1Ey5avQHIM8FAm/5H94+2/oPbd8uc+qUDx2zZpXb0Cx+87suE8vgNst8g8eJ6bVotje7cDsOLM5SIs2a0MF7Ftyya0SPTU83SWBXpWX48W0V+mS+fPcK/JvXwZCxYs0C1fXp4V3rZSS78jSwDg0YhlLF6MQM353mdZNnja6OLFS4baIZgYrefBHMBbzuXLlyPJAeQw/Xzb1q2IzdrCudJz/sTx41iwgO8rFwhbs/3PGQCWLlmCKiXuYidO+Pvm8mXLEGUN/fO8dNHfNxct8vf7des3IG8/+3EiHQd4zzubebfM9oey7bfhI5j1vHBBOa7sPintXwCwffs2LDizNWj31aPsn6W/b5blOGSknvn5+abzNS0ksdG3w8WkSZOwfft2rFq1KuT3mj59umTvupycHNSvXx9DhgwJutbM6XQiIyMDgwcPht1ux6lLBcDGPwEAffv2Q6PqsUAmvyMUuYOj2G3XtQewdaOhtI+mtcCAljWx7/Rl/LH3LL79+wQAYMr/paHjnjP4KPMINhy5qLgutXs3nNuzHoMHD8bKwr3YcPaE5n3S0tLw4Nqlvt+1U1Kw/cJpRbrY2Dikp+ubsGbvXgkUXgHgF/rlnF97FN8e8vh4DR2a5jMhGkX+LMuCyZmLAQBJVRORnl42vk5m67np2EW8vmMdAGDgwGuQkhCNc3lFeGrjCgBAx44dkN65ruI6b93q1quH9PTghY7I3XAcXx3c6fs9ZPBgn1P98m+3Yf3ZU76yrlyxLOTPc6O4G5+s8QiBw4cNw7Q1nve9W7duGNCypi+dtz288Prx7zlbgPPZqud5hKPfhoNQ1PODo2uAPI+lwdve2auP4Kcj0gVG7du3R3q3ekG5pxbhepZs3zTa70qDmXp6LUFmMC0k9evXz/RNgsl9992HX3/9FX/++Sfq1fN3tJSUFBQVFeHixYsSbVJ2djZSUlJ8adatWyfJz7v6zZtGjsPhgMPhUBy32+0h63jevC1Wv2rQYrVCtPAnakEI3vLyKyYW+o3t1RixUTa0qlMVG49e8h2PcUTh2k71sO7IRZ+QlJIQjawcT0DM2OgonIOnng4DwodN1s5RNv41YkmeujDypFp6q9V/j6goO+wq99QjlP1EDcFiKfN7Gq1nFJPGUXKNw+7vvBaLVTMfixDcullk71RUlL8eFsZfzlvuUD/PR4e1RnJCNIa2S0FUlP8+Npt2u/DOsf5fZsscjn4bDoJZz/rVYrHtRI4vX0A6jnixWrWfZbAJ57OMtHoGUp6AA1/k5+fj6NGjKGL8ZgCgQ4cOgWapiSiKuP/++/HDDz9gxYoVCsfxrl27wm63Y+nSpbjpppsAAHv27MHRo0eRmpoKAEhNTcULL7yA06dPIzk5GYBHRZeQkIA2bdqEpNylgRV8XKKIQpVVZRZBMLwlhx5yXycvyfEOnM4tlBxTW7rt/dtm8U8y3ijcgHTZvzHHbelvtU03g7ktCZsmElaomCGSS2uVdJSS/yKowKplKaNCxjlsuO+a5orjAUXcjuieUPGYeX07CIKA0T0a+I7R/sDlH9NC0pkzZ3DnnXfi999/554PlU/SpEmT8Pnnn+Onn35CfHy8z4coMTERMTExSExMxPjx4zFt2jRUq1YNCQkJuP/++5Gamoqrr/aYHoYMGYI2bdrgjjvuwMsvv4ysrCw8+eSTmDRpEldbFG5YR0CXW1Rdem8RgGC1em4BX0iqUUUpJLHCCjsge33V2OX9rLkqivHWjjLguS3fkNamMvIYDZlgdsKhcS548AJHhjPgnrxvqQnE5bIPlMtCl19qxjvw9m1dJMfoEZR/TEeAmTJlCi5evIi1a9ciJiYGCxcuxMcff4zmzZvj559/DkUZAQDvvvsuLl26hP79+6N27dq+f1999ZUvzWuvvYZrr70WN910E/r27YuUlBR8//33vvNWqxW//vorrFYrUlNTcfvtt2PMmDF49tlnQ1bu0sBqRkQRKCzmi0LB/GK8zNEktahVBXaOMGNV0SR5sRkQkgzFSZIJNWpbRxgNmVCW25KEg0guLk9IMrP9RqjrpvblH8ltSkQu7FjVq1l1CAKQ1pbv2kFEJqY1ScuWLcNPP/2Ebt26wWKxoGHDhhg8eDASEhIwa9YsDB8+PBTlNDSxRUdH4+2338bbb7+tmqZhw4ZlvvInUNwGNUnBHMB5mqT/jOmGh75RrjiSxLzh5MWa2xy2wM1tcuFHVZMUon0/ytsEGcnFlWgcvf+HU5MkF8AjVJNEm8uWT9i+/b/xPVBY7Da9CKS88cDA5nhj6T7cUgbO6WWBaSEpLy/P58+TlJSEM2fOoEWLFmjfvj3+/vvvoBewMsNqkrR8koIrJCnjSETZLAqzmNwviKfdYbVErFZJqkkyYm6TouaTFLK928qJlJQUa8eFfCcGtEwOd1FU0dMkRSrh7gPyPturWXX8tV87HEc5aNYKjzRqu1DhBSQAmDKwOYa0qYVWKRVjGxvT5raWLVv69kzr2LEj3nvvPZw4cQLz5s1D7dq1g17AygzrYyOK6poks9uXaMEzt9mtFoUwY5VNGrwB2cpoktgvdFaTFMjebeo+ScFz3C6PLJzSF3P/rxP+1a9puItiCO92L+F0MJZ3hUjVJMl5Z3TXcBeBMEA5+b4KKhaLgHZ1E2EzMLaXB0xrkiZPnoxTpzyxQ5555hkMHToUn332GaKiovDRRx8Fu3yVGtZ85HJ7og3zCNbKNgC4zDG3RdmUQpJF3v85gwGrSWK/xM36JMlnMqvi5h4M+yRV0E0eaiVEYwQnxlAkwVncJp1IdB5NqOecSPVJkrsbJMbY0bZOAnacVI/7Em7tFwEkRFf8MAoVHdNC0u233+77u2vXrjhy5Ah2796NBg0aoEaNGkEtXGVHvrrNpaIpUTseCLkcTVKU1aIQZpSaJOWAzGp82MtZcxnPIVyOYnWbimBl2NxWMWWkcgHbT/zmNiZyf1kLsAY7AwkcRCAMa5eC6zrWQbeGSeEuChEgpoWkgwcPokmTJr7fsbGx6NKli8YVRKCwGiK3KKKoDLZ84WmS7FaLQgiS+yDxV7dZmPP8SSaQOElqJhHjmiQiXPDiaUWK/DGkTS1pn404I5sUve4e2aWvHNisFrx5a+dwF4MoBaaNhs2aNUODBg1wxx134L///S/2798finIRkPrYuEURhc4gOh+pwPNJ4jlKy4/xBmRW+9SjsWcj4gbVYlXTqFEsUxGp+SQZ1RCRJiky4GmSyhq2K7w/plvYyqEHdVmCCA+mhaRjx45h1qxZiImJwcsvv4wWLVqgXr16GD16ND744INQlLHSwsoGLreIIld4hCQACilIPrHxJjo2BEBSXBS2z0zD0gf7qaaR4/VdktebFdB+uLen72/jZkeacsKFdLWP8lhZU14E5oAibpMqiSBKjWkhqW7duhg9ejTef/997NmzB3v27MGgQYPw9ddf41//+lcoylhpcck1SSqr24IJLwQAAIVcIReK9IJJ2q0CqjhsCvOamlYIABwlaeWr+thrkmKj0KJWFQDA4Da1VPNiKS8TY0VE6rgtKI7pmpAq6cQv18ASBFE2mPZJys/Px6pVq7BixQqsWLECmzZtQqtWrXDfffehf//+IShi5UW+uq0shCSny5gEIZdt9IJJqmmMeMtEH05riaHtUjByXiZQqBSSrIzwZREEfHbX1Vi4/VRQV3aZjcpNGIV9diVHJI7bZUukP+fv7+2JkxevoE2dBMW5yC45QVQMTAtJVatWRVJSEkaPHo3HHnsMffr0QVISee6HArkmSS1OUpkQwBe8XJOkl8bLbd0bICkuyhdDSUuTJAiePZPuSG1kuFw1qjhwLq9IPyERdKIMOPMTfro0SEKXBoGNr9S6BFF6TAtJ6enpWLVqFb788ktkZWUhKysL/fv3R4sWLUJRvkqNZHWbxrYkZYKo+ZM74bGCkVpsIzvnuDcrv0+SdFWfJEhlAOGa3x7dGdO/34YHBip3WydCS/1qMbipSz3ER9tUI6eXJaSNIQhCC9NC0o8//ggA2Lp1K/744w8sXrwYTz31FGw2G/r374/PPvss2GWstIiKbUlCHwIgULg+Say5zYQmyStweYUkuZmR1SQFMs82S47HN/f01E9IBB1BEPDqLR1Vz+svaw+/YBUpRLqpkCAqAqaFJC/t27dHcXExioqKUFBQgEWLFuGrr74iISmIsIu6tDa4lRMXZUVekTmBKspq0V49J5ub5OMzN5gka25T0yRxhSR/mQCluc0iEZJo0qxMBDvYZEWWM8icSRClx/Tqtjlz5uD6669H9erV0aNHD3zxxRdo0aIFvvvuO5w5cyYUZay0sD5JoghcuqKy8kxGTJR52bdvi5q+VWJcdCYTnkaHXcmmqkniCE8WmSZJLiTxlpETBCGFXg2CKD2mZ9MvvvgC/fr1w913340+ffogMTExFOUiIF/dJmL/6cuGrnMY2OpDTucGVVEvKQZ7s43dQy41Na+l3PFZsv2IipDE80uxKHySZJokgTRJlZVgm9u0ZP9I71o9GlfD7qxczTAaBEGUDtNC0vr160NRDoIDq0m6kF+Evdm5hq6Lc1hN3adJjTjc1acxPs08op5IZxxOa1sLM69vi/b1/EIza2JTddzmhADwToQOFU0SOyeQkFSxqKibD4eCR4e1Qp2qMUhrm8I9X6dqTBmXiCAqHuZVDgBWrlyJ22+/HampqThx4gQA4NNPP8WqVauCWrjKDqtJev63XbiQLzW31agSpbjmoSEtkBwfrZlvQrRUNr5/YDM4bFbUS1IfVKvITHgKnyRBwNiejSTLlVkTm9rXLt9x2/O/mk8SC31EVyzK2keoPDs/x0bZ8K9+TdGoRhz3/MT+TXFLt3qYf+dVZVwygqg4mBaSvvvuO6SlpSEmJgabNm1CYWEhAODSpUt48cUXg17Ayozehq1v3toFd/f1bDacFGvH/dc0w33XNJeYtm7r0QCd6ldFz6bVAQApCdF4+rq2uL5jHQAelX16+9oAgNQmNdC+biJa1KqCz+/qgXZ1EzD3/zoBAB5Ma4EO9cyZVu2SOEnGQwB4NUhq5jYWck4lCD5xDhtevrkjBrRMDndRCKLcYtrc9vzzz2PevHkYM2YMvvzyS9/xXr164fnnnw9q4So7elu1OewWPJ7eGo+nt5YcZwWSif2aoj5nS4Obu9bDG7LdqRNj7fjl/t6+37/e38f3d3J8NH6+rzcaPfab4fIHKwQAaZIILyQTEwRRlpjWJO3Zswd9+/ZVHE9MTMTFixeDUSaiBLfOhq1qDtpRNjaqcVCL5MOIkcJICAA14Qnwm9vkcZLYe4fKJ6lvi5oAgPjogKNkEEGkZcnCgH90Ct7WMwRBEHqYngFSUlKwf/9+NGrUSHJ81apVaNKkSbDKRUAacZuHw8Z30Ga3fgiVEGHEl8OQJklFeAL8wl6BUz3mU6jq16RmFax8ZACqxSn9vojQodarfrqvF7IuFaj63wR8v/LrkkQQRBlgWpM0YcIETJ48GWvXroUgCDh58iQ+++wzPPTQQ5g4cWIoylhp0fNJUtMksea2UG39YFaTpFYOufA0sJXff0JNSCqrOEn1q8UizkGapEgg2m4NuoBEEAShh+kZ4LHHHoPb7cbAgQORn5+Pvn37wuFw4KGHHsL9998fijJWWnTNbfbwmduMYGVurlYM1gwXG2WVbFmhti0JffwTwUIr5AC5PxEEYVpIEgQBTzzxBB5++GHs378fly9fRps2bVClShVcuXIFMTEUmyNYuPSEJCvf3GYvE3Obfhojt2Y1SVMHtUDVWL95y2Hla5JYpRQ58lYwIsj+RX2LIIiAbQlRUVFo06YNAKCwsBBz5szByy+/jKysrKAVrjLzaeZhzPhlp2YaNU0Su/Q+nMEWE2PsGNKmFlxuETXjHdw0bPwkuQ+W39wm1STVT4pFvxY1UcVhU/XLIsonZS0iRZBMRhBEBGJYSCosLMSMGTOQkZGBqKgoPPLIIxgxYgTmz5+PJ554AlarFVOnTg1lWSsVT/20QzdNlErsIdb/xxpGx21BEPD+mG66abzINWdeIennLSdlFwEf/7O7wZIShDokIxEEoYVhIenpp5/Ge++9h0GDBmH16tUYOXIk7rzzTqxZswZz5szByJEjYVUx/xChwaLmDM0cFwKKqR4e5D5YVWP4K8uCvX8XQRAEQfAwLCR98803+OSTT3D99ddj+/bt6NChA4qLi7FlyxaKehxhsPukhcwnKQR5ys1tXRomcdNRd6u4tORslBxKyNxGEIQWhoWk48ePo2vXrgCAdu3aweFwYOrUqSQgRSA2iU9SGAtiErkmqWlN/pLvqrH2sigOUYb8PrkPDp7JQ48m1cv0vnWqau9zSBBE5cawkORyuRAV5Td/2Gw2VKlSJSSFIkoH65MUMsftEHyByzVJgiDgk392x5gP1/mOPTK0JVqlJAT/5kRYaV07Aa1rl/1zva5DHezLvoyujfhaS4IgKjeGhSRRFDFu3Dg4HJ5VSgUFBbjnnnsQFyf92v/++++DW0LCNLayEJJCAG+vur4tauLmrvXw7cbjADx70RFEsLBYBDyU1jLcxSAIIkIxLCSNHTtW8vv2228PemGI4CDVJIXmHqFw5VCLMJ7EmNfIvEsQBEGUFYaFpPnz54eyHEQQsZVBMMlQoBY8kw0wSRAEQRBlRTlaIE4YRRICIFSapBAsC1ITkpJISCLCAIWaIAiChKQKiFUiJJWfEABq5rZqcbSajSAIgih7SEiqgNjKYN1/KOLLpCTyl2PXS4oN/s0IgiAIQodKKyS9/fbbaNSoEaKjo9GjRw+sW7dO/6IIoEWtKri1e318NzFVNY21PAVHAvDRnVfh9qsb4J+9GnPPt6ubiMkDm+OFG9qVcckIgiCIykzAG9yWZ7766itMmzYN8+bNQ48ePTB37lykpaVhz549SE5ODnfxNKkaG4VZN3bQTGOzhF72FYNocOvfMhn9W2q3+9TBLYJ2P4IgCIIwgiEh6eeffzac4fXXXx9wYcqKOXPmYMKECbjzzjsBAPPmzcNvv/2GDz/8EI899liYS6eDAdmkvGmSCIIgCCISMSQkjRgxwlBmgiDA5XKVpjwhp6ioCBs3bsT06dN9xywWCwYNGoTMzExF+sLCQhQWFvp+5+TkAACcTiecTmdQy+bNTytft+jWv6/ofwbBLqPvFmLgeRupZ3mnMtQRqNj1dIv+6KYVuZ4sVM+KQ2WoI2CunoG0hSCGYi13BHPy5EnUrVsXq1evRmqq36/nkUcewR9//IG1a9dK0s+YMQMzZ85U5PP5558jNjZ0DsWTM/nya9N4EQ+00xZEzxYAz23yXP96anFIymUXRMy+OrIFYoIoDV8csGDNaY/pOtjvEUEQZU9+fj5uu+02XLp0CQkJxrZBqpQ+SWaYPn06pk2b5vudk5OD+vXrY8iQIYYb2ShOpxMZGRkYPHgwkLmcmyapWhLS07vr5tWm6wUkxUapbhIbKJMzFwMABKsV6elpAeXB1tNur5jL+ytDHYGKXc9VP+7AmtMnAACDBw+usPVkqcjPk6Uy1LMy1BEwV0+vJcgMAQlJeXl5+OOPP3D06FEUFRVJzj3wwAOBZFlm1KhRA1arFdnZ2ZLj2dnZSElJUaR3OBy+/epY7HZ7yDqeVr4WwWLovqnNQu+AXtr6h7INI4XKUEegYtbTyiyA8NatItaTB9Wz4lAZ6ggYq2cg7WBaSNq0aRPS09ORn5+PvLw8VKtWDWfPnkVsbCySk5MjXkiKiopC165dsXTpUp+vldvtxtKlS3HfffeFt3BGiBCf7HgHKSEJgiCIio3pteJTp07FddddhwsXLiAmJgZr1qzBkSNH0LVrV8yePTsUZQw606ZNw3/+8x98/PHH2LVrFyZOnIi8vDzfajdCnfnjrkKz5Cr4cNxV4S4KQRAEQYQU0+qAzZs347333oPFYoHVakVhYSGaNGmCl19+GWPHjsWNN94YinIGlf/7v//DmTNn8PTTTyMrKwudOnXCwoULUatWrXAXLeIZ0CoZA1pFdiwpgiAIgggGpjVJdrsdlhJbfXJyMo4ePQoASExMxLFjx4JbuhBy33334ciRIygsLMTatWvRo0ePcBeJIAiCIIgIwrQmqXPnzli/fj2aN2+Ofv364emnn8bZs2fx6aefol072jaCIAiCIIiKgWlN0osvvojatWsDAF544QUkJSVh4sSJOHPmDN57772gF5CQUamiWhEEQRBE+DCtSerWrZvv7+TkZCxcuDCoBSIIgiAIgogETGuSrrnmGly8eFFxPCcnB9dcc00wykRoESEhAAiCIAiiomNaSFqxYoUigCQAFBQUYOXKlUEpFEEQBEEQRLgxbG7bunWr7++dO3ciKyvL99vlcmHhwoWoW7ducEtHEAQRJgTS2hJEpcewkNSpUycIggBBELhmtZiYGLz55ptBLVxlxe0m72yCIAiCCDeGhaRDhw5BFEU0adIE69atQ82aNX3noqKikJycDKvVGpJCVjbcIglJBBF+SJVEEJUdw0JSw4YNAXj2OSNCi6YiieQngiAIgigTAtql9MCBA5g7dy527doFAGjTpg0mT56Mpk2bBrVwlRUtTVJSXMXfzZkgCIIgIgHTq9sWLVqENm3aYN26dejQoQM6dOiAtWvXom3btsjIyAhFGSsdWkLSjOvblmFJCIIgCKLyYlqT9Nhjj2Hq1Kn497//rTj+6KOPYvDgwUErXGXjj71nMHe7FfU75nHPP/ePtqidGFPGpSIIgiCIyolpTdKuXbswfvx4xfF//vOf2LlzZ1AKVVm569NNOJQrYPJXW7nni2nVG0GUGaOuqg8A6NYwKcwlIQgiXJjWJNWsWRObN29G8+bNJcc3b96M5OTkoBWsMnM+TxmsEwC6NKDBmiDKio71q2LdEwNRLTYKotsV7uIQBBEGDAtJzz77LB566CFMmDABd999Nw4ePIiePXsCAP766y+89NJLmDZtWsgKWplwyXySMqdfg2Pnr6Bj/arhKRBBVFKS46MBAE4SkgiiUmJYSJo5cybuuecePPXUU4iPj8err76K6dOnAwDq1KmDGTNm4IEHHghZQSsTcqta7cQY8kUiCIIgiDLGsJAklmg3BEHA1KlTMXXqVOTm5gIA4uPjQ1O6SgpF3CYIgiCI8GPKJ0mQbWZEwlFoYM1tkwZQ7CmCIAiCCAemhKQWLVooBCU558+fL1WBCMArI0XZLHg4rVV4C0MQBEEQlRRTQtLMmTORmJgYqrIQMiy0dRRBEARBhA1TQtKoUaNomX8ZYtHR2hEEQRAEEToMB5PUM7MRwcdKbU4QBEEQYcOwkCRq7CdGhAaSkQiCIAgifBg2t7nd7lCWg+BgIackgiAIgggbpvduI8oOMrcRBEEQRPggISmCIT8wgiAIgggfJCRFMGRtIwiCIIjwQUJSBEMhAAiCIAgifJCQFMFYSZVEEARBEGGDhKQIhhRJBEEQBBE+SEiKYMjcRhAEQRDhg4SkCIbMbQRBEAQRPkhIimBIkUQQBEEQ4YOEpAiGzG0EQRAEET5ISIpgKOI2QRAEQYQPEpIiGJKRCIIgCCJ8lAsh6fDhwxg/fjwaN26MmJgYNG3aFM888wyKiook6bZu3Yo+ffogOjoa9evXx8svv6zI65tvvkGrVq0QHR2N9u3bY8GCBWVVDdOQuY0gCIIgwke5EJJ2794Nt9uN9957Dzt27MBrr72GefPm4fHHH/elycnJwZAhQ9CwYUNs3LgRr7zyCmbMmIH333/fl2b16tW49dZbMX78eGzatAkjRozAiBEjsH379nBUSxdLuXg6BEEQBFExsYW7AEYYOnQohg4d6vvdpEkT7NmzB++++y5mz54NAPjss89QVFSEDz/8EFFRUWjbti02b96MOXPm4O677wYAvP766xg6dCgefvhhAMBzzz2HjIwMvPXWW5g3b17ZV0wH8kkiCIIgiPBRLoQkHpcuXUK1atV8vzMzM9G3b19ERUX5jqWlpeGll17ChQsXkJSUhMzMTEybNk2ST1paGn788UfV+xQWFqKwsND3OycnBwDgdDrhdDqDVBt1yuIeZY23ThWxbl4qQx0BqmdFg+pZcagMdQTM1TOQtiiXQtL+/fvx5ptv+rRIAJCVlYXGjRtL0tWqVct3LikpCVlZWb5jbJqsrCzVe82aNQszZ85UHF+8eDFiY2NLUw0O0sdx6eLFiPaZKi0ZGRnhLkLIqQx1BKieFQ2qZ8WhMtQRMFbP/Px80/mGVUh67LHH8NJLL2mm2bVrF1q1auX7feLECQwdOhQjR47EhAkTQl1ETJ8+XaJ9ysnJQf369TFkyBAkJCQE9V6TMxdLfteonoT09O5BvUck4HQ6kZGRgcGDB8Nut4e7OCGhMtQRoHpWNKieFYfKUEfAXD29liAzhFVIevDBBzFu3DjNNE2aNPH9ffLkSQwYMAA9e/aUOGQDQEpKCrKzsyXHvL9TUlI003jP83A4HHA4HIrjdrs95B3PIlgqdOcuizYMN5WhjgDVs6JB9aw4VIY6AsbqGUg7hFVIqlmzJmrWrGko7YkTJzBgwAB07doV8+fPh0W29Cs1NRVPPPEEnE6nryEyMjLQsmVLJCUl+dIsXboUU6ZM8V2XkZGB1NTU4FQoyNDqNoIgCIIIH+ViGj5x4gT69++PBg0aYPbs2Thz5gyysrIkvkS33XYboqKiMH78eOzYsQNfffUVXn/9dYmpbPLkyVi4cCFeffVV7N69GzNmzMCGDRtw3333haNautAGtwRBEAQRPsqF43ZGRgb279+P/fv3o169epJzoigCABITE7F48WJMmjQJXbt2RY0aNfD000/7lv8DQM+ePfH555/jySefxOOPP47mzZvjxx9/RLt27cq0PkahYJIEQRAEET7KhZA0btw4Xd8lAOjQoQNWrlypmWbkyJEYOXJkkEoWWkiTRBAEQRDho1yY2yorpEkiCIIgiPBBQlIEQ0ISQRAEQYQPEpIiGCs9HYIgCIIIGzQNRzDkk0QQBEEQ4YOEpAiGzG0EQRAEET5ISIpgSEgiCIIgiPBBQlIEQ+Y2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOr2wiCIAgifNA0HMGQuY0gCIIgwgcJSRGMQOY2giAIgggbJCRFMFYSkgiCIAgibJCQFMGQuY0gCIIgwgcJSREMrW4jCIIgiPBBQlIEQ6vbCIIgCCJ80DQcwZAmiSAIgiDCBwlJEYyFfJIIgiAIImyQkBTB0Oo2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOaJIIgCIIIHyQkRTCkSCIIgiCI8EFCUgRD5jaCIAiCCB8kJEUwFHGbIAiCIMIHCUkRDPkkEQRBEET4ICEpgiFzG0EQBEGEDxKSIhiSkQiCIAgifJCQFMGQTxJBEARBhA8SkiIY2ruNIAiCIMIHCUkRDGmSCIIgCCJ8kJAUwdDqNoIgCIIIHyQkRTAkIxEEQRBE+CAhKYIhcxtBEARBhA8SkiIYctwmCIIgiPBBQhJBEARBEAQHEpIIgiAIgiA4kJBEEARBEATBodwJSYWFhejUqRMEQcDmzZsl57Zu3Yo+ffogOjoa9evXx8svv6y4/ptvvkGrVq0QHR2N9u3bY8GCBWVUcoIgCIIgyhPlTkh65JFHUKdOHcXxnJwcDBkyBA0bNsTGjRvxyiuvYMaMGXj//fd9aVavXo1bb70V48ePx6ZNmzBixAiMGDEC27dvL8sqGIb8tgmCIAgifJQrIen333/H4sWLMXv2bMW5zz77DEVFRfjwww/Rtm1bjBo1Cg888ADmzJnjS/P6669j6NChePjhh9G6dWs899xz6NKlC956662yrAZBEARBEOUAW7gLYJTs7GxMmDABP/74I2JjYxXnMzMz0bdvX0RFRfmOpaWl4aWXXsKFCxeQlJSEzMxMTJs2TXJdWloafvzxR9X7FhYWorCw0Pc7JycHAOB0OuF0OktZK22cxa6Q3yMceOtUEevmpTLUEaB6VjSonhWHylBHwFw9A2mLciEkiaKIcePG4Z577kG3bt1w+PBhRZqsrCw0btxYcqxWrVq+c0lJScjKyvIdY9NkZWWp3nvWrFmYOXOm4vjixYu5wlrpkD6OLZs3w35iU5DvETlkZGSEuwghpzLUEaB6VjSonhWHylBHwFg98/PzTecbViHpsccew0svvaSZZteuXVi8eDFyc3Mxffr0MiqZn+nTp0u0Tzk5Oahfvz6GDBmChISEoN5rcuZiye9OnTohvWPtoN4jEnA6ncjIyMDgwYNht9vDXZyQUBnqCFA9KxpUz4pDZagjYK6eXkuQGcIqJD344IMYN26cZpomTZpg2bJlyMzMhMPhkJzr1q0bRo8ejY8//hgpKSnIzs6WnPf+TklJ8f3PS+M9z8PhcCjuCwB2uz3kHc9ms1bozl0WbRhuKkMdAapnRYPqWXGoDHUEjNUzkHYIq5BUs2ZN1KxZUzfdG2+8geeff973++TJk0hLS8NXX32FHj16AABSU1PxxBNPwOl0+hoiIyMDLVu2RFJSki/N0qVLMWXKFF9eGRkZSE1NDWKtCIIgCIKoCJQLn6QGDRpIflepUgUA0LRpU9SrVw8AcNttt2HmzJkYP348Hn30UWzfvh2vv/46XnvtNd91kydPRr9+/fDqq69i+PDh+PLLL7FhwwZJmACCIAiCIAignIUA0CIxMRGLFy/GoUOH0LVrVzz44IN4+umncffdd/vS9OzZE59//jnef/99dOzYEd9++y1+/PFHtGvXLowlJwiCIAgiEikXmiQ5jRo1giiKiuMdOnTAypUrNa8dOXIkRo4cGaqiEQRBEARRQagwmqTyDk/oIwiCIAgifJCQFCHwZKSUhOiyLwhBEARBEABISIoY5DLSuJ6N0KNJ9bCUhSAIgiAIEpIiBrm57e6+TcJUEoIgCIIgABKSIga5JslqEcJSDoIgCIIgPJCQFCHIfZIEkpEIgiAIIqyQkBQhiDJdkoWkJIIgCIIIKyQkRQhyTRIJSQRBEAQRXkhIihCUQlJ4ykEQBEEQhAcSkiIEhbmNpCSCIAiCCCskJEUIZG4jCIIgiMiChKQIQR4CgEQkgiAIgggvJCRFCPJgkqRIIgiCIIjwQkJShKDUJJGURBAEQRDhhISkCEHuk0QRtwmCIAgivJCQFCkwQtK7t3VClI0eDUEQBEGEE5qJIwQ2BMCAljXDWBKCIAiCIAASkiIGN6NJIkMbQRAEQYQfEpIiBHZ1G61sIwiCIIjwQ0JShMD6bQskJREEQRBE2CEhKUKQr24jCIIgCCK8kJAUIXgdtwVFxCSCIAiCIMIBCUmRAslGBEEQBBFRkJAUIXhlJPJGIgiCIIjIgISkCEEkKYkgCIIgIgoSkiIEv08SQRAEQRCRAAlJEYI3mCQJSQRBEAQRGZCQFCF4g0mSkEQQBEEQkQEJSREC+SQRBEEQRGRBQlKEQTISQRAEQUQGJCRFCBRxmyAIgiAiCxKSIgRa3UYQBEEQkQUJSREC+SQRBEEQRGRBQlKEQDISQRAEQUQWJCRFCBQCgCAIgiAiCxKSIgQKJkkQBEEQkUW5EpJ+++039OjRAzExMUhKSsKIESMk548ePYrhw4cjNjYWycnJePjhh1FcXCxJs2LFCnTp0gUOhwPNmjXDRx99VHYV0ISkJIIgCIKIJGzhLoBRvvvuO0yYMAEvvvgirrnmGhQXF2P79u2+8y6XC8OHD0dKSgpWr16NU6dOYcyYMbDb7XjxxRcBAIcOHcLw4cNxzz334LPPPsPSpUtx1113oXbt2khLSwtX1QD4HbdJRiIIgiCIyKBcCEnFxcWYPHkyXnnlFYwfP953vE2bNr6/Fy9ejJ07d2LJkiWoVasWOnXqhOeeew6PPvooZsyYgaioKMybNw+NGzfGq6++CgBo3bo1Vq1ahddeey38QlJY704QBEEQhJxyIST9/fffOHHiBCwWCzp37oysrCx06tQJr7zyCtq1awcAyMzMRPv27VGrVi3fdWlpaZg4cSJ27NiBzp07IzMzE4MGDZLknZaWhilTpqjeu7CwEIWFhb7fOTk5AACn0wmn0xm0OnrzEpi/Kyre+lXkelaGOgJUz4oG1bPiUBnqCJirZyBtUS6EpIMHDwIAZsyYgTlz5qBRo0Z49dVX0b9/f+zduxfVqlVDVlaWREAC4PudlZXl+5+XJicnB1euXEFMTIzi3rNmzcLMmTMVxxcvXozY2Nig1A8ATuYBgA0QgIyMjKDlG8lUhnpWhjoCVM+KBtWz4lAZ6ggYq2d+fr7pfMMqJD322GN46aWXNNPs2rULbrcbAPDEE0/gpptuAgDMnz8f9erVwzfffIN//etfISvj9OnTMW3aNN/vnJwc1K9fH0OGDEFCQkLQ7rM7Kxcvbc2EAGDw4MGw2+1ByzvScDqdyMjIqND1rAx1BKieFQ2qZ8WhMtQRMFdPryXIDGEVkh588EGMGzdOM02TJk1w6tQpAFIfJIfDgSZNmuDo0aMAgJSUFKxbt05ybXZ2tu+c93/vMTZNQkICV4vkvY/D4VAct9vtQe14VqvnUQghyDtSqQz1rAx1BKieFQ2qZ8WhMtQRMFbPQNohrEJSzZo1UbNmTd10Xbt2hcPhwJ49e9C7d28AHunx8OHDaNiwIQAgNTUVL7zwAk6fPo3k5GQAHvVbQkKCT7hKTU3FggULJHlnZGQgNTU1mNUKCDcFkyQIgiCIiKJcxElKSEjAPffcg2eeeQaLFy/Gnj17MHHiRADAyJEjAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNMmnCbrnnntw8OBBPPLII9i9ezfeeecdfP3115g6dWrY6qaApCSCIAiCiAjKheM2ALzyyiuw2Wy44447cOXKFfTo0QPLli1DUlISAMBqteLXX3/FxIkTkZqairi4OIwdOxbPPvusL4/GjRvjt99+w9SpU/H666+jXr16+OCDD8K+/B+gOEkEQRAEEWmUGyHJbrdj9uzZmD17tmqahg0bKsxpcvr3749NmzYFu3ilRqRISQRBEAQRUZQLc1tlgDRJBEEQBBFZkJAUIXj1SAJJSQRBEAQREZCQFCGIIpnbCIIgCCKSICEpQvBpksJaCoIgCIIgvJCQFCEIABw2C2z0RAiCIAgiIqApOULo3CAJ258ZhMc7ucJdFIIgCIIgQEISQRAEQRAEFxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIg/r+9O4+J6mrDAP7MgDMMKgyyo6CoFFwJgtJRm6aVqtRYtaRRg2YUW6Nii0vd4xZjMV1MbdNgbF3SaCVqxFrX4karVUAEBRfUikssiK1lcwFl3u8P401Hrw32AwYvzy+5CXPOmTvnmYOX15l7Z4iISAWLJCIiIiIVLJKIiIiIVLBIIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFQ4O3oCLxsRAQBUVFTU+74fPnyIe/fuoaKiAi1atKj3/TcVzSFnc8gIMKfWMKd2NIeMwIvlfPJ3+8nf8bpgkfSCKisrAQCBgYEOngkRERG9qMrKSri7u9dprE5epKQi2Gw2/PHHH2jdujV0Ol297ruiogKBgYG4ceMG3Nzc6nXfTUlzyNkcMgLMqTXMqR3NISPwYjlFBJWVlQgICIBeX7ezjfhK0gvS6/Vo165dgz6Gm5ubpn+pn2gOOZtDRoA5tYY5taM5ZATqnrOuryA9wRO3iYiIiFSwSCIiIiJSwSKpCTEajVi8eDGMRqOjp9KgmkPO5pARYE6tYU7taA4ZgYbPyRO3iYiIiFTwlSQiIiIiFSySiIiIiFSwSCIiIiJSwSKJiIiISAWLpCbim2++QYcOHeDi4oLo6GhkZWU5ekov5JdffsHQoUMREBAAnU6HHTt22PWLCBYtWgR/f3+YTCbExMTg0qVLdmPu3LmD+Ph4uLm5wWw2Y8KECaiqqmrEFP8uOTkZvXv3RuvWreHj44Phw4ejsLDQbsyDBw+QmJgIT09PtGrVCnFxcbh165bdmOvXr2PIkCFwdXWFj48PZs2ahUePHjVmlH+VkpKCnj17Kh/OZrFYsHfvXqVfCxnVrFixAjqdDtOmTVPatJB1yZIl0Ol0dltYWJjSr4WMAHDz5k2MGTMGnp6eMJlM6NGjB06ePKn0a+EY1KFDh2fWUqfTITExEYB21rK2thYLFy5EcHAwTCYTOnXqhGXLltl951qjraeQw6WmporBYJB169bJ2bNn5YMPPhCz2Sy3bt1y9NTqbM+ePbJgwQLZvn27AJC0tDS7/hUrVoi7u7vs2LFDTp8+Le+8844EBwfL/fv3lTGDBw+W8PBwOXHihPz666/SuXNnGT16dCMneb5BgwbJ+vXrpaCgQPLy8uTtt9+WoKAgqaqqUsZMmjRJAgMD5eDBg3Ly5El59dVXpW/fvkr/o0ePpHv37hITEyO5ubmyZ88e8fLyknnz5jkikqqdO3fK7t275eLFi1JYWCjz58+XFi1aSEFBgYhoI+PTsrKypEOHDtKzZ09JSkpS2rWQdfHixdKtWzcpLi5Wttu3byv9Wsh4584dad++vYwbN04yMzPlypUrsn//frl8+bIyRgvHoNLSUrt1TE9PFwBy+PBhEdHGWoqILF++XDw9PWXXrl1SVFQkW7dulVatWsmqVauUMY21niySmoA+ffpIYmKicru2tlYCAgIkOTnZgbP6754ukmw2m/j5+clnn32mtJWVlYnRaJTNmzeLiMi5c+cEgGRnZytj9u7dKzqdTm7evNloc38RpaWlAkAyMjJE5HGmFi1ayNatW5Ux58+fFwBy/PhxEXlcTOr1eikpKVHGpKSkiJubm1RXVzdugBfg4eEh3333nSYzVlZWSkhIiKSnp8vrr7+uFElaybp48WIJDw9X7dNKxjlz5kj//v2f26/VY1BSUpJ06tRJbDabZtZSRGTIkCGSkJBg1/buu+9KfHy8iDTuevLtNgerqalBTk4OYmJilDa9Xo+YmBgcP37cgTOrP0VFRSgpKbHL6O7ujujoaCXj8ePHYTabERUVpYyJiYmBXq9HZmZmo8+5LsrLywEAbdq0AQDk5OTg4cOHdjnDwsIQFBRkl7NHjx7w9fVVxgwaNAgVFRU4e/ZsI86+bmpra5Gamoq7d+/CYrFoMmNiYiKGDBlilwnQ1npeunQJAQEB6NixI+Lj43H9+nUA2sm4c+dOREVF4b333oOPjw8iIiLw7bffKv1aPAbV1NRg48aNSEhIgE6n08xaAkDfvn1x8OBBXLx4EQBw+vRpHD16FLGxsQAadz35BbcO9ueff6K2ttbulxYAfH19ceHCBQfNqn6VlJQAgGrGJ30lJSXw8fGx63d2dkabNm2UMU2JzWbDtGnT0K9fP3Tv3h3A4wwGgwFms9lu7NM51Z6HJ31NRX5+PiwWCx48eIBWrVohLS0NXbt2RV5enmYyAkBqaipOnTqF7OzsZ/q0sp7R0dHYsGEDQkNDUVxcjKVLl+K1115DQUGBZjJeuXIFKSkpmDFjBubPn4/s7Gx89NFHMBgMsFqtmjwG7dixA2VlZRg3bhwA7fy+AsDcuXNRUVGBsLAwODk5oba2FsuXL0d8fDyAxv2bwiKJ6D9ITExEQUEBjh496uipNIjQ0FDk5eWhvLwc27Ztg9VqRUZGhqOnVa9u3LiBpKQkpKenw8XFxdHTaTBP/vcNAD179kR0dDTat2+PLVu2wGQyOXBm9cdmsyEqKgqffPIJACAiIgIFBQVYvXo1rFarg2fXMNauXYvY2FgEBAQ4eir1bsuWLdi0aRN++OEHdOvWDXl5eZg2bRoCAgIafT35dpuDeXl5wcnJ6ZkrEG7dugU/Pz8Hzap+Pcnxbxn9/PxQWlpq1//o0SPcuXOnyT0PU6dOxa5du3D48GG0a9dOaffz80NNTQ3Kysrsxj+dU+15eNLXVBgMBnTu3BmRkZFITk5GeHg4Vq1apamMOTk5KC0tRa9eveDs7AxnZ2dkZGTgq6++grOzM3x9fTWT9Z/MZjNeeeUVXL58WTPr6e/vj65du9q1denSRXlbUWvHoGvXruHAgQN4//33lTatrCUAzJo1C3PnzsWoUaPQo0cPjB07FtOnT0dycjKAxl1PFkkOZjAYEBkZiYMHDyptNpsNBw8ehMViceDM6k9wcDD8/PzsMlZUVCAzM1PJaLFYUFZWhpycHGXMoUOHYLPZEB0d3ehzViMimDp1KtLS0nDo0CEEBwfb9UdGRqJFixZ2OQsLC3H9+nW7nPn5+Xb/eNPT0+Hm5vbMQb4psdlsqK6u1lTGAQMGID8/H3l5ecoWFRWF+Ph45WetZP2nqqoq/P777/D399fMevbr1++Zj+O4ePEi2rdvD0A7x6An1q9fDx8fHwwZMkRp08paAsC9e/eg19uXJ05OTrDZbAAaeT3/jxPQqZ6kpqaK0WiUDRs2yLlz52TixIliNpvtrkBo6iorKyU3N1dyc3MFgKxcuVJyc3Pl2rVrIvL4ck2z2Sw//vijnDlzRoYNG6Z6uWZERIRkZmbK0aNHJSQkpEldfjt58mRxd3eXI0eO2F2Ge+/ePWXMpEmTJCgoSA4dOiQnT54Ui8UiFotF6X9yCe7AgQMlLy9P9u3bJ97e3k3qEty5c+dKRkaGFBUVyZkzZ2Tu3Lmi0+nk559/FhFtZHyef17dJqKNrDNnzpQjR45IUVGRHDt2TGJiYsTLy0tKS0tFRBsZs7KyxNnZWZYvXy6XLl2STZs2iaurq2zcuFEZo4VjkMjjq5+DgoJkzpw5z/RpYS1FRKxWq7Rt21b5CIDt27eLl5eXzJ49WxnTWOvJIqmJ+PrrryUoKEgMBoP06dNHTpw44egpvZDDhw8LgGc2q9UqIo8v2Vy4cKH4+vqK0WiUAQMGSGFhod0+/vrrLxk9erS0atVK3NzcZPz48VJZWemANOrU8gGQ9evXK2Pu378vU6ZMEQ8PD3F1dZURI0ZIcXGx3X6uXr0qsbGxYjKZxMvLS2bOnCkPHz5s5DTPl5CQIO3btxeDwSDe3t4yYMAApUAS0UbG53m6SNJC1pEjR4q/v78YDAZp27atjBw50u7zg7SQUUTkp59+ku7du4vRaJSwsDBZs2aNXb8WjkEiIvv37xcAz8xdRDtrWVFRIUlJSRIUFCQuLi7SsWNHWbBggd3HFDTWeupE/vERlkREREQEgOckEREREalikURERESkgkUSERERkQoWSUREREQqWCQRERERqWCRRERERKSCRRIRERGRChZJRNQsXL16FTqdDnl5eQ32GOPGjcPw4cMbbP9E1LhYJBHRS2HcuHHQ6XTPbIMHD67T/QMDA1FcXIzu3bs38EyJSCucHT0BIqK6Gjx4MNavX2/XZjQa63RfJyenJvVN50TU9PGVJCJ6aRiNRvj5+dltHh4eAACdToeUlBTExsbCZDKhY8eO2LZtm3Lfp99u+/vvvxEfHw9vb2+YTCaEhITYFWD5+fl48803YTKZ4OnpiYkTJ6Kqqkrpr62txYwZM2A2m+Hp6YnZs2fj6W95stlsSE5ORnBwMEwmE8LDw+3mRERNG4skItKMhQsXIi4uDqdPn0Z8fDxGjRqF8+fPP3fsuXPnsHfvXpw/fx4pKSnw8vICANy9exeDBg2Ch4cHsrOzsXXrVhw4cABTp05V7v/FF19gw4YNWLduHY4ePYo7d+4gLS3N7jGSk5Px/fffY/Xq1Th79iymT5+OMWPGICMjo+GeBCKqP///9/USETU8q9UqTk5O0rJlS7tt+fLlIiICQCZNmmR3n+joaJk8ebKIiBQVFQkAyc3NFRGRoUOHyvjx41Ufa82aNeLh4SFVVVVK2+7du0Wv10tJSYmIiPj7+8unn36q9D98+FDatWsnw4YNExGRBw8eiKurq/z22292+54wYYKMHj36vz8RRNRoeE4SEb003njjDaSkpNi1tWnTRvnZYrHY9VksludezTZ58mTExcXh1KlTGDhwIIYPH46+ffsCAM6fP4/w8HC0bNlSGd+vXz/YbDYUFhbCxcUFxcXFiI6OVvqdnZ0RFRWlvOV2+fJl3Lt3D2+99Zbd49bU1CAiIuLFwxNRo2ORREQvjZYtW6Jz5871sq/Y2Fhcu3YNe/bsQXp6OgYMGIDExER8/vnn9bL/J+cv7d69G23btrXrq+vJ5kTkWDwniYg048SJE8/c7tKly3PHe3t7w2q1YuPGjfjyyy+xZs0aAECXLl1w+vRp3L17Vxl77Ngx6PV6hIaGwt3dHf7+/sjMzFT6Hz16hJycHOV2165dYTQacf36dXTu3NluCwwMrK/IRNSA+EoSEb00qqurUVJSYtfm7OysnHC9detWREVFoX///ti0aROysrKwdu1a1X0tWrQIkZGR6NatG6qrq7Fr1y6loIqPj8fixYthtVqxZMkS3L59Gx9++CHGjh0LX19fAEBSUhJWrFiBkJAQhIWFYeXKlSgrK1P237p1a3z88ceYPn06bDYb+vfvj/Lychw7dgxubm6wWq0N8AwRUX1ikUREL419+/bB39/fri00NBQXLlwAACxduhSpqamYMmUK/P39sXnzZnTt2lV1XwaDAfPmzcPVq1dhMpnw2muvITU1FQDg6uqK/fv3IykpCb1794arqyvi4uKwcuVK5f4zZ85EcXExrFYr9Ho9EhISMGLECJSXlytjli1bBm9vbyQnJ+PKlSswm83o1asX5s+fX99PDRE1AJ3IUx/sQUT0EtLpdEhLS+PXghBRveE5SUREREQqWCQRERERqeA5SUSkCTxzgIjqG19JIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFSwSCIiIiJS8T8IBxsauELk9QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(episode_rwds_ppo)\n",
    "plt.xlabel(\"Episode\")\n",
    "plt.ylabel(\"Total Reward\")\n",
    "plt.title(\"Total Rewards Per Episode\")\n",
    "plt.grid(True)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\91740\\AppData\\Local\\Temp\\ipykernel_8108\\1561640575.py:31: DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning disappear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly.\n",
      "  frames = [imageio.imread(path) for path in frames_paths]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Episode 1 evaluated, GIF saved to eval_gifs\\episode_1.gif.\n",
      "Episode 2 evaluated, GIF saved to eval_gifs\\episode_2.gif.\n",
      "Episode 3 evaluated, GIF saved to eval_gifs\\episode_3.gif.\n",
      "Episode 4 evaluated, GIF saved to eval_gifs\\episode_4.gif.\n",
      "Episode 5 evaluated, GIF saved to eval_gifs\\episode_5.gif.\n",
      "Episode 6 evaluated, GIF saved to eval_gifs\\episode_6.gif.\n",
      "Episode 7 evaluated, GIF saved to eval_gifs\\episode_7.gif.\n",
      "Episode 8 evaluated, GIF saved to eval_gifs\\episode_8.gif.\n",
      "Episode 9 evaluated, GIF saved to eval_gifs\\episode_9.gif.\n",
      "Episode 10 evaluated, GIF saved to eval_gifs\\episode_10.gif.\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIjCAYAAAB20vpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1LklEQVR4nOzdd3hT5fvH8XeS7gkUStmbQtmUVfYuQxEFERUZiijIVPwh4kJA3CAOREW2ytQvOFjKKnuVvaFllzILLV3J+f3x0JTSFlpoepL2fl1XrzxJT5JP0kPpnWcZNE3TEEIIIYQQQgghhN0x6h1ACCGEEEIIIYQQGZOiXQghhBBCCCGEsFNStAshhBBCCCGEEHZKinYhhBBCCCGEEMJOSdEuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYaekaBdCCCGEEEIIIeyUFO1CCCGEEEIIIYSdkqJdCCFEptauXYvBYGDt2rV6R7ELBoOBDz74QO8Ydqtv376ULVs2V5/TFudoVFQU3bt3x8/PD4PBwOTJk3Psse3FBx98gMFg4PLly3pHEUII8QBStAshhJ0xGAxZ+spKkfLRRx/xxx9/2DzzzJkz02RzcnKiRIkS9O3bl3Pnztn8+UX2pRRtmX1dvHhR74i6GTFiBCtWrGD06NHMmTOHDh062PT57vdzePXVV2363DmhR48eGAwGRo0apXeUdOLi4vjggw/kg0chhENz0juAEEKItObMmZPm+uzZs1m1alW626tWrfrAx/roo4/o3r07Xbt2zcmImfrwww8pV64c8fHxbNmyhZkzZxIWFsb+/ftxc3PLlQwie6ZOnYqXl1e62wsUKJDtx/rxxx+xWCw5kEpf//33H0888QQjR47Mteds164dvXv3Tnd75cqVcy3Dw4iJiWHZsmWULVuWX3/9lY8//hiDwaB3LKu4uDjGjh0LQMuWLfUNI4QQD0mKdiGEsDO9evVKc33Lli2sWrUq3e32qGPHjtSrVw+A/v37U7hwYT755BOWLl1Kjx49dE73YLGxsXh6euodI8fExcXh4eFx32O6d+9O4cKFc+T5nJ2dc+Rx9Hbp0qWH+tAiM/Hx8bi4uGA0Zj7AsXLlyg7xb/xeixcvxmw28/PPP9O6dWvWr19PixYt9I4lhBB5igyPF0IIBxQbG8sbb7xBqVKlcHV1JTAwkM8//xxN06zHGAwGYmNjmTVrlnWobd++fQGIjIxk0KBBBAYG4u7ujp+fH08//TQRERE5mrNZs2YAnDhxIs3thw8fpnv37hQqVAg3Nzfq1avH0qVLrd+/fv06JpOJKVOmWG+7fPkyRqMRPz+/NK9z4MCBBAQEWK9v2LCBp59+mtKlS+Pq6kqpUqUYMWIEt2/fTpOhb9++eHl5ceLECTp16oS3tzfPP/88AAkJCYwYMYIiRYrg7e1Nly5dOHv2bLrXd/PmTYYPH07ZsmVxdXXF39+fdu3asWvXrvu+LylD0w8fPkyPHj3w8fHBz8+PYcOGER8fn+74uXPnEhwcjLu7O4UKFaJnz56cOXMmzTEtW7akevXq7Ny5k+bNm+Ph4cHbb7993xxZkTJnfP78+bz99tsEBATg6elJly5d0mXIaE77b7/9RnBwMN7e3vj4+FCjRg2++uqrNMecPHmSp59+mkKFCuHh4UGjRo3466+/0mU5e/YsXbt2xdPTE39/f0aMGEFCQkKGubdu3UqHDh3w9fXFw8ODFi1asHHjxvu+1pRpHpqm8e2331r/3WQnZ8r79dtvv/HOO+9QokQJPDw8iImJue9zZ0VWz23Aem4VKVIEd3d3AgMDGTNmTLrjrl+/Tt++fSlQoAC+vr7069ePuLi4LGeaN28e7dq1o1WrVlStWpV58+ZleNzevXtp0aIF7u7ulCxZkvHjxzNjxgwMBkO63zv//PMPzZo1w9PTE29vbzp37syBAwfSHJPy7/fcuXN07doVLy8vihQpwsiRIzGbzQBERERQpEgRAMaOHWv9ecq6FEIIRyM97UII4WA0TaNLly6sWbOGl156idq1a7NixQrefPNNzp07x6RJkwA1zL5///40aNCAAQMGAFChQgUAtm/fzqZNm+jZsyclS5YkIiKCqVOn0rJlSw4ePPjA3tmsSvljvGDBgtbbDhw4QJMmTShRogRvvfUWnp6eLFiwgK5du7J48WKefPJJChQoQPXq1Vm/fj1Dhw4FICwsDIPBwNWrVzl48CDVqlUDVCGT8uEAwMKFC4mLi2PgwIH4+fmxbds2vv76a86ePcvChQvT5EtOTiY0NJSmTZvy+eefW193//79mTt3Ls899xyNGzfmv//+o3Pnzule36uvvsqiRYsYPHgwQUFBXLlyhbCwMA4dOkTdunUf+P706NGDsmXLMnHiRLZs2cKUKVO4du0as2fPth4zYcIE3n33XXr06EH//v2Jjo7m66+/pnnz5uzevTtNj/CVK1fo2LEjPXv2pFevXhQtWvSBGa5evZruNicnp3Q9zRMmTLDOW7506RKTJ0+mbdu2hIeH4+7unuFjr1q1imeffZY2bdrwySefAHDo0CE2btzIsGHDALXoW+PGjYmLi2Po0KH4+fkxa9YsunTpwqJFi3jyyScBuH37Nm3atOH06dMMHTqU4sWLM2fOHP777790z/vff//RsWNHgoODef/99zEajcyYMYPWrVuzYcMGGjRokGHe5s2bM2fOHF544YV0w9WzmjPFuHHjcHFxYeTIkSQkJODi4pLJT0CJj4/PcFE4Hx8f632zem7v3buXZs2a4ezszIABAyhbtiwnTpxg2bJlTJgwIc3j9+jRg3LlyjFx4kR27drFTz/9hL+/v/XndT/nz59nzZo1zJo1C4Bnn32WSZMm8c0336R5vefOnaNVq1YYDAZGjx6Np6cnP/30E66urukec86cOfTp04fQ0FA++eQT4uLimDp1Kk2bNmX37t1pPhQym82EhobSsGFDPv/8c1avXs0XX3xBhQoVGDhwIEWKFGHq1KkMHDiQJ598kqeeegqAmjVrPvC1CSGEXdGEEELYtddee027+9f1H3/8oQHa+PHj0xzXvXt3zWAwaMePH7fe5unpqfXp0yfdY8bFxaW7bfPmzRqgzZ4923rbmjVrNEBbs2bNfTPOmDFDA7TVq1dr0dHR2pkzZ7RFixZpRYoU0VxdXbUzZ85Yj23Tpo1Wo0YNLT4+3nqbxWLRGjdurFWqVCnN6y5atKj1+uuvv641b95c8/f316ZOnappmqZduXJFMxgM2ldffXXf1zZx4kTNYDBokZGR1tv69OmjAdpbb72V5tjw8HAN0AYNGpTm9ueee04DtPfff996m6+vr/baa6/d973JyPvvv68BWpcuXdLcPmjQIA3Q9uzZo2mapkVERGgmk0mbMGFCmuP27dunOTk5pbm9RYsWGqB9//332cqQ0VdgYKD1uJRzoESJElpMTIz19gULFmhAmve+T58+WpkyZazXhw0bpvn4+GjJycmZ5hg+fLgGaBs2bLDedvPmTa1cuXJa2bJlNbPZrGmapk2ePFkDtAULFliPi42N1SpWrJjmHLVYLFqlSpW00NBQzWKxWI+Ni4vTypUrp7Vr1+6B7w2Q7uea1Zwp71f58uUzPBcze77Mvn799dc0r+FeGZ3bzZs317y9vdPcpmlamvcj5ef/4osvpjnmySef1Pz8/LKU+/PPP9fc3d2t58XRo0c1QPv999/THDdkyBDNYDBou3fvtt525coVrVChQhqgnTp1StM09X4WKFBAe/nll9Pc/+LFi5qvr2+a21P+/X744Ydpjq1Tp44WHBxsvR4dHZ3u360QQjgaGR4vhBAO5u+//8ZkMll7oFO88cYbaJrGP//888DHuLtnNCkpiStXrlCxYkUKFCjwwKHd99O2bVuKFClCqVKl6N69O56enixdupSSJUsCqlf3v//+o0ePHty8eZPLly9z+fJlrly5QmhoKMeOHbOuNt+sWTOioqI4cuQIoHrUmzdvTrNmzdiwYQOget81TUvT0373a4uNjeXy5cs0btwYTdPYvXt3uswDBw5Mc/3vv/8GSPf+Dh8+PN19CxQowNatWzl//nx23yoAXnvttTTXhwwZkibDkiVLsFgs9OjRw/peXb58mYCAACpVqsSaNWvS3N/V1ZV+/fplK8PixYtZtWpVmq8ZM2akO6537954e3tbr3fv3p1ixYpZs2akQIECxMbGsmrVqkyP+fvvv2nQoAFNmza13ubl5cWAAQOIiIjg4MGD1uOKFStG9+7drcd5eHhYR5GkCA8P59ixYzz33HNcuXLF+p7FxsbSpk0b1q9f/1CL5WU1Z4o+ffpkOgIhI0888US6n8OqVato1aqV9ZisnNvR0dGsX7+eF198kdKlS6d5jowWiLt3dfpmzZpx5cqVLA3nnzdvHp07d7aeF5UqVSI4ODjdEPnly5cTEhJC7dq1rbcVKlTIOh0lxapVq7h+/TrPPvtsmvPdZDLRsGHDdOd7ZvlPnjz5wOxCCOFIZHi8EEI4mMjISIoXL56mgILU1eQjIyMf+Bi3b99m4sSJzJgxg3PnzqWZI37jxo2Hzvbtt99SuXJlbty4wc8//8z69evTDIE9fvw4mqbx7rvv8u6772b4GJcuXaJEiRLWQnzDhg2ULFmS3bt3M378eIoUKcLnn39u/Z6Pjw+1atWy3v/06dO89957LF26lGvXrqV57Htfm5OTk/UDhRSRkZEYjUbrVIIUgYGB6bJ++umn9OnTh1KlShEcHEynTp3o3bs35cuXf9BbBagi524VKlTAaDRapxUcO3YMTdPSHZfi3oXfSpQo8cBh2Pdq3rx5lhaiuzeDwWCgYsWK910HYdCgQSxYsICOHTtSokQJ2rdvT48ePdJsoRYZGUnDhg3T3ffu87l69epERkZSsWLFdIXnvT+XY8eOAapozsyNGzfSTNnIiqzmTFGuXLlsPX7JkiVp27btfY/JyrmdUrDeneV+7i3sU96Xa9eu4ePjk+n9Dh06xO7du+nduzfHjx+33t6yZUu+/fZbYmJirPePjIwkJCQk3WNUrFgxzfWUn13r1q0zfM5787i5uVnnrN+d/973RgghHJ0U7UIIkQ8NGTKEGTNmMHz4cEJCQvD19cVgMNCzZ89H2rKrQYMG1tXju3btStOmTXnuuec4cuQIXl5e1sceOXIkoaGhGT5Gyh/yxYsXp1y5cqxfv56yZcuiaRohISEUKVKEYcOGERkZyYYNG2jcuLF1VW6z2Uy7du24evUqo0aNokqVKnh6enLu3Dn69u2b7rW5urred0XvB+nRowfNmjXj999/Z+XKlXz22Wd88sknLFmyhI4dO2b78e4tSC0WCwaDgX/++QeTyZTu+Hu3astOz25u8Pf3Jzw8nBUrVvDPP//wzz//MGPGDHr37m2dB53TUn7Gn332WZqe3btltMVdTsvpn0V2z+2syui8AtJ8kJeRuXPnAmpP+xEjRqT7/uLFi7M96iPlNcyZMyfN4pIpnJzS/tmaWXYhhMhrpGgXQggHU6ZMGVavXs3NmzfT9LYfPnzY+v0Ume2XvGjRIvr06cMXX3xhvS0+Pp7r16/nWE6TycTEiRNp1aoV33zzDW+99Za1B9rZ2fmBvYqghrquX7+ecuXKUbt2bby9valVqxa+vr4sX76cXbt2WfdgBti3bx9Hjx5l1qxZaRYRu9/w7HuVKVMGi8XCiRMn0vTipgzTv1exYsUYNGgQgwYN4tKlS9StW5cJEyZkqWg/duxYmh7Z48ePY7FYrIttVahQAU3TKFeunO77daf0gqbQNI3jx48/cFEvFxcXHn/8cR5//HEsFguDBg1i2rRpvPvuu1SsWJEyZcpk+N7eez6XKVOG/fv3o2lamvP63vumjJDw8fHJ0jmWVVnNaStZPbdT/o3t37/fZlk0TeOXX36hVatWDBo0KN33x40bx7x586xFe5kyZdL0xqe497aUn52/v3+O/ezsac94IYR4WDKnXQghHEynTp0wm8188803aW6fNGkSBoMhTbHo6emZYSFuMpnS9aR9/fXX1q2SckrLli1p0KABkydPJj4+Hn9/f1q2bMm0adO4cOFCuuOjo6PTXG/WrBkRERHMnz/fOlzeaDTSuHFjvvzyS5KSktLMZ0/pebv7tWmalm6LsftJef/u3m4OYPLkyWmum83mdMPt/f39KV68eKbbkN3r22+/TXP966+/TpPhqaeewmQyMXbs2HQ/L03TuHLlSpaeJyfMnj2bmzdvWq8vWrSICxcu3PfDiXvzGY1Ga5Gf8h516tSJbdu2sXnzZutxsbGx/PDDD5QtW5agoCDrcefPn2fRokXW4+Li4vjhhx/SPEdwcDAVKlTg888/59atW+ky3XuOZVVWc9pKVs/tIkWK0Lx5c37++WdOnz6d5nsP6j3Pqo0bNxIREUG/fv3o3r17uq9nnnmGNWvWWNd6CA0NZfPmzYSHh1sf4+rVq+nmvoeGhuLj48NHH31EUlJSuud9mJ9dyo4QOfmBpBBC5DbpaRdCCAfz+OOP06pVK8aMGUNERAS1atVi5cqV/O9//2P48OFp5mIHBwezevVqvvzyS+tw84YNG/LYY48xZ84cfH19CQoKYvPmzaxevRo/P78cz/vmm2/y9NNPM3PmTF599VW+/fZbmjZtSo0aNXj55ZcpX748UVFRbN68mbNnz7Jnzx7rfVMK8iNHjvDRRx9Zb2/evDn//PMPrq6u1K9f33p7lSpVqFChAiNHjuTcuXP4+PiwePHibM1xrV27Ns8++yzfffcdN27coHHjxvz777/pegVv3rxJyZIl6d69O7Vq1cLLy4vVq1ezffv2NCMY7ufUqVN06dKFDh06sHnzZus2cylz9CtUqMD48eMZPXo0ERERdO3aFW9vb06dOsXvv//OgAEDGDlyZJZfW0YWLVqU4XDxdu3apdkyrlChQjRt2pR+/foRFRXF5MmTqVixIi+//HKmj92/f3+uXr1K69atKVmyJJGRkXz99dfUrl3bOhf8rbfe4tdff6Vjx44MHTqUQoUKMWvWLE6dOsXixYut0xdefvllvvnmG3r37s3OnTspVqwYc+bMSbc9odFo5KeffqJjx45Uq1aNfv36UaJECc6dO8eaNWvw8fFh2bJl2X6fsprzYR09etQ65PxuRYsWpV27dtk6t6dMmULTpk2pW7cuAwYMoFy5ckRERPDXX3+lKZwf1rx58zCZTBlugwjQpUsXxowZw2+//cbrr7/O//3f/zF37lzatWvHkCFDrFu+lS5dmqtXr1p7w318fJg6dSovvPACdevWpWfPnhQpUoTTp0/z119/0aRJk3QfVj6Iu7s7QUFBzJ8/n8qVK1OoUCGqV6+e5Tn/QghhF3J1rXohhBDZdu+Wb5qmtkYaMWKEVrx4cc3Z2VmrVKmS9tlnn6XZ0knTNO3w4cNa8+bNNXd3dw2wbv927do1rV+/flrhwoU1Ly8vLTQ0VDt8+LBWpkyZNFvEZXfLt+3bt6f7ntls1ipUqKBVqFDBuvXXiRMntN69e2sBAQGas7OzVqJECe2xxx7TFi1alO7+/v7+GqBFRUVZbwsLC9MArVmzZumOP3jwoNa2bVvNy8tLK1y4sPbyyy9re/bs0QBtxowZ1uP69OmjeXp6Zvh6bt++rQ0dOlTz8/PTPD09tccff1w7c+ZMmq2jEhIStDfffFOrVauW5u3trXl6emq1atXSvvvuu/u+V5qWut3WwYMHte7du2ve3t5awYIFtcGDB2u3b99Od/zixYu1pk2bap6enpqnp6dWpUoV7bXXXtOOHDliPaZFixZatWrVHvjc92bI7CvlZ55yDvz666/a6NGjNX9/f83d3V3r3Llzui3F7t3ybdGiRVr79u01f39/zcXFRStdurT2yiuvaBcuXEhzvxMnTmjdu3fXChQooLm5uWkNGjTQ/vzzz3SZIyMjtS5dumgeHh5a4cKFtWHDhmnLly/P8BzdvXu39tRTT2l+fn6aq6urVqZMGa1Hjx7av//++8D3hgy2fMtqzpT3a+HChQ98nrufL7OvFi1aWI/L6rmtaZq2f/9+7cknn7RmDQwM1N59913r91N+/tHR0Wnul/JvOWUbtnslJiZqfn5+Gf7bu1u5cuW0OnXqWK/v3r1ba9asmebq6qqVLFlSmzhxojZlyhQN0C5evJjmvmvWrNFCQ0M1X19fzc3NTatQoYLWt29fbceOHdZjMvv3m/K67rZp0yYtODhYc3Fxke3fhBAOyaBpOTRWSgghhBBZ8sEHHzB27Fiio6OztHK7ntauXUurVq1YuHBhmu3WhHhUw4cPZ9q0ady6dUsWlRNCiPuQOe1CCCGEEMKmbt++neb6lStXmDNnDk2bNpWCXQghHkDmtAshhBBCCJsKCQmhZcuWVK1alaioKKZPn05MTAzvvvuu3tGEEMLuSdEuhBBCCCFsqlOnTixatIgffvgBg8FA3bp1mT59Os2bN9c7mhBC2D2Z0y6EEEIIIYQQQtgpmdMuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVz2gGLxcL58+fx9vbGYDDoHUcIIYQQQgghRB6naRo3b96kePHiGI2Z96dL0Q6cP3+eUqVK6R1DCCGEEEIIIUQ+c+bMGUqWLJnp96VoB7y9vQH1Zvn4+OicRtibpKQkVq5cSfv27XF2dtY7jhA2Jee7yE/kfBf5iZzvIr9wpHM9JiaGUqVKWevRzEjRDtYh8T4+PlK0i3SSkpLw8PDAx8fH7v/hC/Go5HwX+Ymc7yI/kfNd5BeOeK4/aIq2LEQnhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYadkTnsWmc1mkpKS9I4h7mIymXBycpJt+oQQQgghhBB5lhTtWXDr1i3Onj2Lpml6RxH38PDwoFixYri4uOgdRQghhBBCCCFynBTtD2A2mzl79iweHh4UKVJEenXthKZpJCYmEh0dzalTp6hUqRJGo8z2EEIIIYQQQuQtUrQ/QFJSEpqmUaRIEdzd3fWOI+7i7u6Os7MzkZGRJCYm4ubmpnckIYQQQgghhMhR0jWZRdLDbp+kd10IIYQQQgiRl0nFI4QQQgghhBBC2Ckp2oUQQgghhBBCCDslc9pzidmise3UVS7djMff240G5QphMsqQeyGEEEIIIYQQmZOe9lywfP8Fmn7yH8/+uIVhv4Xz7I9baPrJfyzff8Hmz71582ZMJhOdO3e2+XNlJiIiAoPBQHh4+AOPHTp0KMHBwbi6ulK7dm2bZxNCCCGEEEIIeyZFu40t33+BgXN3ceFGfJrbL96IZ+DcXTYv3KdPn86QIUNYv34958+ft+lz5ZQXX3yRZ555Ru8YQgghhBBCCKE7KdqzSdM04hKTs/R1Mz6J95ceQMvoce5cfrD0IDfjk7L0eJqW0SNl7tatW8yfP5+BAwfSuXNnZs6cme6YpUuXUqlSJdzc3GjVqhWzZs3CYDBw/fp16zFhYWE0a9YMd3d3SpUqxdChQ4mNjbV+v2zZsnz00Ue8+OKLeHt7U7p0aX744Qfr98uVKwdAnTp1MBgMtGzZMtPMU6ZM4bXXXqN8+fLZeq1CCCFEtljMGCLDKHF1M4bIMLCY9U4khO3I+S7yizx6rtvNnPaPP/6Y0aNHM2zYMCZPngxAfHw8b7zxBr/99hsJCQmEhoby3XffUbRoUev9Tp8+zcCBA1mzZg1eXl706dOHiRMn4uRkm5d2O8lM0HsrcuSxNOBiTDw1PliZpeMPfhiKh0vWX9eCBQuoUqUKgYGB9OrVi+HDhzN69Gjr9nWnTp2ie/fuDBs2jP79+7N7925GjhyZ5jFOnDhBhw4dGD9+PD///DPR0dEMHjyYwYMHM2PGDOtxX3zxBePGjePtt99m0aJFDBw4kBYtWhAYGMi2bdto0KABq1evplq1ari4uGT5NQghhBA57uBSWD4Kp5jz1AOInAo+xaHDJxDURe90QuQsOd9FfpGHz3W76Gnfvn0706ZNo2bNmmluHzFiBMuWLWPhwoWsW7eO8+fP89RTT1m/bzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvvdx+CXZp+vTp9OrVC4AOHTpw48YN1q1bZ/3+tGnTCAwM5LPPPiMwMJCePXvSt2/fNI8xceJEnn/+eYYPH06lSpVo3LgxU6ZMYfbs2cTHpw7579SpE4MGDaJixYqMGjWKwoULs2bNGgCKFCkCgJ+fHwEBARQqVMjGr1wIIYTIxMGlsKA3xNwzZSzmgrr94FJ9cglhC3K+i/wij5/ruve037p1i+eff54ff/yR8ePHW2+/ceMG06dP55dffqF169YAzJgxg6pVq7JlyxYaNWrEypUrOXjwIKtXr6Zo0aLUrl2bcePGMWrUKD744AOb9Oi6O5s4+GFolo7dduoqfWdsf+BxM/vVp0G5Bxey7s6mLD0vwJEjR9i2bRu///47AE5OTjzzzDNMnz7dOjz9yJEj1K9fP839GjRokOb6nj172Lt3L/PmzbPepmkaFouFU6dOUbVqVYA0H7gYDAYCAgK4dOlSlvMKIYQQNmcxw/JRkOnENQMsfwuqdAZj1v/PFcIuyfku8ot8cK7rXrS/9tprdO7cmbZt26Yp2nfu3ElSUhJt27a13lalShVKly7N5s2badSoEZs3b6ZGjRpphsuHhoYycOBADhw4QJ06dTJ8zoSEBBISEqzXY2JiAEhKSiIpKSnNsUlJSdYi1WKxAODmlLUBCk0q+BHg40ZUTHyGp5ABCPB1o0kFvyxt/6ZpWpbntf/0008kJydTvHjxNPd3dXVlypQp+Pr6Wh8v5XUB1nbK67116xYDBgxgyJAh6Z6jdOnS1uOdnJzSPI7BYMBsNqd53+5uZ+W13p0nMxaLBU3TSEpKwmSyzT/ClHPi3nNDiLxIzneRlxkiw3C6txcmDQ1izpF8cj1amaa5lksIW5DzXeQXjnyuZ/XvLV2L9t9++41du3axfXv63uiLFy/i4uJCgQIF0txetGhRLl68aD3m7oI95fsp38vMxIkTGTt2bLrbV65ciYeHR5rbnJycCAgI4NatWyQmJmbpdd3tzTZlGfn7YQyk/ewnpUQf2bossbduZvtx7yc5OZnZs2czfvx4WrVqleZ7vXr1YsaMGbz44ouULVuWVatWWT+0ANi4cSMAN2/exGg0Ur16dfbt24e/v3+654mPjyc+Ph6LxUJ8fHyaxzGbzSQkJBATE2P9gCQmJibNMfeTkJCA2Wx+4PGJiYncvn2b9evXk5ycnKXHflirVq2y6eMLYU/kfBd5UYmrm9U8xwcI37CCcwey9v+VEPZKzneRXzjyuR4XF5el43Qr2s+cOcOwYcNYtWoVbm5uufrco0eP5vXXX7dej4mJoVSpUrRv3x4fH580x8bHx3PmzBm8vLweKueT9X1wd3fnwz8PcTEmdQ54gK8b73auSofqAQ//QjLxxx9/cP36dQYNGoSvr2+a73Xv3p1ff/2V4cOHM2TIEL777jvryu/h4eH89ttvAPj4+ODj48OYMWNo3LgxY8aM4aWXXsLT09M6JeHrr78GwGg04ubmlua9M5lMuLq64uPjg4eHB+7u7oSFhREYGIibm1u6XCmOHz/OrVu3uHbtGomJiZw8eRKAoKCgDKc7xMfH4+7uTvPmzW12HiUlJbFq1SratWuHs7OzTZ5DCHsh57vIywyRPmphogeo3SyUWnbWGyNEdsn5LvILRz7Xs9qhqVvRvnPnTi5dukTdunWtt5nNZtavX88333zDihUrSExM5Pr162l626OioggIUIVuQEAA27ZtS/O4UVFR1u9lxtXVFVdX13S3Ozs7p/sj1Ww2YzAYMBqNGI0Pt25fp5rFCa1ejG2nrnLpZjz+3m40KFcoS0PiH8aMGTNo27YtBQsWTPe97t2789lnn7F//35q1qzJokWLeOONN5gyZQohISGMGTOGgQMH4u7ujtFopHbt2qxbt44xY8bQokULNE2jQoUKPPPMM2nej5T36G4pt7m4uDBlyhQ+/PBD3n//fZo1a8batWszzD5gwIA0i+UFBwcDaqX7smXLpjveaDRiMBgy/NnltNx4DiHshZzvIk8q31ytJJzpMEoD+BTHqXxzh533KIRV+ebgXQxuXsjkADnfRR7hwL/bs/q3lm5Fe5s2bdi3b1+a2/r160eVKlUYNWoUpUqVwtnZmX///Zdu3boBauG006dPExISAkBISAgTJkzg0qVL1uHbq1atwsfHh6CgoNx9QQ9gMhoIqeCXK8+1bNmyTL/XoEGDNPPiu3TpQpcuqVsgTJgwgZIlS6bpta5fvz4rV2a+LV1ERES628LDw9Nc79+/P/37939g9syKeSGEEOKRGU0QOhEW9sn8mA4f290fdUI8FKMJKrWHXbMyP0bOd5EXGE3Q9kNYklGtcaeT1MHPdd2Kdm9vb6pXr57mNk9PT/z8/Ky3v/TSS7z++usUKlQIHx8fhgwZQkhICI0aNQKgffv2BAUF8cILL/Dpp59y8eJF3nnnHV577bUMe9JFet999x3169fHz8+PjRs38tlnnzF48GC9YwkhhBC24ep9p5HBajNPfu/we/kKYWVOhlN3Ri+6+UL8jbTfbzBAzneRd1w7pS4NJtDMqbf7FFcFu4Of67qvHn8/kyZNwmg00q1bNxISEggNDeW7776zft9kMvHnn38ycOBAQkJC8PT0pE+fPnz44Yc6pnYsx44dY/z48Vy9epXSpUvzxhtvMHr0aL1jCSGEELYR/ou6rNeP5CpdCN+wnOBrf2GIOXOfYcRCOKCDf8C1CPDwg6F7SD67g/ANK6hTMBZT+Gw4tAzafgAuHg94ICHs3M2LEDZZtZ+aRrJ7YcI3rKB2s1C7HBL/MOyqaL93aLSbmxvffvst3377bab3KVOmDH///beNk+VdkyZNYtKkSXrHEEIIIWwv/gYc/lO16/RC86/JuQMx1K5ZHadlg2HLVGg4EJxzd4FcIXKcpsHGyard4BVw80Yr05RzB2Ko1b41plNr4cZp2PwttHhTz6RCPLo1EyApFkrWh+rd0ZKT1blepmmeKNgBHm5lNSGEEEIIR3Pgd0iOh8KBUDx1IVyt2lPgUwJuRcHe33QMKEQOOfEfXNwHzh7Q4OW033Nyg7bvq3bYJLgZlfv5hMgpUQdg91zVbj8BDLZZ6FtvUrQLIYQQIn8I/1Vd1n4u7R92JhcIubOey8avwGJOf18hHEnYnVGUwX3Bo1D671fvBiWCVe/kmgm5Gk2IHKNpsGIMaBYI6gqlG+qdyGakaBdCCCFE3nflBJzZAgYj1Hwm/ffr9ga3AnD1pJrrK4SjOrcTIjaA0QlCXsv4GIMBQj9S7d1zIOpg7uUTIqccXw0n16gPXtt+oHcam5KiXQghhBB53547vezlW4FPsfTfd/VSq2mDmgusaemPEcIRpCzIVeNp8C2Z+XGlG0HQE6qXcuU7uRJNiBxjTk49bxsMgELl9M1jY1K0CyGEECJvs1hgz5256rWfy/y4hq+Akzuc3w2n1udONiFy0uXjqSNFmgx78PFtPwCjM5z4F46ttmk0IXLU7tkQfRjcC0LzkXqnsTkp2oUQQgiRt0VsgBtnwNUXqnTO/DjPwlD3BdUOk51VhAPa9BWgQeWO4F/1wccXKq8+rALVa2lOtmk8IXJEfAysuTO9o+VoVbjncVK05xaLGU5tgH2L1KUsciOEEELkjpSh8dWfBGf3+x8bMhgMJjVP8ny4zaMJkWNuXkwdUdJ0eNbv13ykKnqiD6n57ULYu42TITYa/CpCvRf1TpMrpGjPDQeXwuTqMOsxWPySupxcXd1uY5s3b8ZkMtG58316FmwsIiICg8FAeHj4fY/bs2cPzz77LKVKlcLd3Z2qVavy1Vdf5U5IIYQQeVPCTTj4P9WudZ+h8SkKloHqT6n2Rvk/SDiQLd+BORFKNVLz1bPKvSC0GKXaayaofzNC2KsbZ2Hzt6rd7kMwOeubJ5dI0W5rB5fCgt4Qcz7t7TEX1O02LtynT5/OkCFDWL9+PefPn3/wHXS0c+dO/P39mTt3LgcOHGDMmDGMHj2ab775Ru9oQgghHNXBpZAUB4UqQKkGWbtPk+F37vuHWk1eCHt3+zps/1m1m47I/v3rvaSGysdGpy5kJ4Q9+vdDSI6HMk0hsJPeaXKNFO3ZpWmQGJu1r/gY+Of/gIxWoL1z2/JR6risPF42V7K9desW8+fPZ+DAgXTu3JmZM2emO2bp0qVUqlQJNzc3WrVqxaxZszAYDFy/ft16TFhYGM2aNcPd3Z1SpUoxdOhQYmNjrd8vW7YsH330ES+++CLe3t6ULl2aH374wfr9cuXUao516tTBYDDQsmXLDPO++OKLfPXVV7Ro0YLy5cvTq1cv+vXrx5IlS7L1uoUQQgirlKHxtZ9Nuzf7/QRUh4rt1Kram762XTYhcsqOnyHxJhSpCpXaZ//+Ti7Qbpxqb/5G9WYKYW/O7YS981U7dHzWf6fnAU56B3A4SXHwUfEcejBN9cB/XCprh799Hlw8s/zoCxYsoEqVKgQGBtKrVy+GDx/O6NGjMdw5wU+dOkX37t0ZNmwY/fv3Z/fu3YwcmXb1xRMnTtChQwfGjx/Pzz//THR0NIMHD2bw4MHMmDHDetwXX3zBuHHjePvtt1m0aBEDBw6kRYsWBAYGsm3bNho0aMDq1aupVq0aLi4uWX4NN27coFChQlk+XgghhLC6FqEWocMANXtm775Nh8PxVbB7nlroyMvfBgGFyAFJ8bBlqmo3GQbGh+yTq9IZyjSByI3w7zh4alrOZRTiUWkarLizxVvNnlC8jr55cpn0tOdh06dPp1evXgB06NCBGzdusG7dOuv3p02bRmBgIJ999hmBgYH07NmTvn37pnmMiRMn8vzzzzN8+HAqVapE48aNmTJlCrNnzyY+Pt56XKdOnRg0aBAVK1Zk1KhRFC5cmDVr1gBQpEgRAPz8/AgICMhyEb5p0ybmz5/PgAEDHuVtEEIIkV/tudMjU645FMjiB+QpyjSBkvXBnABbv8/5bELklD2/Quwl8CkJNbo//OMYDNB+vGrv/Q3O7cqZfELkhMN/wulN4OQGbd7VO02uk5727HL2UD3eWRG5CeZl4Zfn84ugTOOsPXcWHTlyhG3btvH7778D4OTkxDPPPMP06dOtw9OPHDlC/fr109yvQYO08/327NnD3r17mTdvnvU2TdOwWCycOnWKqlXVdiI1a9a0ft9gMBAQEMClS5eynPde+/fv54knnuD999+nffuHGOYlhBAif9M02POLat9vb/bMGAxqbvv852HbT6rt5pOTCYV4dBYzbJqi2o0HP/qiXCXqQs1n1BDkle9A37/y1RBkYaeSE2HVe6rdeAj4ltQ3jw6kaM8ugyHrQ9QrtAaf4mrRuQzntRvU9yu0BqMpJ1Myffp0kpOTKV48dSi/pmm4urryzTff4Ovrm6XHuXXrFq+88gpDhw5N973SpUtb287Oaf+TMBgMWCyWh8p+8OBB2rRpw4ABA3jnnXce6jGEEELkc6c3q+HxLl5Q9fGHe4zATlC4Mlw+CjtnQpP0/xcKoatDS9Viie4FoW7vnHnMNu+pHRciN8Lhv6DqYznzuEI8rB3T1Xnu6a+mgORDMjzelowm6PDJnSv3fkp553qHj3O8YE9OTmb27Nl88cUXhIeHW7/27NlD8eLF+fVXtShPYGAgO3bsSHPf7du3p7let25dDh48SMWKFdN9ZXVuespxZvOD96Y/cOAArVq1ok+fPkyYMCFLjy+EEEKkE35nhFhQ12ytB5OG0QiN7xTqW76D5IQciSZEjtC01JXeGwx4+PP8Xr4lIeQ11V71nurlFEIvt6/Bujv1VOsx4Oqtbx6dSNFua0FdoMds8CmW9naf4ur2oC45/pR//vkn165d46WXXqJ69eppvrp168b06dMBeOWVVzh8+DCjRo3i6NGjLFiwwLrCfMpidaNGjWLTpk0MHjyY8PBwjh07xv/+9z8GDx6c5Tz+/v64u7uzfPlyoqKiuHHjRobH7d+/n1atWtG+fXtef/11Ll68yMWLF4mOjn60N0QIIUT+khgHB+7szf4wQ+PvVrMHeBeHmxdSVy0Wwh6cXAsXwsHJHRq8krOP3XQEeBaBqyfUyvRC6GX956pw9w+COi/onUY3UrTnhqAuMHw/9PkTuk1Xl8P32aRgBzU0vm3bthkOge/WrRs7duxg7969lCtXjkWLFrFkyRJq1qzJ1KlTGTNmDACurq6Amqu+bt06jh49SrNmzahTpw7vvfdemmH3D+Lk5MSUKVOYNm0axYsX54knnsjwuEWLFhEdHc3cuXMpVqyY9eveefdCCCHEfR3+U21/VaAMlA55tMdycoWQQaq9cQo85NQvIXLcxsnqsm5v8PTL2cd29YZW6m9C1n2siiYhctuVE7D1zi4G7cfl+OhkRyJz2nOL0QTlmuXKUy1btizT7zVo0ADtrv3eu3TpQpcuqR8eTJgwgZIlS+Lm5ma9rX79+qxcuTLTx4yIiEh3W3h4eJrr/fv3p3///vfN/cEHH/DBBx/c9xghhBDigVKGxtd+7uG3v7pbcF9Y/xlcOQZH/nr4OfJC5JTzu1VPu8GUOpQ9p9V5QRVM0YdUb2eoTFsUuWz1B2BJggptoGJbvdPoSnra87nvvvuO7du3c/LkSebMmcNnn31Gnz599I4lhBBCPJwbZ+Hkne1Na2Vzb/bMuHpD/ZdVO2ySmksshJ42fqUuq3eDgmVs8xwmp9Qt4LZOUwuBCZFbIjerhRYNxtTzMB+Toj2fO3bsGE888QRBQUGMGzeON954Q3q7hRBCOK49vwGa2me9YNmce9yGr6r9gc/thIiwnHtcIbLrygm1ujtA0+G2fa5KbdUuR5Yk1espRG6wWGDlnekZdXtD0SB989gBKdrzuUmTJnH+/Hni4+M5evQo7777Lk5OMmtCCCGEA9I02KN2SHnkBeju5VUEaj+v2ilziYXQw6avQbNApfZQtJrtn6/9eNXbefB/cHqL7Z9PiANL1AekLl6payvkc1K0CyGEECJvOLsdrhwHZw8IynjR00fSeIgqXo6vhov7cv7xhXiQm1EQ/otqNxmeO89ZtBrU6aXaK8bI9BBhW0nxsHqsajcdDl7+usaxF1K0Z5Emv6DskvxchBBCWKUUM1W72GYv30LloNqTqp2yP7YQuWnrVDAnQMkGUKZx7j1vq3fA2RPO7YD9i3PveUX+s3Uq3DgNPiWgkY0WWXRAUrQ/gMmkthZITEzUOYnISFxcHADOzs46JxFCCKGrpHjYv0S1az9ru+dpMkxdHlgC1yJs9zxC3Cs+Brbf2TO96XAwGHLvub2Lqr3bQfWCJsXn3nOL/ONWNKz/QrXbvAcuHvrmsSMyefkBnJyc8PDwIDo6GmdnZ4w5sXWMeGSaphEXF8elS5coUKCA9cMVIYQQ+dSRvyDhBviUhLLNbfc8xWqphblO/AebvoHOn9vuuYS4284Z6hwvHAiVO+b+84e8Bjt+Vr2gW6emFvFC5JS1EyHxJhSrDTV66J3GrkjR/gAGg4FixYpx6tQpIiMj9Y4j7lGgQAECAgL0jiGEEEJv4XcWoKvVM2f2Zr+fpiNU0b57DrQYpRapE8KWkhNg83eq3WSo7c/xjLh4qN7PP16FDV+qfdw9C+d+DpE3RR+BnTNVO3SCPue4HZOiPQtcXFyoVKmSDJG3M87OztLDLoQQAmIuwIl/VbuWDYfGpyjbDIrXhfO7YNs0aP2O7Z9T5G97foNbF8G7uL49kDWfUb3sF/aoXtHOX+iXReQtK98FzQxVHoOyTfVOY3ekaM8io9GIm5ub3jGEEEIIca99C9QWWKUaQuGKtn8+g0HNKV7QG7b9qFbxdvWy/fOK/Mlihk1TVDvkNXBy0S+L0QjtJ8Csx2DHDGgwAIoE6pdH5A0n18KxFWB0grZj9U5jl2TcgRBCCCEcl6alrhqfG73sKao8BoUqQPx12DUr955X5D+H/1JbGbr5QnAfvdNAuWYQ2En1iq56T+80wtFZzLDizmil+v1z54NXByRFuxBCCCEc1/ndEH0YnNxSt2PLDUZT6krym76BZJlCJ2xA0yBskmo3GGCbrQwfRrsPVa/o0eVwcp3eaYQjC/8FovapD6VajNI7jd2Sol0IIYQQjmvPnQXoqnQG9wK5+9y1eoJXANw8D/sW5u5zi/whYoNaO8HJDRq8oneaVIUrQb2XVHvlGNVbKkR2JdyC/8ardvM3waOQvnnsmBTtQgghhHBMyQmpxXLt53L/+Z1codFA1d74FVgsuZ9B5G1hk9VlnV72t0tBi1Hg6gsX96V+eCZEdmz6Wi2wWLCsGkkiMiVFuxBCCCEc09EVcPsaeBeD8q30yVDvRVW4XD4CR//RJ4PImy7sUbsiGIwQMljvNOl5+kHzkar97zhIjNU3j3AsMRdSF1hs+4H6EFRkSop2IYQQQjimlAXoavZQc8z14OYD9V9U7bDJag6yEDlh41fqstpTUKicvlky0/AVKFBG9ZZu+lrvNMKR/DcekuLUrh9BXfVOY/ekaBdCCCGE47l1CY6tVO1aOgyNv1vDgWByhbPb4PRmfbOIvOHqKTjwu2qnLHhoj5xcVS8pqA8ZYi7oGkc4iAt7IXyeaod+pLbRFPclRbsQQgghHM++hWrLqeJ1wb+Kvlm8i0LtO9vNpcxBFuJRbP4GNAtUaAPFauqd5v6qPQklG6he0zXj9U4j7J2mqcUL0aB6NyhZT+9EDkGKdiGEEEI4nvA7C1/psQBdRhoPVXOPj62AqAN6pxGO7FY07J6r2k1H6JslKwwGCJ2g2rvnqYXphMjM0RVwar0andTmfb3TOAwp2oUQQgjhWC7sVfv6mlxUT4098KsAVbuodspcZCEextbvITkeSgRD2aZ6p8maUg3U3Hs0WDFG1nYQGTMnwap3VbvRq1CwjL55HIgU7UIIIYRwLCnbSwV2tK99fZsOV5f7FsH107pGEQ4q4SZs/1G1mwx3rLm+bd9XH6SdWpe63oQQd9s5Ey4fBQ8/aPaG3mkcihTtQgghhHAc5iTYu0C19V6A7l7F60D5lmqu/aZv9E4jHNHOmRB/A/wqQpXOeqfJnoJloeGrqr3yXTAn6xpH2Jn4G7B2omq3HA1uvvrmcTBStAshhBDCcRxbBXGXwbMIVGyjd5r0mgxXl7tmQ+wVXaMIB5OcCJu/U+0mw/TbxvBRNHsD3AvB5SOwa6beaYQ92fAlxF2BwpUhuK/eaRyOFO1CCCGEcBx7UvZmfwZMzvpmyUj5llCsFiTfhm0/6J1GOJJ9C+DmefAups5vR+ReQPWiAqyZCPExusYRduJaJGyZqtrtxtnn7247J0W7EEIIIRxD3FU4sly1az2rb5bMGAypve3bpkFirK5xhIOwWFIXMGw0UO1/7qjq9QO/SmpETNiXeqcR9uDfD8GcAOWaQ+VQvdM4JCnahRBCCOEY9i0CSxIE1ISA6nqnyVzQE1CwHNy+pobJC/EgR/5WC3S5+kJwP73TPBqTM7Qfp9qbv5NFGfO7sztg/yLAAO0nONbiinZEinYhhBBCOIaUofH2sjd7ZowmaDJUtTd/qxbPEyIzmgYbJ6t2/ZfAzUfXODmicgco20z1rq4eq3caoRdNgxVvq3bt56BYTX3zODAp2oUQQghh/y4dgvO7wegENZ7WO82D1XoOPP3hxhnYv1jvNMKeRW6Cs9vB5KqGxucFBgOETgAMqpf17E69Ewk9HPwfnNkKzh7Q+h290zg0KdqFEEIIYf/C7/SyVwoFz8L6ZskKZ7fUAixsspqzLERGwiapy9rPgZe/vllyUrFaqWtPrHhb9bqK/CM5AVa/r9qNh4BPcX3zODgp2oUQQghh38zJsHe+ate20wXoMlLvRXDxhuhDcGyl3mmEPbq4H46vAoNRFTZ5TZt3wckdzmyBQ0v1TiNy07Yf4VoEeAVA46F6p3F4UrQLIYQQwr6dXAO3otT+z5UcaOVh9wJqJW1InbMsxN1SVowPegL8KuibxRZ8iqd+GLHqfbUXvcj74q7C+k9Vu/U74Oqlb548QIp2IYQQQti38HnqssbT4OSib5bsajQITC5wejOc3qJ3GmFPrkWmrneQsk1gXtRkGHgVhWunYPuPeqcRuWHdpxB/A4pWt/+FQx2EFO1CCCGEsF+3r8Hhv1XbEf/48ykGtXqqdthkXaMIO7P5G9DMUL4VFK+tdxrbcfVKXYRs3aeqF1bkXZePp34403682k1DPDIp2oUQQghhvw78rraN8g9SC1s5osbDAAMc/Uetgi9E7GXYNUe1mw7XNUquqP286nWNv64Kd5F3rX4fLMlQqT1UaKV3mjxDinYhhBBC2K/wu/ZmNxj0zfKwCleEqo+p9sYp+mYR9mHbD5B8G4rVhnIt9E5je0YTtB+n2tt/hCsn9M0jbCMiDA7/CQYTtBund5o8RYp2IYQQQtiny8fU/tUGE9TooXeaR9NkhLrctwCun9E3i9BXwi3YOk21mw533A+jsqtCa6jYTvXCrnpP7zQip1kssGKMagf3Af8q+ubJY6RoF0IIIYR9Sullr9gGvIvqm+VRlQyGss1UwbLlO73TCD3tmq2GiRcqD1W76J0md7Ufp7a3O/wnRGzUO43ISfsWwoVwtc1ly7f1TpPnSNEuhBBCCPtjMd+1N7sDLkCXkZS5yztnyWJc+ZU5CTZ/q9qNh+a/Rbr8q0LdPqq9cozqnRWOLzEO/h2r2s1eB68i+ubJg6RoF0IIIYT9ObUOYs6Bmy9U7qh3mpxRoQ0E1ICkWNj+k95phB72LYKYs+DpD7We1TuNPlq9DS5ecH437F+kdxqRE7Z8q35f+5ZS21yKHCdFuxBCCCHsT/iv6rJ6d3B20zdLTjEYUvfj3vq96p0S+YfFAhsnq3bIoLxzXmeXl7/qjQVYPRaSbuubRzyam1Gp21m2eT//ntc2JkW7EEIIIexLfAwcWqbaeWVofIqgrlCgDMRdgd1z9U4jctOxFRB9GFx9oN6LeqfRV6NBqlc25mzqdAHhmNZ+BIm3oHhdqN5N7zR5lhTtQgghhLAvB/9Q22EVrgwlgvVOk7NMTtB4iGpv+lrNcRb5Q0pvZL1+atpHfubsDm3urCAfNgluXdI3j3g4UQfVwooAoR+BUUpLW5F3VgghhBD2JWVofK1n8+Z2WHV6gUdhuHEaDvyudxqRGyI3w5ktYHKROb8pqneH4nVUL+2aj/ROIx7GqndBs0DVx6FMiN5p8jQp2oUQQghhP66ehNObAAPUfEbvNLbh7A6NXlXtjV+BpumbR9heylz2Ws+Cd4CuUeyG0ah6ZwF2zYJLh/TNI7Ln+L9wfDUYnaHtWL3T5HlStAshhBDCfuz5TV1WaAW+JfTNYkv1+6sVtKP2qz98Rd4VdRCOLgcMaps3kapMY6jymOqtXfmu3mlEVlnMsPId1W4wAPwq6JsnH5CiXQghhBD2wWK5a2h8HluA7l7uBSG4r2qnzHUWedOmKeqy6uNQuKK+WexRuw/B6ATHV6neW2H/ds+BSwfBrQA0H6l3mnxBinYhhBBC2IfIjWqet6sPVOmsdxrbazRIDS2NDIMz2/VOI2zh+hnYt1C1mw7XNYrd8qugemtB9bZbzPrmEfeXcBP+m6DaLUaBRyF98+QTUrQLIYQQwj7sudPLXq0ruHjoGiVX+JZInbefMudZ5C2bvwVLMpRrnvd2QshJzd9UvbaXDshWiPZu41cQewkKlVfTfESukKJdCCGEEPpLuAUH/lDt2s/rGiVXNbkzx/nwnxB9RN8sImfFXVULrAE0Ga5rFLvnUQha/J9qr5mgfh8I+3PjHGz6RrXbjgUnF33z5CNStAshhBBCf4eWQVKs6r0p1VDvNLmnSKBaiAtg4xR9s4icte0HSIqDgJpQobXeaexf/ZehYDm4FaV6c4X9+W8cJN+G0o3VGg0i10jRLoQQQgj9hc9Tl3l1b/b7SemF3Ttf9WQJx5cYC1unqXbT4fnvnH4YTi7Q7s7WYZu+ln8L9uZ8eOoUptDxck7nMinahRBCCKGv66chYoNq1+qpbxY9lKoPZZqAJQm2fKd3GpETds+F21ehYFmo+oTeaRxH1S5QOkT15v43Xu80IoWmpW7xVqOHrM+gAynahRBCCKGvlL3ZyzaDAqX1zaKXlN72nTPh9jU9k4hHZU5KnffbeAiYnPTN40gMBmh/Z2XyPb+q3l2hvyN/qw9WndygzXt6p8mXpGgXQgghhH40LXXIZX5agO5eldqBfzVIvAXbf9I7jXgU+5eorQs9i+Tvc/phlQyGGk8Dd3p3NU3vRPmbOQlW3SnUGw2CAqX0zZNPSdEuhBBCCP2c2QpXT4KzZ/5e2MhgSN3He8v3kHRb1zjiIWla6iJqDV8FZ3d98ziqNu+ByVX17h75R+80+duOn+HKcfUhVNMReqfJt3Qt2qdOnUrNmjXx8fHBx8eHkJAQ/vkn9R9my5YtMRgMab5effXVNI9x+vRpOnfujIeHB/7+/rz55pskJyfn9ksRQgghxMNIWYCuWldw9dI1iu6qPQW+pSHucur7IhzLsVVqr3EXL6j/kt5pHFeB0hAySLVXvat6e0Xuu30d1n6s2i1Hg5uPrnHyM12L9pIlS/Lxxx+zc+dOduzYQevWrXniiSc4cOCA9ZiXX36ZCxcuWL8+/fRT6/fMZjOdO3cmMTGRTZs2MWvWLGbOnMl778lcCyGEEMLuJcal7s1e61ldo9gFk5OaAw1q+zezdEI4nLBJ6rJeP3AvqG8WR9f0dfAorHp5d8zQO03+tOFztaBikSpQt4/eafI1XYv2xx9/nE6dOlGpUiUqV67MhAkT8PLyYsuWLdZjPDw8CAgIsH75+KR+wrNy5UoOHjzI3LlzqV27Nh07dmTcuHF8++23JCYm6vGShBBCCJFVh/+ChBjVq1amid5p7EOdXuDhB9cj4eAfeqcR2XFmG5zeBEZnNfdXPBo3H2g1WrXXTlS9viL3XItI3baw/XhZUFFndvPum81mFi5cSGxsLCEhIdbb582bx9y5cwkICODxxx/n3XffxcPDA4DNmzdTo0YNihYtaj0+NDSUgQMHcuDAAerUqZPhcyUkJJCQkGC9HhMTA0BSUhJJSTL8RqSVck7IuSHyAznfRW4yhc/DCJir98BiNoPZnKvPb5fnu8EZY73+mNZ/ghY2meTALrIfsoMwbfgSI2Cp0QOzexGwp/MKOz3fH6Tm8zhtnYbh8lHM6z7D0uYDvRPlG6aV72E0J2Ip1xJzmRZ2dz7fjyOd61nNqHvRvm/fPkJCQoiPj8fLy4vff/+doKAgAJ577jnKlClD8eLF2bt3L6NGjeLIkSMsWbIEgIsXL6Yp2AHr9YsXL2b6nBMnTmTs2LHpbl+5cqX1AwEh7rVq1Sq9IwiRa+R8F7bmlniV9ifXAvDf1aLE/f23blns7Xx3Ti5Ne6MLTlH72D7/E6J9auodSTyA9+1ztD76DxoG1iTW4JaO5/OD2Nv5/iBFfR6j0eUvYev3rI0pR5xrEb0j5XkFbx2j+bH/oWFgnWtbYv5xzMUAHeFcj4uLy9JxuhftgYGBhIeHc+PGDRYtWkSfPn1Yt24dQUFBDBgwwHpcjRo1KFasGG3atOHEiRNUqFDhoZ9z9OjRvP7669brMTExlCpVivbt26cZfi8EqE/AVq1aRbt27XB2dtY7jhA2Jee7yC3GTV9hOKBhKdWIlk/20yWDPZ/vBve9sG0ajZK3YO70lt5xxAOYlqm1CLTATjR/qr/OaTJmz+f7fWkdsfy6E9OpdbTR1mPuNF3vRHmbpmGaNUU1az1H08defcAd7I8jnespI74fRPei3cXFhYoVKwIQHBzM9u3b+eqrr5g2bVq6Yxs2bAjA8ePHqVChAgEBAWzbti3NMVFRUQAEBARk+pyurq64urqmu93Z2dnuf7BCP3J+iPxEzndhU5oG++YDYKzzPEadzzW7PN+bDIUd0zFGhmG8tBdKBOudSGTmxjnYvwgAY7PXdT+fH8Quz/cHCZ0A3zfDeOh/GC8OhlIN9E6Ud+1fDOd2gLMnxrbv2f35fD+OcK5nNZ/d7dNusVjSzDe/W3h4OADFihUDICQkhH379nHp0iXrMatWrcLHx8c6xF4IIYQQdubcTrh8FJzcIair3mnsk29JqPG0aodN1jWKeIAt34ElCco0hZL19E6TNwXUgDrPq/aKt9UHfyLnJcXD6g9Uu8kw8M68E1TkLl2L9tGjR7N+/XoiIiLYt28fo0ePZu3atTz//POcOHGCcePGsXPnTiIiIli6dCm9e/emefPm1Kyp5na1b9+eoKAgXnjhBfbs2cOKFSt45513eO211zLsSRdCCCGEHQj/RV1WfVz2/b2fJsPU5aFlcPmYvllExuKupm5H1nSEvlnyulbvgLMHnN0OB37XO03etG0aXD8N3sWg8WC904i76Fq0X7p0id69exMYGEibNm3Yvn07K1asoF27dri4uLB69Wrat29PlSpVeOONN+jWrRvLli2z3t9kMvHnn39iMpkICQmhV69e9O7dmw8//FDHVyWEEEKITCXFW4cSU/s5fbPYO/+qULkjoMGmKXqnERnZPh2SYqFoDajYRu80eZtPsdQPslZ/AMkZj8wVDyn2Mqz/XLVbvwsunvrmEWnoOqd9+vTMF5IoVaoU69ate+BjlClThr/teIVOIYQQQtzl6D8QfwN8SkC55nqnsX9Nh6v3bM9v0PJtVbgI+5AYB1u/V+0mw2RrvtzQeAjsnAnXI9Ue4k2G6p0o71j7MSTEQEBNqPWs3mnEPexuTrsQQggh8rCUofE1nwGjSd8sjqB0IyjVCMyJau60sB/h8yDuMhQoDdWe1DtN/uDiCa3fUe31n0PsFX3z5BXRR2HHz6odOgGMUiLaG/mJCCGEECJ33IyC4/+qtgyNz7qUudI7ZsDt67pGEXeYk1OnLDQeCibdN2TKP2o9qxamS7gB6z7WO03esOo90MxqOo6MgLJLUrQLIYQQInfsW6D+MCxZHwpX0juN46jUHopUhcSbqb1hQl8H/1ALdnn4Qe3n9U6TvxhN0H6Cau/4WRZpfFSn1qspOAYTtJN1weyVFO1CCCGEsD1NSx0aL73s2WM0pi7AtWWqWsxP6EfTUrfha/gquHjoGidfKt8CKncAS7LqJRYPx2KBFWNUu96LUKSyvnlEpqRoF0IIIYTtXdgDlw6CyRWqPaV3GsdTozv4lITYS7DnF73T5G/H/4WofeDsCfX7650m/2o3TvUOH/kbTm3QO41j2vsbXNwLrj7Q8i2904j7kKJdCCGEELaX0stepTO4F9A1ikMyOafum7zpa7CY9c2Tn22crC6D+4JHIT2T5G9FKkO9fqq9cozqNRZZlxgL/45T7WZvgGdhffOI+5KiXQghhBC2lZwI+xaqtgyNf3h1e4N7Qbh6Eg4t1TtN/nR2B0RsAKMThAzSO41oOVr1El/YA3vn653GsWz6Bm6eV7sfNHxV7zTiAaRoF0IIIYRtHVsBt6+CV1Eo30rvNI7LxRMaDFDtsElqbrXIXWGT1GWNHuBbUt8sQvUON3tdtf/9EBLj9M3jKG5ehI1fqXbbD8DZTdc44sGkaBdCCCGEbYX/qi5rPiNbYz2qBq+Ak7vqWTy5Vu80+cvlY3D4L9VOWRhQ6K/hQPAtrXqNN3+jdxrH8N94SIpVO3nIGiMOQYp2IYQQQthO7GXV0w4yND4nePqpYfKQOrda5I6NXwEaBHYC/yp6pxEpnN2g7fuqHTZZ9SKLzF3cD7vnqnb7CWAw6JtHZIkU7UIIIYSwnX0L1bZMxeuAf1W90+QNIa+pVbNProXzu/VOkz/EnIc9v6l2k+G6RhEZqN4NStRTvcdrJuidxn5pGqx8B9AgqCuUbqh3IpFFUrQLIYQQwnZSVo2vJb3sOaZgGbUFHKTuFy5sa8t3YEmC0o2l0LFHBgOEfqTau+dC1AF989ir46vh5Bowuai57MJhSNEuhBBCCNu4uF/tAWx0Ti0yRc5ImVN9aClcOaFvlrzu9nXYMVO1mw7XMYi4r9INIegJ0Cx3epNFGubk1PelwQAoVE7fPCJbpGgXQgghhG3subMAXWAH2c86pxWtBpXaqwJl09d6p8nbdkyHxJvgH6Tec2G/2n6gPiQ88R8cW613GvuyaxZEHwb3QtD8Tb3TiGySol0IIYQQOc+clLpvsgyNt42UudXhv8DNKF2j5FlJt2HLVNVuMkwW7bJ3hcpDw1dUe+UY1bssID4G1tyZPtDyLXAvoGsckX1StAshhBAi5x3/F2KjwaMwVGqnd5q8qUxjKNkAzAmwdareafKm8F/UeexbSi12Juxf85HgXlD1Ku+erXca+xA2CeIug19FqPei3mnEQ5CiXQghhBA5b8+dBehq9gCTs75Z8iqDIXWO9fafVW+ayDkWc+rUg5DBch47CveC0OIt1V7zkfy7uH5GLaQI0O5DOY8dlBTtQgghhMhZcVfhyD+qLXuz21bljlA4EBJuwM4ZeqfJWw7+D66dUnOA676gdxqRHfVehEIV1CiJjZP1TqOvfz+E5Hgo0xQCO+mdRjwkKdqFEEIIkbP2LwZzIhStAQE19E6TtxmNqSvJb/4OkhP0zZNXaJoaUgxqjrSLp755RPY4uaheZYDN38KNs/rm0cu5nbBvgWqHjpc1GRyYFO1CCCGEyFkpe7NLL3vuqPE0+JSAWxdhz296p8kbTq5R2xU6e6jtsYTjqdIZyjRRvcz/fqh3mtynabDizhZvNXtC8Tr65hGPRIp2IYQQQuScS4fh/C4wOqliUtiekws0GqTam6aoudji0YRNVpd1e8t2hY7KYID241V773zV65yfHFoGpzeBkzu0eVfvNOIRSdEuhBBCiJyTsgBdxXbgVUTfLPlJcB9w84Urx+Hwn3qncWzndsGpdWAwQchreqcRj6JEXdXLDKrXWdP0zZNbkhNh9fuq3Xgw+JbUN494ZFK0CyGEECJnWMyw9878SRkan7tcvVOHcYdNzj/FiS2kLFxW42koUFrXKCIHtHkXnNxUr3N++UBr+09w9SR4+qeueSEcmhTtQgghhMgZJ9fAzQtqy6XKoXqnyX8avKKKk/O7IGKD3mkc05UTcHCpakuxkzf4llRb9gGsek/1QudlcVdh3Seq3XqM+kBPODwp2oUQQgiRM1IWoKvxNDi56pslP/IqAnV6qXbKnGyRPZumABpUCoWiQXqnETml6XDV63z1JOyYrnca21r/OcRfB/8gqCNbFeYVUrQLIYQQ4tHdvg6H/1LtWs/qGiVfazxEzcU+8S9c2KN3Gsdy82LqB09NR+ibReQsV29o9bZqr/sEbl/TN4+tXDkB235Q7fbjwGjSN4/IMVK0CyGEEOLRHfhdba1UpKpsLaSngmWh2pOqvfErXaM4nC1TwZwIpRpCmRC904icVucF9fvp9jXVG50XrX4fLElQoQ1UbKt3GpGDpGgXQgghxKPb86u6rP2s2mpJ6CdlLvaB3+HqKX2zOIr4G7DjZ9VuMlzXKMJGTE6pW8BtnaZ6pfOSyE1qmzeDMfV1ijxDinYhhBBCPJrLx+HMVvXHYs1n9E4jitVUPW2aBTZ9rXcax7DjZ0iIgSJVoHIHvdMIW6nUVv3bsCTB6g/0TpNzLBZYMUa16/aW9RjyICnahRBCCPFoUnrZK7QB7wB9swglZU52+Dy4Fa1vFnuXFK+GxoMapWCUP4/ztPbj1QeMh5ZC5Ga90+SM/YvVrhEuXtBqjN5phA3IbyUhhBBCPDyLBfb8ptq1ZQE6u1G2KZQIVusMbP1e7zT2be9vcCsKfEpA9e56pxG2VvSuVdVXjlG/wxxZ0m34d6xqNx0OXv66xhG2IUW7EEIIIR5exHqIOQuuvhDYWe80IoXBkDo3e/uPkHBT1zh2y2KGjVNUO+Q1cHLRN4/IHa3GqF7pczvhwBK90zyaLVPhxhn1oVOj1/ROI2xEinYhhBBCPLzwO0Pjqz8Fzm76ZhFpVXkM/CqpRdZ2ztQ7jX06tAyungC3AlC3j95pRG7xLpr6odbqsWqKhCO6FQ0bvlTtNu+Bi4e+eYTNSNEuhBBCiIeTcFPNCwWo/by+WUR6RiM0Garam7+D5ER989gbTYONk1W7wQBw9dI1jshlIa+Bd3G4cRq2TtU7zcNZ+xEk3oRitaFGD73TCBuSol0IIYQQD+fg/yApDvwqQsl6eqcRGan5DHgXg5vnYd8CvdPYl1Pr4fxucHKHhq/onUbkNhcP1TsNsP4Lx1uw8dLh1BE0oRNkAcU8Tn66QgghhHg44b+oy1qyN7vdcnKFRgNVO2yy4y+6lZPCJqnLOr3As7C+WYQ+aj4DxWqp3uq1E/VOkz2r3lXbOlZ5TC08KfI0KdqFEEIIkX3XIiByI2CAWj31TiPuJ7ifWijwyjE48rfeaezD+XA4uQYMJmg8WO80Qi9GI4R+pNo7Z0L0EV3jZNmJNXBsJRidoO1YvdOIXCBFuxBCCCGyL2Wbt/ItwLekvlnE/bn5QP2XVDtskprLnd9t/EpdVn8KCpbVNYrQWdmmaucLzQwr39U7zYNZzLDyHdWu3x8KV9Q3j8gVUrQLIYQQInssltSh8bIAnWNoNBBMrnBux50REvnY1ZNw8A/VbjJM1yjCTrT7UPVaH1sBJ9fqneb+wn+BqP3g5gstRumdRuQSKdqFEEIIkT2nN8P1SHDxVvMphf3z8oc6dz5gCZusaxTdbfpazQWu2A4CauidRtiDwhWh3p3RKCveUb3Z9ijhFvw3XrWbvwkehfTNI3KNFO1CCCGEyJ6UXvZqXWVfYEfSeAgYjHB8FVzcr3cafdy6BLvnqXbT4bpGEXamxSi19kPUvtTfcfZm0xS4dVFN6WgwQO80IhdJ0S6EEEKIrEuMTR1aXPs5XaOIbCpUHoKeUO2UOd35zdbvwZwAJepBmSZ6pxH2xNMPmo9U7f/Gq15texJzHjZOUe22Y9XOECLfkKJdCCGEEFl3aBkk3lI9PaVD9E4jsqvJcHW5fzFci9Q1Sq6Lj4FtP6l20+GyTaFIr+ErUKCM6s3e9LXeadL6bzwk34ZSjVI/fBP5hhTtQgghhMg6697sz0nR44iK14byrdRK2Zu/0TtN7to5ExJugF8ltVq4EPdycoV2d7ZQ2zQFYi7omyfFhb2pv3tDJ8jv3nxIinYhhBBCZM31M3BqvWrL3uyOK2Uu9645EHtZ1yi5JjkBtnyn2k2Gqf25hchIUFco1RCS4lIXfdOTpsHKMYAG1btByXp6JxI6kN9YQgghhMiavb8BGpRtBgXL6J1GPKxyLaBYbTXUdus0vdPkjr3z4eYF8C4GNXvonUbYM4MB2k9Q7fB5qpdbT0dXqA9LTa7Q5n19swjdSNEuhBBCiAfTNAj/VbVrPatvFvFoDAZoOkK1t/1gfwtu5TSLJXUBr5DXZAEv8WCl6kO1p4A7vdyapk8OcxKsele1G70qH5bmY1K0C3E/FjOGyDBKXN2MITLMfvftzGssZji1AfYtUpfyvguhvzPb4OoJcPaURZDygqqPQ6EKEH8dds3WO41tHfkLrhwDN18I7qt3GuEo2r4PJhfVy310hT4Zds6Ey0fBww+avaFPBmEXpGgXIjMHl8Lk6jjN7Uq9yKk4ze0Kk6ur24Xt3HnfmfUYLH5JXcr7LoT+9txZBCmoC7h66ZtFPDqjSe3bDrD5W0hO1DePrWgahE1S7fr9wdVb3zzCcRQsCw1fVe1V76pe79wUfwPWTlTtlqPVh04i35KiXYiMHFwKC3qrPTHvFnNB3S4FpG3I+y6EfUq6DfuXqLYMjc87aj0Lnv4Qcxb2L9I7jW1EhMG5nWo+cEoBJkRWNXtD9XJfPqp6vXPThi8g7goUrgzB/XL3uYXdcdI7gBB2x2KG5aOAjOYv3bntf4Pg/C4wyOdeOUazwLYfyfx9N8Dyt6BKZ9VDJITIPYf/goQY8C2lFqETeYOzG4QMgtUfwMavoGbPvLeq+sbJ6rJOL/Dy1zWKcEDuBVQv998jVa93zR650+N9LRK2TFXtduPAJCVbfidngBAJN+HSIYjaD1EHIHJz+p7ejO6TMtxO5BINYs5B5CYoJ0WDELlqT8oCdHmwqMvv6r0IG76E6MNwbAUEdtQ7Uc65uA+Or1YfsKdMBRAiu4L7ql0WrhxT/1ZS9nG3pX/HgjkRyjWHyqG2fz5h96RoF/mHxQxXT6UW51EH4NIBuBbxcI9XoS0UrpSjEfO1y8fgxOoHH3cryvZZhBCpYi7Aif9UW4bG5z1uvlCvn+ppD5uUt4r2sMnqMqgrFCqnZxLhyEzO0H4c/NpT9X7Xe9G2q7if2Q77FwN3tp4zGGz3XMJhSNEu8qbYK6ogjzqQWqRfOqz2pM2IdzEoWk19GZwg7IsHP0fT4dLjm5NObcha0e5V1PZZhBCp9s5X01dKNQK/CnqnEbbQaJAqRs5sVaPNyoTonejRXYuAA3fWYWg6XM8kIi+o3EFNDYrYAP9+CN2n2+Z5NA1WvK3atZ+DYjVt8zzC4UjRLhxbcoJaHCTqYNoe9FsXMz7eyR38q94p0KtD0SDwrwaefqnHWMyw91fVu5Th/GoD+BSHMo1t8YryrzKN1fua6fuO+vkVr5ursYTI1zQNwu+sGl/7OX2zCNvxDlCjKHbNUnPA80LRvukb9WFThdZQrJbeaYSjMxggdAJMa6EWbWw0EErWy/nnOfgHnN0Gzh7Q+p2cf3zhsKRoF45B09Q885Qh7SnF+eWjYEnO+D4Fy94pzO/0oPtXU8PjHrSImdEEHT5Rq5VjIG0BeWeIUoePZTG0nHbf9/2O5Nvwy9PQcx64F8zthELkP+d3weUj4OQG1brqnUbYUuOhar/2o8vVB+FFg/RO9PBuRcPuOardZLiuUUQeUqyW+nBrzy+qN/zFFTk7dD05AVa9r9qNh6qODCHukKJd2J/E2LQLw6X0osdfz/h4N19VkKcU50Wrg3+VR9uLNagL9JitVpG/e1E6n+KqYA/q8vCPLTKX6fteAur2VnsJR26EnztCr8XgW0K/rELkBym97FUflz2C87rCFdXP+dBSNb/9qWl6J3p426ZBcjwUr6MW8hIip7R5Fw78rqaSHPxfzn6Yue0HuB4JXgHQZGjOPa7IE6RoF/qxWODaqdRe86j9cOmgWiwuo15Wg0ntVVk06K7h7dVUQWeLRTqCukCVziSfXE/4hhXUbhaKU/nm0sNua3fedyI3qUXnvIqqofNGE1R5DOZ2g+hDML2dKtz9q+qdWIi8KTkB9t3Zu1sWoMsfmg5XRfv+RWpoboFSeifKvoRbd7YPBZqOkEW8RM7yKa4K6nWfwOr31cKNTq6P/rhxV2H9Z6rd+h1w8Xz0xxR5ihTtInfEXVUFeZqF4Q5BUlzGx3sVTTusvWg1KBKYM78Ys8NoQivTlHMHYqhVpqkU7LnFaMp4kb+A6tB/Fcztrobs/hwKz/4m6wsIYQtHl6sRTt7FoXxLvdOI3FAiWPVMn1qvRjZ1/FjvRNm3a5Y6bwtVUB/0CpHTGg+FnTPVYofbfoTGgx/9Mdd9AvE3VIeUrB8iMiBFu8hZyYlqH8t7F4a7mcm+505uUKTKXXPP7ywM51Ukd3MLx1GgNLy4XG29cmYrzO4K3X6EoCf0TiZE3pIyNL7WM/KBZX7SZLgq2nfNghb/Bx6F9E6UdcmJagE6UL2hct4KW3D1Ur3hS4fA+k9Vkf0o/04uH4ftP6l2+/Fy3ooMSdEuHo6mwc2LaYe1Rx2A6CNgScr4PgVKp10Yrmh1KFRefjmJ7PMoBL3/B4v7w+E/YUEf6PgpNBygdzIh8oZbl+DYKtWuJb0++UqF1hBQEy7uVXNsW76ld6Ks27dQdRJ4BciUDmFbtZ+HrdPU38DrPoGOnzz8Y616Ty2qXKk9VGiVcxlFniJFu3iwxDg1hzjqQNqv21czPt7VB/yD7lkYriq4+eRubpG3OburRev+Hgk7foZ/3oSbF6DNezKHUYhHtXcBaGYoUQ+KVNY7jchNBoOa277oRVWUNB7iGPNrLRa1gB6o7bhyezqdyF+MJmg/DuY8qXrJ67+sFnPMrogwOPKXWrep3biczynyDCnaRSqLRa1aee/CcFdOkPHCcEbwq5Q6rD2lF923lBRNIncYTdD5SzXnds14CPtSFe5dvgaTs97phHBMafZml97KfKnqE2rb1GsRsHsuNHxF70QPdnS5WuvE1Qfq9dM7jcgPKrSGiu3g+Cq1KF3Pedm7v8Wito4DCO6rdj4SIhNStDsKiznj1bQf1u3rGS8Ml3gr4+M9CqtFwIpWT+1FLxKoejuF0JPBAC3eBO8AWDYM9vyqhvb2mK3mnQkhsufiXrh0AEwuUL2b3mmEHkxOqof9rzdg09dQ70X7/iBU0yBskmrXe1G2JxS5p/14OPGfmqoXEQZlm2b9vvsWwIU94OINLUfbLqPIE6RodwQHl2ayX/gnD94v3JwEV46nH9oeczbj400u6ReGK1odvPxz7vUIYQt1X1Dn6cK+cOJfmNkZnl8o564Q2RX+q7oM7ATuBfXNIvRT+3lY+zHcOAP7l6gFCe3V6c1wdhuYXNXQeCFyi38VCO6jpumtGAMvrwGj8cH3S4yDfz9U7WavywLM4oGkaLd3B5fCgt6kG54ec0Hd3mO2Ktw1TfUu3r0oXNR+tTCcOTHjx/Ytdde885SF4SqoT9iFcESVQ6HPn/DL03AhHKa3V3u5+1XQO5kQjiE5UfX+gGw7lN85u0PDV+G/cbBxMtTsYb9T38Imq8vaz6pRV0LkppZvw96F6u+OfQuz9gHXlm8h5pz6W7zRIJtHFI5PqjN7ZjGrHvaM5pOn3PbHQLVH5KWDEHc548dx8cp4YTj3AjYKLoSOSgbDS6vU4jDXTqnC/fkFav9hIcT9HV8FcVfA0x8qtNE7jdBb/ZfUsPNLB+HYSvXBqL2JOgDHVgAGtX+2ELnNqwg0G6F6zv8dC1UfBxePzI+/GZX6QVOb98HZLVdiCscmRbs9i9yUdkh8RhJvQcR61TYYVU/53YvCFa0GvqWzNlRHiLzCrwL0Xw3zuqv5YjMfU6NSKrXTO5kQ9i1lAbqaPWTUlVDTI+r1U/PawybbZ9GesmJ80BMyqkrop9Eg2DFDTSfZ8i00fzPzY9dMUH+/F68r64aILJNKzp7disracXX7qjk0o8/BkB2qOGnxf1Cls1r9VQp2kR95+UPfv9Tqrklx8MszsDubK7sKkZ/EXoGjK1RbhsaLFI0GgdEZTm+CM9v0TpPW9dOwb5FqNx2uaxSRzzm7qy1nQX3AdTOTv+GjDsLuOaod+pH8jS6yTM4Ue+ZVNGvH1egOJerefyiOEPmRqzc8Ox9q9lR7Tv9vEKz/XK0BIYRIa/8isCRBsVpqlJYQoBa+TZmjmzKk115s/lb9bi/XAorX0TuNyO+qd1fnYeItWPtRxsesfAc0C1TtAmVCcjefcGhStNuzMo3Vf5ZktvCLAXxKqOOEEBlzcoEnv4cmw9X1/8bB3yPVmhFCiFThd0ai1H5e3xzC/jQeBhjgyF9w6bDeaZTYK7BzlmpLL7uwB0aj6j0H2DVb9arf7fhqtbuN0Rnajc39fMKhSdFuz4wmta0bkL5wv3O9w8ePtl+7EPmBwaD+g+z4KWCA7T/Bwj6QdFvvZELYh6iDav0Ho7PqLRLibkUqqyl3AJum6JslxbYfIPm2GhlSvpXeaYRQyjRWC9FpFlj1burtFjOsvHO9wQAoVF6ffMJhSdFu74K6qDnqPsXS3u5TPHW7NyFE1jR8BZ6eASYXOLRMrTB/+5reqYTQ3547C9BVDgVPP32zCPvUdIS63LsAbpzVN0tiLGybptpNhtvvVnQif2o7Vn0Aenw1EUsnsuPPHzi38P/ULgxuBaD5SL0TCgeka9E+depUatasiY+PDz4+PoSEhPDPP/9Yvx8fH89rr72Gn58fXl5edOvWjaiotAs7nD59ms6dO+Ph4YG/vz9vvvkmycnJuf1SbCuoCwzfr/af7jZdXQ7fJwW7EA+j2pPwwu/g6gunN8PPHeD6Gb1TCaEfczLsma/asgCdyEzJelCmqVr3YPN3+mbZNVt94FqwnFo1Xgh74leBS/5NACi762Pq7XiTEod+AuBs0dbgUUjPdMJB6Vq0lyxZko8//pidO3eyY8cOWrduzRNPPMGBAwcAGDFiBMuWLWPhwoWsW7eO8+fP89RTT1nvbzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvPb1eku0YTVCumVp0rlwzGRIvxKMo2xRe/Ae8i0P0YbWXe9QBvVMJoY8T/0HsJfDwg4qyLaK4j5Te9p0zIe6qPhnMSWoBOoAmQ+XvIWF3dq+YReELa9OteatpUDxiCbtXzNInmHBouhbtjz/+OJ06daJSpUpUrlyZCRMm4OXlxZYtW7hx4wbTp0/nyy+/pHXr1gQHBzNjxgw2bdrEli1bAFi5ciUHDx5k7ty51K5dm44dOzJu3Di+/fZbEhMT9XxpQgh7V7Qa9F8FRarAzfPwc0eICNM7lRC5L2UBuho91MKNQmSmYhsoWgOSYmH7dH0y7F+s9sL29IdaMjJE2BdzcjLFN6tF5u6dtZFyvdjmsZjz2qhgYXNOegdIYTabWbhwIbGxsYSEhLBz506SkpJo27at9ZgqVapQunRpNm/eTKNGjdi8eTM1atSgaNHUrdFCQ0MZOHAgBw4coE6djLf/SEhIICEhwXo9JiYGgKSkJJKSkmz0CoWjSjkn5NzIgzyKwgt/YlrYC+OZLWhznsT8xFS0qvl3uKWc7/nM7es4HfkbA5BU/WnIZz93Od+zz9DoNZz+9yra1u9Jrj8AnHNxu1nNglPYJAyAuf4ALJjy3Tn7KOR8t73DW/6hBlcy3fjJaIAArrBv899UadQxd8PlI450rmc1Y5aK9tdffz3LT/zll19m+ViAffv2ERISQnx8PF5eXvz+++8EBQURHh6Oi4sLBQoUSHN80aJFuXjxIgAXL15MU7CnfD/le5mZOHEiY8em32ph5cqVeHjIXuciY6tWrdI7grARY6H+BMckU/zGDkxL+rO/xBpO+rfXO5au5HzPH8pG/0stcyI33EqxducZMOi8wJhO5HzPOoPmShuXwnjGXebQL+9wqkjbB98phxS9sZtG0YdJMrqx8koJkv/+O9eeOy+R8912EiO3UCMLxx3evZmTV7UHHygeiSOc63FxcVk6LktF++7du9Nc37VrF8nJyQQGBgJw9OhRTCYTwcHB2YwJgYGBhIeHc+PGDRYtWkSfPn1Yt25dth8nO0aPHp3mg4iYmBhKlSpF+/bt8fHxselzC8eTlJTEqlWraNeuHc7OznrHEbZieRzzyrcx7ZxOjXNzCSpdEEurd8GQvzbZkPM9fzHN+AoAr6Yv06lhZ53T5D453x+OseglWDGKGjfXUvWFT8GYOwM3TbPVAnjGBv1p3+bpXHnOvETOd9s7vMUA/z54ocYqdUKkp92GHOlcTxnx/SBZ+i27Zs0aa/vLL7/E29ubWbNmUbBgQQCuXbtGv379aNasWbaDuri4ULFiRQCCg4PZvn07X331Fc888wyJiYlcv349TW97VFQUAQEBAAQEBLBt27Y0j5eyunzKMRlxdXXF1dU13e3Ozs52/4MV+pHzI69zhse+gAIl4N8PMW3+GlPsJejyTb6c5yvnez4QfRTO7wSDCVPtZzHl45+3nO/ZFNwbNnyK4cZpnI/+pRbJtbXTW+DMFjC5YGo8OF+fr49KznfbCQrpRNS/fhTRrmDMYIi8RYNLBj+CQjphcrKbWcp5liOc61nNl+0upC+++IKJEydaC3aAggULMn78eL744ovsPlw6FouFhIQEgoODcXZ25t9//7V+78iRI5w+fZqQkBAAQkJC2LdvH5cuXbIes2rVKnx8fAgKCnrkLPbEbNHYfOIK/ws/x+YTVzBbZEiNEDnOYIBmb0DXqWAwwd758OszkHBT72RC5LyUvdkrtQMvf32zCMfi4gENX1XtsMmkWybbFsImq8uaz4BPMds/nxAPweTkxKbKbwKqQL9byvULIe9LwS6yLdtnTExMDNHR0eluj46O5ubN7P1hO3r0aDp27Ejp0qW5efMmv/zyC2vXrmXFihX4+vry0ksv8frrr1OoUCF8fHwYMmQIISEhNGrUCID27dsTFBTECy+8wKeffsrFixd55513eO211zLsSXdUy/dfYOyyg1y4EW+9rZivG+8/HkSH6vIflxA5rvZzamXiBb3VdlgzO8NzC8G76IPvK4QjsJhT92av9ay+WYRjqt9fFdJR++D4v1DJhnPbLx2Co/8ABmgyzHbPI8QjunE7iY8jKrE8aThjnWcTQOrWiBfx4xuXl5jQvreOCYWjynZP+5NPPkm/fv1YsmQJZ8+e5ezZsyxevJiXXnopzR7qWXHp0iV69+5NYGAgbdq0Yfv27axYsYJ27dQ+sZMmTeKxxx6jW7duNG/enICAAJYsWWK9v8lk4s8//8RkMhESEkKvXr3o3bs3H374YXZflt1avv8CA+fuSlOwA1y8Ec/AubtYvv+CTsmEyOMqtYW+y8CjMFzYA9PbwZUTeqcSImecXKu2OnQrAIEyr1I8BI9CENxXtTdOtu1zbZyiLqs+BoUr2fa5hHgEH/11iKiYBI4WaoX3W4c50O4XdtT7jB0tZ9PO8jW/3KzN2qPpOz+FeJBs97R///33jBw5kueee866RL2TkxMvvfQSn332WbYea/r0++/x6ebmxrfffsu3336b6TFlypTh7zy6eqjZojF22UEyGnSmoXaTGLvsIO2CAjBlNHFGCPFoSgTDSythbje4dkoV7s8thJLZX3RTCLuy51d1WaM7OOWdkWkil4UMgm3TIGIDnN0BJevl/HNcPwP7Fqh2kxE5//hC5JD1R6OZv+MMBgN80q0mnu6uVGuSusBnz1sHmR52iu/XnqBVoExJEtmTrZ52s9nMjh07mDBhAleuXGH37t3s3r2bq1ev8t133+Hp6WmrnPnStlNX0/Ww300DLtyIZ9upq5keI4R4RH4V4KVVULwOxF2BWY/B0RV6pxLi4cXfgEPLVLv2c/pmEY7NtyTU6KHaYZNs8xxbvgNLMpRtJh+YCrt1KyGZ0Uv2AdAnpCwNyhVKd8xLTcvhZDSw9dRVdp2+ltsRhYPLVtFuMplo3749169fx9PTk5o1a1KzZk0p1m3k0s3MC/aHOU4I8ZC8ikCfP6FiW0iKg1+fhV1z9E4lxMM58Ackx0PhQCheV+80wtGlzDE//BdcPpazjx13FXbOUu2mw3P2sYXIQR//c4hz129TqpA7b4YGZnhM8QLudK1TAoDv18p0O5E92Z7TXr16dU6ePGmLLOIe/t5uOXqcEOIRuHrBs79BredAM8PSwbDus9xZNVmInJQyNL72s2rHBCEehX8VCOwEaLDxq5x97O0/QVIsBNSACm1y9rGFyCGbT1xh7pbTAHz8VE08XTOfffxqi/IArDoUxfFLt3Iln8gbsl20jx8/npEjR/Lnn39y4cIFYmJi0nyJnNOgXCGK+bqR2Z9UBtQq8hkNwRFC2IDJGbp+p7aFA1gzHv56Xa3ELYQjuHICTm8Gg1FtnSVETmgyXF3u+Q1izufMYybGwdbvUx9fPmASdiguMZlRi/cC8GyD0jSpWPi+x1f096Zt1aJoGvywXnrbRdZlu2jv1KkTe/bsoUuXLpQsWZKCBQtSsGBBChQokGbvdvHoTEYD7z+u9pvP7L+q9x8PkkXohMhNBgO0eQ86fQ4YYMfPMP8FSLqtdzIhHmzPb+qyfCvwKa5vFpF3lG4IpRuDJUnNQc8Ju+eqdUQKlIGgrjnzmELksM9XHOX01TiK+brxdqcqWbrPwJYVAPh99zku3mftKiHulu3V49esWWOLHCITHaoXY2qvuun2aXdxMjKlZ23Zp10IvTR4GbyKwuL+cOQvmP2EGj7vISNfhJ2yWO4aGi8L0Ikc1nQ4/LIJdsxQo5HcH6Ejx5wEm75W7cZDwJTtP1eFsLmdkVeZsekUAB89VQNvN+cs3S+4TEEalC3EtoirTA87yZjOQbaMKfKIbP8WbNGihS1yiPvoUL0Y7YIC2HbqKocvxDD2z4MkJluoVtxX72hC5G9BXcDzD/i1J5zZCj+HQq/FUKC03smESC8yDG6cAVdfqNL5wccLkR2V2oN/EFw6CNunQ/ORD/9YB36HG6fBozDU6ZVzGYXIIfFJZt5ctBdNg251S2Z7C7dXW5Zn28yr/LL1NINbVcLXI2sFv8i/sj08PkVcXByHDx9m7969ab6EbZiMBkIq+NGvaTmaVPQDYNHOszqnEkJQpjG8uAJ8SsDlo/BTO7i4T+9UQqQX/ou6rP4kOLvrm0XkPQZD6kryW79/+ClD2l0L2jV8Vc5VYZcmrz7GyehYini78t5j2e8pbxXoT2BRb2ITzczdGmmDhCKvyXbRHh0dzWOPPYa3tzfVqlWjTp06ab6E7fWoVwpQRbvZIitXC6E7/6pqL3f/ILh1EWZ0glPr9U4lRKqEW3BwqWrXkqHxwkaqdwPfUhAbnfohUXYdXw1R+8HFCxr0z9l8QuSAPWeuWxeRm9C1+kP1khsMBl5tqVaS/znsFPFJsqCtuL9sF+3Dhw/n+vXrbN26FXd3d5YvX86sWbOoVKkSS5cutUVGcY/QagH4uDlx7vptNh6/rHccIQSAbwno9w+UaQIJMTC3G+xfrHcqIZRDS9XWWYUqQKkGeqcReZXJGUIGq/amKWBOzv5jhE1Wl8F9H21evBA2kJBs5v8W7cWiQZdaxWlfLeChH+uxmsUpUcCdK7GJLJTRs+IBsl20//fff3z55ZfUq1cPo9FImTJl6NWrF59++ikTJ060RUZxDzdnE13rlABgwY4zOqcRQli5F4BeSyDoCTAnwqIXYXMOraQsxKNI6fWUvdmFrdV9AdwLwbUIOPS/7N33zHa19oLRGRoNskk8IR7Ft2tOcCTqJn6eLnzQpdojPZazyUj/ZuUA+HH9SZLNlpyIKPKobBftsbGx+PurxRYKFixIdHQ0ADVq1GDXrl05m05kKmWI/MoDUVyLTdQ5jRDCytkNus+ABq+o6ytGw4oxauVuIfRwLRIiNgAGqNlT7zQir3PxhIZ3fv+FTVZz1LNq42R1WfMZNXpJCDty4PwNvltzHICxT1SjkKfLIz/mM/VLUdDDmdNX4/hn/8VHfjyRd2W7aA8MDOTIkSMA1KpVi2nTpnHu3Dm+//57ihWT7cdyS/USvgQV8yHRbOGP8HN6xxFC3M1ogo6fQNux6vrmb+D3AZAsH7AJHaTszV6uORQopW8WkT80GADOHnBxL5zM4lbB0Ufg8J+q3WSo7bIJ8RCSzBb+b9Feki0aHaoF0LlGztQ8Hi5O9GlcFoCpa0+gZedDLpGvZLtoHzZsGBcuXADg/fff559//qF06dJMmTKFjz76KMcDisw9U1/98TV/+xn5Ry6EvTEY1L7FT04DoxPsWwjzukN8jN7JRH6iabAnZWi8LEAncolHIajbW7XDJmXtPhunqMvAzlAk0Da5hHhIP6w/yYHzMRTwcObDrtUw5OA0oz4hZXF3NnHwQgwbjslaVSJj2S7ae/XqRd++fQEIDg4mMjKS7du3c+bMGZ555pmczifuo2vtErg4GTl88Sb7z0khIIRdqtUTnlsAzp5wah3M7AQ3ZQicyCWnN6u5xS5eUPVxvdOI/CTkNTCY1E4a5x4wffLGOdg7X7WbDrd5NCGy42jUTb5afQyA9x8Pwt/bLUcfv6Cni7Uj7vt1J3L0sUXeke2i/eTJk2mue3h4ULduXQoXLpxjoUTW+Ho40+HOqpXzd5zWOY0QIlMV20C/v8CziNrDfXo7uHxM71QiP0hZgC6oq5prLERuKVAaajyt2ilz1TOz5TuwJKndN2R3A2FHzBaNNxftJdFsoXUVf7rWts1aC/2blcPJaGDTiSvsOXPdJs8hHFu2i/aKFStSunRpXnjhBaZPn87x48dtkUtkUcqCdP8LPy97PAphz4rXUXu5FyoP10/D9PZqpWQhbCUxDg78odq1n9U1isinmgxTlweXwpVMehBvX4OdM+8cPzw3UgmRZdPDTrLnzHW8XZ2Y8GT1HB0Wf7eSBT3oUqs4IL3tImPZLtrPnDnDxIkTcXd359NPP6Vy5cqULFmS559/np9++skWGcV9NK7gR8mC7tyMT2a5rDophH0rVE4V7sXrwu2rMOtxOPKP3qlEXnX4T0i8CQXKQOnGeqcR+VHRIKgUCmiw8auMj9n+EyTeAv9qUKldrsYT4n5ORt/ii5VHAXjnsaoU83W36fO90qICAMsPXORk9C2bPpdwPNku2kuUKMHzzz/PDz/8wJEjRzhy5Aht27ZlwYIFvPLKK7bIKO7DaDTwdHDqgnRCCDvnWRj6/gmV2kPybfjtOdg5S+9UIi9KGRpf61kwZvu/eyFyRtMR6nLPr+nX80i6DVu+v3PccLWApxB2wGLRGLV4LwnJFppVKmwd2WpLgQHetKnij6bBjxtOPvgOIl/J9v/icXFxrFy5krfffpvGjRtTs2ZN9uzZw+DBg1myZIktMooH6F6vJAYDbD55hcgrsXrHEUI8iIsn9PwV6vQCzQLLhsLaj7O3n7EQ93PjLJxcq9q1ZG92oaMyIVCqIZgTYcvUtN8Lnwdxl8G3NFR7Sp98QmRg9uYItkdcw9PFxMSnathsWPy9Xm2petsX7zzHpZj4XHlO4RiyXbQXKFCAF154gfj4eN566y3Onz/P7t27mTRpEk888YQtMooHKFHAnaYV1UKAC3ec1TmNECJLTE7Q5Rto/qa6vnYiLBsG5mR9c4m8Ye98QFMLexUqp3cakd+lzFXf8TPE31Btc3LqNm+NB6vfiULYgTNX4/hk+REA3upYhZIFPXLtueuXLURwmYIkmi1M33gq155X2L9sF+2dOnXCbDbz22+/8dtvv7Fw4UKOHj1qi2wiG1K2ili08yxmi/TWCeEQDAZo/Q50/hIMRtg1C+b3UguICfGwNC11aLzszS7sQeUOUKQKJMSoOeynNsCK0XA9EtwKqlFHQtgBTVPD4m8nmWlYrhDPNyyT6xlevTO3/Zctp4mJT8r15xf2KdtF+x9//MHly5dZvnw5ISEhrFy5kmbNmlnnugt9tAsqSgEPZy7GxLP+WLTecYQQ2VH/JegxB5zc4Og/MLsLxF7RO5VwVGd3wJXj4OwBQTICTtgBozF1Jfn/xsOsx2DbD+q6lgzH/9UvmxB3+XXbGTaduIKbs5FPutXEaMz9dRbaVPGnkr8XNxOSmbslMtefX9inh16ZpkaNGjRp0oSQkBDq16/PpUuXmD9/fk5mE9ng6mSy7h25QBakE8LxVH0Mev8P3ArA2e3wcyhck/+sxUPYc6eXverj4OqtbxYhUji5qUvNkvb2hFuwoLfaFk4IHZ2/fpuP/j4EwMj2gZQt7KlLDqPRYF1J/uewCNnSWQAPUbR/+eWXdOnSBT8/Pxo2bMivv/5K5cqVWbx4MdHR0sOrp5Qh8qsPRXHlVoLOaYQQ2Va6Eby0EnxLwZVjML0dXNirdyrhSJLiYf9i1Zah8cJeWMywckwm37wzpW/5W+o4IXSgaRqjl+zjVkIydUsXoF8TfdcC6VKrOMV83bh8K4Elu87pmkXYh2wX7SlF+uzZs7l8+TI7duywFvIFCxa0RUaRRVWL+VCzpC9JZo3fd8s/cCEcUpFAVbgXrQ63omBGp9RVwIV4kCN/q4W+fEpC2eZ6pxFCidwEMefvc4AGMefUcULoYPGuc6w7Go2Lk5FPu9fCpMOw+Lu5OBnp36w8AD+sPyHrVYnsF+3bt2/n888/57HHHsPX19cWmcQjSNlHcsGOM2iyfZQQjsmnOPT7G8o2g8SbMLc77FukdyrhCKx7s/eUvdmF/bgVlbPHCZGDomLi+XDZAQBGtK1MRX8vnRMpPeuXwtfdmYgrcSzff1HvOEJnD/U/+oYNG+jVqxchISGcO6d6dOfMmUNYWFiOhhPZ93it4rg6GTkadYvwM9f1jiOEeFhuvtBrMVR7EixJsPgl2PS13qmEPbt5EU7cWdCr1rP6ZhHibl5Fc/Y4IXKIpmmM+X0/MfHJ1Cjhy8vN7GeLTE9XJ/qEqNXrv193Qjrj8rlsF+2LFy8mNDQUd3d3du/eTUKCmjt948YNPvrooxwPKLLH192ZTjWKAbBA9mwXwrE5uUK3n6HRIHV95Tuw/G2wWO5/P5E/7Z2vFvkq1RAKV9Q7jRCpyjRWI4jIbMixAXxKqOOEyEXL9l5g9aEonE0GPnu6Jk4m+xqh1KdxWdycjew7d4NNJ2RXmfws22fm+PHj+f777/nxxx9xdna23t6kSRN27dqVo+HEw0kZIr9sz3niEpN1TiOEeCRGI3SYCO3Hq+tbvoUl/SFZFpsUd9E0CP9VtaWXXdgbowk6fHLnyr2F+53rHT5WxwmRSy7fSuD9/+0HYHCrSlQJ8NE5UXp+Xq48c+fv+qlrT+icRugp20X7kSNHaN48/eI2vr6+XL9+PScyiUfUqHwhyvh5cCshmb/3yRwYIfKExkPgqR/B6KxWB5/bTS04JgTAhXCIPgQmVzWlQgh7E9QFeswGn2Jpb/cprm4P6qJPLpFvvb/0ANfikqgS4M3AlhX0jpOp/s3KYzIaCDt+mX1n5f/9/CrbRXtAQADHjx9Pd3tYWBjly5fPkVDi0RgMBp4OLgmoBemEEHlEzR7w/EJw8YaIDWpl+ZgLeqcS9iBlAbqqj4F7AV2jCJGpoC4wfD/0+RO6TVeXw/dJwS5y3fL9F/hr7wVMRgOfP10LFyf7GhZ/t1KFPHispvqw6/v10tueX2X7DH355ZcZNmwYW7duxWAwcP78eebNm8fIkSMZOHCgLTKKh9A9uBRGA2w7dZVTl2P1jiOEyCkVWqmV5b2KQtR+tZd79BG9Uwk9JSfAvoWqXUv2Zhd2zmiCcs2gRnd1KUPiRS67FpvIO3+o1eJfbVGe6iXsfzesV1uokQD/7LtAhPxdny9lu2h/6623eO6552jTpg23bt2iefPm9O/fn1deeYUhQ4bYIqN4CAG+brSoXASQ3nYh8pxiNdVe7n4V4cYZ+DkUTm/VO5XQy9EVcPsaeBdTH+oIIYTI1Lg/D3L5VgIV/b0Y0rqS3nGypGoxH1oGFsGiwQ8bTuodR+gg20W7wWBgzJgxXL16lf3797Nlyxaio6MZN24ct2/ftkVG8ZBSFqRbvPMsyWZZbVqIPKVgWXhxJZSopwq22V3g8F96pxJ62HNnAbqaPaTXUggh7uO/w1Es2X0OowE+614TN2fH+Z2Z0tu+aOdZLt2M1zmNyG0PPYHDxcWFoKAgGjRogLOzM19++SXlytnP3oYC2lQtip+nC5duJrDuaLTecYQQOc3TD/osg8odIDke5veCHT/rnUrkplvRcGylasvQeCGEyNSN20mMXrIPgJealqNO6YI6J8qehuUKUad0ARKTLczcGKF3HJHLsly0JyQkMHr0aOrVq0fjxo35448/AJgxYwblypVj0qRJjBgxwlY5xUNwcTLyZJ0SAMzfLkPkhciTXDzgmXlQt7fao/vPEfDfBLUFmMj79i0ESzIUrwv+VfROI4QQduujvw4RFZNAucKevNE+UO842WYwGKy97XO2RHIzPknnRCI3Zblof++995g6dSply5YlIiKCp59+mgEDBjBp0iS+/PJLIiIiGDVqlC2ziofQo74aIv/f4UtE35R9nYXIk0xO8PgUaPGWur7+U1g6BMzJ+uYStrfnzqrxtaWXXQghMrPhWDTz76zx9Ek3xxoWf7d2VYtSoYgnN+OT+WXrab3jiFyU5aJ94cKFzJ49m0WLFrFy5UrMZjPJycns2bOHnj17YjI55smf11Uu6k3tUgVItmgs2XVW7zhCCFsxGKDVaHj8KzAYYfcc+O05SJRVZvOsi/vUl8kFqnfTO40QQtilWwnJvLVYDYvvE1KGBuUK6Zzo4RmNBl5prnrbp4edIiHZrHMikVuyXLSfPXuW4OBgAKpXr46rqysjRozAYDDYLJzIGc/c6W1fsOMMmgyZFSJvC+4LPX8BJ3c4tgJmPQ6xl/VOJWwh/M4CdJU7gIfj/hEqhBC29Mk/hzl3/TYlC7rzfx0cfxrRE3WKE+DjxqWbCfyx+5zecUQuyXLRbjabcXFxsV53cnLCy8vLJqFEznqsZjHcnU2ciI5l1+lrescRQthaYEfosxTcC8K5nTC9PVyL0DuVyEnmJNg7X7VrP69vFiGEsFNbTl5hzpZIQA2L93R10jnRo3N1MvFSU7X497R1JzFbpEMuP8jymatpGn379sXV1RWA+Ph4Xn31VTw9PdMct2TJkpxNKB6Zt5sznWoUY/Gus8zffobgMtIjI0SeV6oBvLQK5jwFV0/AT+3g+YVQvLbeyUROOL4a4i6DZxGo2EbvNEIIYXduJ5oZtXgvAM82KE2TioV1TpRznm1Ymq//O8bJy7GsOniRDtWL6R1J2FiWe9r79OmDv78/vr6++Pr60qtXL4oXL269nvIl7FPKEPk/914gNkEWpxIiXyhcCfqvgqI1IPYSzOwMJ/7TO5XICeHz1GXNZ8DkrG8WIYSwQ5+vPELklTiK+boxupPjD4u/m5erE71DygIwdd1Jmf6aD2S5p33GjBm2zCFsrH7ZgpQv7MnJy7H8tfeCdVV5IUQe5x0A/f5We7ifWgfznoYnvoNaz+idTDysuKtwZLlq13pW3yxCCGGHdkZe5eeNpwD46Kka+LjlvQ83+zYpy48bTrLnzHU2n7xC4wp5ZySBSC/LPe3CsRkMBp6upwr1lC0vhBD5hJsPPL8IqndXe3r/PgA2fiV7uTuq/YvBkgQBNSGgut5phBDCrsQnmXlz0V40DbrVLUmrQH+9I9lEYS9Xnq5XEoDv153UOY2wNSna85FudUtgMhrYGXmN45du6h1HCJGbnFzgqR8hZLC6vuo9WD4aLBZ9c4nsSxkaL3uzCyFEOl/9e4yT0bEU8Xbl3ceq6h3HpgY0q4DRAOuPRnPg/A294wgbkqI9H/H3caNVYBEAFu6QPduFyHeMRgidAKEfqetbp8KifpAUr28ukXWXDsH53WB0ghpP651GCCHsyt6z1/lhvep1ntC1OgU8XB5wD8dW2s+DzjWLA2oleZF3SdGez/S4M0R+8a6zJJmlh02IfCnkNeg2HYzOcPAPmNsNbl8HixlDZBglrm7GEBkGFrPeScW9wn9Rl5VCwVPmLwohRIrEZAtvLtyL2aLxeK3itK8WoHekXPFK8/IA/Ln3PKevxOmcRtiKFO35TKsq/hT2cuXyrUT+O3xJ7zhCCL3U6A69FoOrD0SGwdSm8GUQTnO7Ui9yKk5zu8Lk6nBwqd5JRQpzMuxdoNq1ZQE6IYS42zdrjnMk6iZ+ni6M7VJN7zi5pnoJX5pVKoxFgx83SG97XpWl1eOXLs36H21dunR56DDC9pxNRrrVLcG09SdZuOMMofnkU0ghRAbKt1Ary898DGIyWKAy5gIs6A09ZkOQ/G7X3ck1cOsiuBdSPe1CCCEAOHg+hu/WHAdg7BPVKOSZt4fF32tgywpsOHaZBTvOMKxtJQp7ueodSeSwLBXtXbt2zdKDGQwGzGYZTmnvnq5XimnrT7LmSDSXYuLx93HTO5IQQi/+QeCU2X/uGmCA5W9Blc5gNOVmMnGvlKHxNZ5WCwsKIYQgyWzhzUV7SLZohFYrSucaxfSOlOtCyvtRq6Qve87eYObGCEaGBuodSeSwLA2Pt1gsWfqSgt0xVPT3ol6ZgpgtGot2yYJ0QuRrkZvgVtR9DtAg5hycWJNrkUQGbl+Hw3+ptqwaL4QQVj+sP8mB8zH4ujszrmt1DAaD3pFyncFg4NUWFQCYvTmCWwnJOicSOU3mtOdTKQvSLdxxFk32ahYi/7pvwX6XX3qoYfTrP4dzO2WRutx2YAmYE9TIiGK19E4jhBB24VjUTb5afQyA9x8Pwt87/44ebV8tgHKFPYmJT+a3baf1jiNyWJaGx98rNjaWdevWcfr0aRITE9N8b+jQoTkSTNhW55rFGLvsAKcux7I94hoNyhXSO5IQQg9eRbN2nGaGiA3q679x4FYAyjWHCq2gfEsoVN6WKUX4r+qy1rOQD3uRhBDiXmaLxpuL9pJottC6ij9P1imhdyRdmYwGXmlenreW7OOnDafoHVIWFyfpn80rsl207969m06dOhEXF0dsbCyFChXi8uXLeHh44O/vL0W7g/B0deKxmsWZv+MM87efkaJdiPyqTGPwKa4WnSOjUTcG9f0X/oBT6+DkWji1AeKvw6Gl6gugQBlVvFdoBeVagIf8Tskxl4/B2W1gMEHNHnqnEUIIu/Bz2CnCz1zH29WJCU/mz2Hx93qybgm+XHWUizHx/BF+zjqyVji+bH/8MmLECB5//HGuXbuGu7s7W7ZsITIykuDgYD7//HNbZBQ20qO++of8974L3IxP0jmNEEIXRhN0+OTOlXv/4LlzvcPHUKQyNHgZes6D/zsJL62GVu9AmSZqv/frkbBrFizsC5+Whx9awuoP4OQ6SIrPtZeTJ+2508tesQ14y44fQghx6nIsn688AsCYzlUp5uuucyL74Opk4sWm5QCYtu4EFotMgc0rsl20h4eH88Ybb2A0GjGZTCQkJFCqVCk+/fRT3n77bVtkFDZSt3QBKhTx5HaSmT/3XtA7jhBCL0Fd1LZuPvesuOtTPOPt3kxOUKo+tHhTbRk3KgKeWwiNBkGRqoAG53dD2CSY3QU+KQtznoSNU+DCXrBYcumF5QEWM+z5TbVlATohhMBi0Ri1aC8JyRaaVizMM/WlN/luzzcsjbfb/7d33+FN1usfx99JuktbaKGTVTZlQxllg0xxIFtBQVQEweOex4UL9/G4QBQBRZGhqCAiILJXGWWVTaFQWgqUDlo6k98fAc4PRWW0fdLk87quXNokTT7Vp2nufL/Pfbtx8GQ2S3dfYd8acXhXvT3e3d0ds9le6wcHB5OYmEj9+vUJCAjg6NHLzPkVh2UymRjcsgqvL9zDrNij3N6qqtGRRMQoUbdAvT4UHlpJ3KpfadqhJ241Ol7ZmDfPclCnh/0CkJVi30Z/8Hf7P8+mwMFl9guAT0X7VvoL2+kDKpfMz+QMElbau/d7BUCd3kanEREx3Ffrj7DxcBo+HhYm9GukbfF/4OflzrA21Zi4/CATVxyke1SI/hs5gasu2ps1a0ZsbCy1a9emU6dOvPDCC5w6dYqvvvqKhg0blkRGKUG3NavMW4v2Enc0nX0nsqgT4md0JBExitmCrVp7knZl0qRa+2ufy+4XCk2G2C82G5zc878C/vBqyDkFO+faLwBBtf9XwFdvby9Qxe7C1viGA8Dddbsii4gAHE3L4c1FewB4pnc9qgT6GJzIMd3drjpTViewNTGdjQlptK4RZHQkuU5XvT3+9ddfJyzMvoXytddeo0KFCowZM4aTJ0/y6aefFntAKVmV/DzpWi8YgFmx2ikhIsXMZILg+hDzAAydbd9KP2IhdHwSKrcEkxlO74fYz+DbO+DNSPi8O/z+OhxZB0Uu3G8jNxPizzf609Z4EXFxNpuNp77bTk5+Ea0jAxnauprRkRxWsJ8X/Zvbd7FNWnHQ4DRSHK56pT06OvrivwcHB7No0aJiDSSlb3DLKiyOP8G8rUk81auexkOISMlx84Dq7eyXrv+Gc+n21fdDv9tX49MO2julH9sIK94Ej3L21fca50fLVarrOiPP4n+EwnP2nQgRLYxOIyJiqG9jj7L24Gm83M282b8xZrOL/C24Rvd3rMGs2ER+33uS3cmZ1A/zNzqSXIerrs66du1Kenr6n67PzMyka9euxZFJSlmnOpUI9vMkLTuf39SwQkRKk3d5qH8T9HkX/rUFHt4Bt3wIDfqBTxDkn4V9i2DRU/BJa3gvCuaNgW2zIMvJX6/ivrH/s+kdrvNBhYjIZRxPP8drP+8G4PEedale0dfgRI6vekVfeje0747+VKvtZd5VF+3Lly8nPz//T9fn5uayatWqYgklpcvNYmZAC/sWmlmbtEVeRAxUvio0vwsGToXHD8D9K6HbePtKu5sXZB2Hbd/AvFHwbh34pC0sehb2L4H8bKPTF5+0Q5C4FjBB48FGpxERMYzNZuPZeTs4m1dI86rlubtdpNGRyozRnWoCMH97MkfTcgxOI9fjirfHb9++/eK/x8fHk5KScvHroqIiFi1aRERERPGmk1IzMLoKnyw/yMp9J0nOOKd5lyJiPLMZwprYL+0fhoJzkLje3tDu0O/28XGpu+yX9R/b58VXaQ01O0ONrhDe9Nqb6Rntwpi3ml0gQH9bRcR1fbclieV7T+LhZuatAU2waFv8FWtUOYD2tSqy+sAppqxO4KVbGhgdSa7RFRftTZs2xWQyYTKZLrsN3tvbmw8//LBYw0npiazoS6vIQDYmpPHd5mOM61rb6EgiIpdy97YXsTW7AOMh+zQkrDh/PvxyyEiEI6vtl2Wv2rvQR3b83/nwgTXKxjZzq/V/XeObqAGdiLiu1MxcXp6/C4CHu9WmVnA5gxOVPaM71WT1gVN8G5vIg11rEVTO0+hIcg2uuGhPSEjAZrNRo0YNNm7cSKVKlS7e5uHhQXBwMBZLGV3REAAGR1dhY0Iaszcd44HOtdTgQ0Qcm28QNOxnv9hs9i3lFxraJayC3AzYPd9+AfvW+wsFfI3O4BNoZPq/lrgW0hPB0x/q9TE6jYiIIWw2G//+YSeZuYU0ighgVIcaRkcqk9rVCqJhhD87kzKZvu4Ij3avY3QkuQZXXLRXq2Yfq2C1WkssjBjrxkZhvPjTLhLTclifcJq2NSsaHUlE5MqYTBBU035peS8UFUJy3P/mwx/dYC+Et0y3XzDZt91fmA9fpY3jzEG/0ICuQV/w0AxiEXFN87cnsyT+BO4WE28PbIybRdONroXJZGJ0p5qM+2YrX647zOhONfDxuOoBYmKwa/o/dvDgQd5//31277Z3cYyKiuKhhx6iZs2axRpOSpe3h4Wbm4Qzc2MiczYdU9EuImWXxQ0qR9svnZ6AvLNwZO3/zodPjbcX9clxsOZ9e5O7qjH2Ar5GFwhpaD+nvrTlnYVdP9j/XVvjRcRFnT6bx0s/2bfFj+1Si3qhGld2PXo3DKNa0F6OnM7h241HGdlezfzKmqt+R/Lrr78SFRXFxo0bady4MY0bN2bDhg00aNCAJUuWlERGKUWDW1YBYOGOZDLOFRicRkSkmHiWgzo9oNfr8MA6eGwv3DYZmtwO5UKhMNdezC95AT7tAO/UhrkjYctXkF6KUzV2z4eCbKgQCVXblN7ziog4kBd+2kVadj71Qv14oHMto+OUeRaziVEd7acXfL7qEAVF2jld1lz1SvvTTz/NI488whtvvPGn65966im6d+9ebOGk9DWpHEDdED/2nsjip23HubNNNaMjiYgUP79QaDLYfrHZ4OTe/50Pf3g15JyCnd/ZLwBBtf53PnxkB3uTu5KwTbPZRcS1LdqZzM/bk7GYTbwzsAkebtoWXxz6N6/Mf5bs53hGLj/FHaf/+XHPUjZc9W/B7t27ueeee/50/ciRI4mPjy+WUGIck8nEwGj7L/HsWM1sFxEXYDJBcD1oMwaGzoanDsPdv0DHJ6FyKzBZ4PQBiP0MZg2FNyPh8+6w7DX7lvuiYtqVlJ4ICSvt/95kSPE8pohIGZKek89zP9i3xY/uVIOGESX0AakL8nK3MLJ9dQA+XXkQq9VmbCC5KlddtFeqVIm4uLg/XR8XF0dwcHBxZBKD9WteGXeLiR1JGcQfzzQ6johI6XLzgGptoeu/4d4l8FQCDP7a3uAuqBbYiuDYRlj5FkztDW9Wh68HwfqJkLrHvnJ/LbbNsv+zegd7p3sRERfz8vx4Tp3No1ZwOR7U+OFiN7R1Ncp5urHvxFmW7Uk1Oo5chSveHv/yyy/z+OOPc9999zFq1CgOHTpE27ZtAVizZg1vvvkmjz76aIkFldIT6OtB96gQFu5IYfamo7x0SwOjI4mIGMcrAOrfZL+A/Rz3Cw3tDi2HnNOw/1f7BcAv7PxYuS5Qo5N9K/7fsRbBkTWwcbL96ya3l9APIiLiuJbtOcH3W5Mwm+CtAY3xctco6eIW4O3O0NZV+XTlISatOEi3qBCjI8kVuuKV9vHjx3P27Fmef/55XnjhBT788EM6depEp06d+Oijj3jppZd47rnnrurJJ0yYQMuWLfHz8yM4OJi+ffuyd+/eS+7TuXNnTCbTJZfRo0dfcp/ExET69OmDj48PwcHBPPHEExQWFl5VFrnUoGh7Q7of4pLIKywyOI2IiAMpXwWa3wkDvoDHD8D9q6D7y/Yi3c0LspJh20yYNwrerQufxMCiZ2HfYsjPvvSx4n+C9xvC9Jsh+/yqx7JX7NeLiLiIzNwCnv1+JwD3tI+kedUKBidyXiPbR+JhMbPpyBk2HU4zOo5coSteabed3+5nMpl45JFHeOSRR8jKygLAz8/vmp58xYoVjB07lpYtW1JYWMizzz5Ljx49iI+Px9fX9+L97rvvPl5++eWLX/v4/G9ubVFREX369CE0NJS1a9eSnJzMXXfdhbu7O6+//vo15RLoULsSYQFeJGfksiT+BDc1Djc6koiI4zGbIayx/dLuISjIhaPrz8+H/x2St9vHy6XGw/qPwewOVVrbV+LNbvDbeOAP2+mzUmD2XTDoS4i6xYifSkSkVL3+825SMnOpHuTDo93rGh3HqYX4e9GveQTfxh5l0oqDfF490OhIcgWuqnu86Q+dbK+1WL9g0aJFl3w9bdo0goOD2bx5Mx07drx4vY+PD6Ghl99euHjxYuLj41m6dCkhISE0bdqUV155haeeeoqXXnoJDw+P68roqixmEwNaVObDZQeYFXtURbuIyJVw9zq/Nb4zMB6yT0PCiv9tp09PhCOr7Ze/ZANMsOhpqNcHzNoiKiLOa9X+k3x7vvnxWwOa4O2h17ySNqpjDWZtOsrS3ansTcmibuj11XRS8q6qaK9Tp86fCvc/Sku79m0WGRkZAAQGXvqJz9dff82MGTMIDQ3l5ptv5vnnn7+42r5u3ToaNWpESMj/zsno2bMnY8aMYdeuXTRr1uxPz5OXl0deXt7FrzMz7c3WCgoKKCjQbPIL+jYJ5cNlB1h94BSHT2YSUd7b6EiGuHBM6NgQV6DjvZh5+EPdm+0Xmw3OJGBOWI5p1/eYj67/m2+0QWYShYdWYqvWvtTiuhod7+JKHPF4P5tXyNPfbQfgztZVaFbZz6HyOasq5T3pXj+YxfGpTFq+n7f6NzI6UrFyxGP9r1xpxqsq2sePH09AQMmMXrBarTz88MO0a9eOhg0bXrz+jjvuoFq1aoSHh7N9+3aeeuop9u7dy/fffw9ASkrKJQU7cPHrlJSUyz7XhAkTGD9+/J+uX7x48SVb7wVq+5vZn2nmjVnL6V3FtUdDLFmyxOgIIqVGx3tJCiXC3Ixo/q5ot4tb9StJuzTFo6TpeBdX4kjH+9xDZpLSzQR62mhkS2DhwgSjI7mMhmZYjBs/bjtOY/NRAj2NTlT8HOlY/ys5OTlXdL+rKtqHDBlSYmPdxo4dy86dO1m9+tItg6NGjbr4740aNSIsLIwbbriBgwcPUrNmzWt6rmeeeeaSTveZmZlUqVKFHj164O/vf20/gJMqiEjm8bk72HHWl//26oDZ/Pc7LZxRQUEBS5YsoXv37ri7uxsdR6RE6XgvHaYj/nBk4j/er2mHnjTRSnuJ0fEursTRjvcNCWmsWrcJgP/cHk3bmkEGJ3I9a7NjWZ9whsOeNRh2Yz2j4xQbRzvW/86FHd//5IqL9n/aFn89xo0bx4IFC1i5ciWVK1f+2/u2bt0agAMHDlCzZk1CQ0PZuHHjJfc5ceIEwF+eB+/p6Ymn558/TnJ3d3f4/7Gl7aYmEYxfsJuk9FxiEzNpX7ui0ZEMo+NDXImO9xJWoyP4h0NmMn9qRAeACfzDcavRUee0lwId7+JKHOF4P5dfxL9/jAfg9lZV6FTvH0ZjSokY06U26xM2MntTEg93q0sFX+fqBeYIx/o/udJ8Vzzy7UL3+OJks9kYN24c8+bNY9myZURGRv7j98TFxQEQFhYGQExMDDt27CA1NfXifZYsWYK/vz9RUVHFntnVeLlb6Ns0AoBZm44anEZExEmYLdDrzfNf/PFD8fNf93pDBbuIOKV3F+/lyOkcwgK8eObG+kbHcVkda1ckKsyfcwVFfLnuiNFx5G9ccdFutVqLfWv82LFjmTFjBt988w1+fn6kpKSQkpLCuXPnADh48CCvvPIKmzdv5vDhw/z000/cdddddOzYkcaNGwPQo0cPoqKiuPPOO9m2bRu//vorzz33HGPHjr3sarpcvQsz23/dlUJ6Tr7BaUREnETULfaxbv5hl17vH65xbyLitDYfOcOUNfZz11/v1wh/L8deCXVmJpOJ0Z3tpxtPW5tATn6hwYnkr1xx0V4SJk6cSEZGBp07dyYsLOziZdasWQB4eHiwdOlSevToQb169Xjsscfo378/8+fPv/gYFouFBQsWYLFYiImJYdiwYdx1112XzHWX69Mwwp/6Yf7kF1r5Me640XFERJxH1C3w8E4YvgD6T7H/8+EdKthFxCnlFhTx5Nxt2GzQv3llutQtmV5ZcuVubBhKlUBvzuQUMDtWu2od1VU1oitu/7TlvkqVKqxYseIfH6datWosXLiwuGLJH5hMJgZHV+al+fHMij3K8LbVjY4kIuI8zBaI7GB0ChGREvff3/Zz8GQ2lfw8ef4mbYt3BG4WM6M61OD5H3fx2aoEhraphrvF0HVduQz9H5Er0rdZBB4WM/HJmexMyjA6joiIiIiUIduPpTN55SEAXu3bkPI+ztX0rCwbGF2FIF8PktLP8fP2ZKPjyGWoaJcrUt7Hgx4NQgCYrYZ0IiIiInKF8gutPDl3O0VWGzc3CadnA3WLdyRe7hbublcdgEkrDpZIA3K5Pira5YoNbmlvSPfD1iRyC4oMTiMiIiIiZcHHvx9gT0oWQb4evHSzpjs5ojvbVMfXw8KelCyW7z1pdBz5AxXtcsXa1axIRHlvMnML+XVXitFxRERERMTB7U7O5OPfDwAw/tYGBJXTdCdHFODjzu2tqgIwccVBg9PIH6lolytmNpsY0KIyALPUXVJERERE/kZBkZUn5m6j0GqjZ4MQ+jQK++dvEsPc0yESd4uJjQlpbD5yxug48v+oaJerMjC6MiYTrD14mqNpOUbHEREREREHNXnlIXYmZRLg7c4rfRtiMpmMjiR/IyzAm75NIwD7ue3iOFS0y1WpXMGH9rUqAjBHDelERERE5DIOpGbx36X7AXjx5iiC/bwMTiRX4v5ONQBYEn+CA6lZBqeRC1S0y1UbFG1vSDdn8zGKrOouKSIiIiL/U2S18cTc7eQXWelStxK3NYswOpJcoVrBfvSIsk+M+nTFIYPTyAUq2uWqdY8KIcDbneSMXFYfOGV0HBERERFxIFPXJLA1MR0/Tzde79dI2+LLmNGdawLwQ1wSyRnnDE4joKJdroGXu+XiJ6az1ZBORERERM5LOJXN27/uBeDffeoTFuBtcCK5Ws2rVqBVZCAFRTamrEowOo6gol2u0YUt8ovjU0jLzjc4jYiIiIgYzWq18dTc7eQVWmlfqyKDW1YxOpJcozGd7KvtMzcmkpFTYHAaUdEu1yQq3J+GEf4UFNmYtzXJ6DgiIiIiYrCv1h9h4+E0fDwsTNC2+DKtc91K1Av1Izu/iK/WHzY6jstT0S7XbPCFhnSbjmKzqSGdiIiIiKs6mpbDm4v2APB073pUCfQxOJFcD5PJxOjzq+1T1xwmt6DI4ESuTUW7XLNbmkbg6WZmT0oW249lGB1HRERERAxgs9l4+vvt5OQX0SoykGGtqxkdSYrBTY3DiCjvzensfI16NpiKdrlmAd7u9G4YCsAs/SKLiIiIuKRvY4+y5sBpvNzNvNW/MWaztsU7AzeLmVEd7XPbJ686RGGR1eBErktFu1yXCw3p5scd51y+ts2IiIiIuJLj6ed47efdADzeoy7VK/oanEiK06DoKgT6enA07Rw/70g2Oo7LUtEu16VNjSCqBHqTlVfILzv1iywiIiLiKmw2G8/O28HZvEKaVS3P3e0ijY4kxczbw8LwmOoATFpxSH2sDKKiXa6L2WxiUAv7avsszWwXERERcRnfb0li+d6TeLiZeXtAYyzaFu+U7oqphre7hd3Jmazcf8roOC5JRbtctwHRlTGZYENCGodPZRsdR0RERERKWGpmLuPn7wLg4W61qRXsZ3AiKSkVfD24vVVVACYtP2hwGtekol2uW1iANx1rVwJgzmattouIiIg4M5vNxnM/7CQzt5BGEQGM6lDD6EhSwu7tEImb2cS6Q6eJO5pudByXo6JdisXglvYt8nM3H1NnSREREREntmB7MovjT+BuMfH2wMa4WVRSOLvw8t7c0jQc0Gq7EfQbJsWiW/0QAn09OJGZx8r9J42OIyIiIiIl4PTZPF78yb4tfmyXWtQL9Tc4kZSW0Z1qAvBrfAoHT541OI1rUdEuxcLDzUzfphEAzI49ZnAaERERESkJL/60i7TsfOqF+vFA51pGx5FSVCfEj271g7HZYPKKQ0bHcSkq2qXYXNgiv3T3CU6dzTM4jYiIiIgUp0U7U1iwPRmL2cTbA5rg4aZSwtVcWG2ftzWJE5m5BqdxHfpNk2JTN9SPJlXKU2i1MW9LktFxRERERKSYpOfk89wPOwG4v2MNGlUOMDiRGCG6eiDR1SqQX2Tli9UJRsdxGSrapVgNjj4/s33TUWw2m8FpRERERKQ4vLwgnlNn86gVXI5/3VDb6DhioDGd7avtX29IJONcgcFpXIOKdilWNzUJw8vdzIHUs2zVOAgRERGRMm/ZnhN8vyUJkwneGtAYL3eL0ZHEQF3qBlMnpBxn8wqZsf6I0XFcgop2KVb+Xu7c2CgMgNmxmtkuIiIiUpZl5hbw7Pf2bfH3tIukedUKBicSo5nNJu7vaF9tn7rmMLkFRQYncn4q2qXYXdgiP3/bcbLzCg1OIyIiIiLXasLC3aRk5lI9yIfHetQ1Oo44iFuahhMe4MWps3l8t0WTo0qainYpdq0iA6ke5EN2fhELdyQbHUdERERErsHq/aeYudG+c/LN/o3x9tC2eLFzt5i5t0MNACavPESRVb2sSpKKdil2JpOJgedX22dv0hZ5ERERkbImO6+Qp77bDsDwmGq0rhFkcCJxNENaVaG8jztHTufwy04t1JUkFe1SIga0qIzZBLGHz3Dw5Fmj44iIiIjIVXhz0R6S0s9RuYI3T/aqZ3QccUA+Hm7cFVMdgEkrDmpyVAlS0S4lIsTfiy51gwGttouIiIiUJRsOnebLdfau4G/2b4yvp5vBicRRjWhbHS93MzuTMllz4LTRcZyWinYpMRe2yH+3OYmCIqvBaURERETkn5zLL7q4Lf72VlVoV6uiwYnEkQX6ejCkZVUAJq44YHAa56WiXUrMDfWDqVjOg1Nn81i+96TRcURERETkH7y7eC+HT+cQFuDFMzfWNzqOlAH3tI/EYjax5sBpdhzLMDqOU1LRLiXG3WKmX/PKAMzSzHYRERERh7Yl8QxT1iQA8PptjfD3cjc4kZQFVQJ9uKVJOGA/t12Kn4p2KVGDou1F++97U0nNzDU4jYiIiIhcTm5BEU/M2YbNBv2aR9ClXrDRkaQMub+Tffzbwp3JJJzKNjiN81HRLiWqVrAfzauWp8hq4/utSUbHEREREZHL+OC3/Rw8mU0lP09euCnK6DhSxtQL9adL3UrYbPa57VK8VLRLiRvc8vzM9tijGgUhIiIi4mB2HMvg0/OF1qt9G1Lex8PgRFIWje5UE4DvthwjNUs7bIuTinYpcX0ah+PjYeHQqWw2HTljdBwREREROS+/0MoTc7dRZLVxU+MwejYINTqSlFGtIgNpXrU8+YVWpq45bHQcp6KiXUpcOU83+jQKA+yr7SIiIiLiGD5ZfoA9KVkE+now/pYGRseRMsxkMl1cbZ+x7giZuQUGJ3IeKtqlVFzYIv/zjmTO5hUanEZEREREdidn8tEy+2zt8bc0IKicp8GJpKzrVj+EWsHlyMor5JsNiUbHcRoq2qVUtKhWgRqVfMnJL2LBtuNGxxERERFxaYVF9m3xhVYbPRuEcFPjMKMjiRMwm03c39HeSX7K6gRyC4oMTuQcVLRLqTCZTAyOtq+2z9qkLfIiIiIiRpq86hA7kzIJ8HbnlVsbYjKZjI4kTuLWphGEBXhxMiuPeZoeVSxUtEupua15BBazia2J6ew/kWV0HBERERGXdCA1i/eX7AfghZuiCPb3MjiROBMPNzP3tI8E7OPfiqyaHnW9VLRLqQn286JrvWAAZmu1XURERKTUFVltPDF3O/lFVrrUrUS/5hFGRxInNKRVVfy93Eg4lc3iXSlGxynzVLRLqbqwRf77LUnkF1oNTiMiIiLiWqavO8LWxHT8PN14vV8jbYuXElHO043hbasDMGnFQWw2rbZfDxXtUqo6161EJT9PTmfns2xPqtFxRERERJxekdXGhoQ0fj9u4p3F9m3x/+5Tn7AAb4OTiTMb3rY6nm5mth3LYN3B00bHKdNUtEupcrOY6d+8MqAt8iIiIiIlbdHOZNq/uYxhX2zihyMWCqw2PCxmArzdjY4mTq5iOU8Gnd9lO3HFQYPTlG0q2qXUDYq2F+3L96aSkpFrcBoRERER57RoZzJjZmwh+Q/vt/KLrDzw9RYW7Uw2KJm4ilEda2Axm1i1/xQ7kzKMjlNmqWiXUlejUjlaVQ/EaoPvthwzOo6IiIiI0ymy2hg/P56/O5N4/Px4dfaWElUl0Ic+jcIA+7ntcm1UtIshBkb/b4u8GlOIiIiIFK+NCWl/WmH//2xAckYuGxPSSi+UuKT7O9UAYOGOZI6czjY4Tdmkol0M0adxGOU83ThyOocN+mMhIiIiUqxSs67sFMQrvZ/ItWoQHkCnOpWw2uCzVYeMjlMmqWgXQ/h4uHFzE/tWmdmxakgnIiIiUpyC/Tyv8H5eJZxEBEZ3qgnAnE3HOJmVZ3CaskdFuxjmQjfJhTuTycwtMDiNiIiIiPPYeTzzb283AWEBXrSKDCydQOLS2tQIpEmV8uQVWpm2NsHoOGWOinYxTNMq5akdXI7cAivztx03Oo6IiIiIU1i8K4XXF+6++LXpD7df+PrFm6OwmP94q0jxM5lMjDl/bvtX645wNq/Q4ERli4p2MYzJZGJwS/tqu7bIi4iIiFy/7cfSeejbOGw2GNq6KhOHNic04NIt8KEBXkwc1pxeDcMMSimuqEdUKDUq+ZKZW8jMDYlGxylTVLSLoW5rFoGb2cS2YxnsSfn7bVwiIiIi8teS0s9xz/RNnCsoolOdSoy/pQG9G4Wx+qmuzBgZzV21i5gxMprVT3VVwS6lzmw2cX9H+2r756sPkVdYZHCiskNFuxgqqJwn3eqHADA7VjPbRURERK5FZm4BI6fGcjIrj3qhfnx0RzPcLPa3+hazidaRgbSoaKN1ZKC2xIth+jaLIMTfkxOZefy4VafHXikV7WK4C1vk5209pk/cRERERK5SQZGVsV9vYe+JLIL9PPliREv8vNyNjiXyJ55uFu5pHwnApJUHsVptBicqG1S0i+E61qlEqL8XZ3IKWBqfanQcERERkTLDZrPxwo87WbX/FN7uFr4Y0ZLw8t5GxxL5S7e3qoqflxuHTmazZPcJo+OUCSraxXAWs4kBLSoDMGuTGtKJiIiIXKnJKw8xc+NRTCb48PZmNIwIMDqSyN/y83LnzjbVAJi4/CA2m1bb/4mKdnEIA6PtRfuq/Sc5nn7O4DQiIiIijm/hjmQm/LIHgBduiqJbVIjBiUSuzN3tIvFwMxN3NJ0NCWlGx3F4KtrFIVQL8qVNjUBsNpi7WQ3pRERERP7OlsQzPDIrDoARbatzd7tIYwOJXIVKfp4MPL/TdtKKgwancXwq2sVhXJzZvumomlKIiIiI/IWjaTncN30TeYVWbqgXzPM3RRkdSeSqjepYA7MJlu89SfxxjX7+OyraxWH0ahCGn6cbx86cY/2h00bHEREREXE4GTkFjJi6kdPZ+TQI9+eD25tphJuUSdWCfOndKAyAT1dqtf3vqGgXh+HtYeGWpuGAGtKJiIiI/FF+oZUxX2/m4MlswgK8+GJES3w93YyOJXLNxnSqCcCC7ckcTcsxOI3jUtEuDuXCFvlfdqaQkVNgcBoRERERx2Cz2Xh23g7WHjyNr4eFKcNbEuLvZXQskevSMCKADrUrUmS18fmqQ0bHcVgq2sWhNIoIoF6oH/mFVn7clmR0HBERERGH8PHvB5i7+RgWs4mPhjYnKtzf6EgixWL0+dX2WZuOcvpsnsFpHJOKdnEoJpOJQdH/a0gnIiIi4up+jEvincX7AHjplgZ0qRtscCKR4tO2ZhCNIgLILbAyfe1ho+M4JBXt4nBuaxaBh8XMzqRMdh3PMDqOiIiIiGFiD6fxxJztANzXIZI721QzOJFI8TKZTIzpbF9tn77uCNl5hQYncjwq2sXhVPD1oHuDEABmx2q1XURERFzT4VPZjPpyE/lFVno2COGZ3vWNjiRSIno2CCWyoi8Z5wqYuTHR6DgOR0W7OKTB57fI/xB3nNyCIoPTSGkrstpYd/A0P8Ylse7gaYqsNqMjiYiTKbLa2JCQxuZTJjYkpOl1RhzOmex87p4Wy5mcAppUDuD9wc0wa7SbOCmL2cR9HWoAMGV1AvmFVoMTORZDi/YJEybQsmVL/Pz8CA4Opm/fvuzdu/eS++Tm5jJ27FiCgoIoV64c/fv358SJE5fcJzExkT59+uDj40NwcDBPPPEEhYXaVlGWtatVkfAALzLOFbA4/sQ/f4M4jUU7k2n/5jJu/2w9D30bx+2fraf9m8tYtDPZ6Ggi4iQuvM4M+2ITX+63MOyLTXqdEYeSV1jE/V9tJuFUNhHlvflseDTeHhajY4mUqH7NI6jk50lyRi4/bTtudByHYmjRvmLFCsaOHcv69etZsmQJBQUF9OjRg+zs7Iv3eeSRR5g/fz5z5sxhxYoVHD9+nH79+l28vaioiD59+pCfn8/atWuZPn0606ZN44UXXjDiR5JiYjGbGHChIZ22yLuMRTuTGTNjC8kZuZdcn5KRy5gZW/SGWkSum15nxNHZbDaemrudjYfT8PN0Y+rdLQn202g3cX5e7hZGtosE4NMVB7FqB9RFhhbtixYtYsSIETRo0IAmTZowbdo0EhMT2bx5MwAZGRlMmTKF9957j65du9KiRQumTp3K2rVrWb9+PQCLFy8mPj6eGTNm0LRpU3r37s0rr7zCxx9/TH5+vpE/nlyngS0qA7D6wCmOpuUYnEZKWpHVxvj58Vzu5fnCdePnx2sLq4hcM73OSFnw/tL9/BB3HDeziYnDWlAnxM/oSCKlZmibqvh5urE/9Sy/7Uk1Oo7DcDM6wP+XkWHvFB4YGAjA5s2bKSgooFu3bhfvU69ePapWrcq6deto06YN69ato1GjRoSEhFy8T8+ePRkzZgy7du2iWbNmf3qevLw88vL+NwMwMzMTgIKCAgoKCkrkZ5OrF+rnTtsagaw9lMbs2CP8q2stQ3JcOCZ0bJSsDQlpf1r5+v9sQHJGLusOpNI6MrD0grkYHe/izPQ6I45u3tbj/Pe3/QCMv7k+rasHFNvrsV7fpSzwtsCQlpX5bPVhJi4/QOfaV/9aXJaO9SvN6DBFu9Vq5eGHH6Zdu3Y0bNgQgJSUFDw8PChfvvwl9w0JCSElJeXiff5/wX7h9gu3Xc6ECRMYP378n65fvHgxPj4+1/ujSDGqZTGxFgsz1hykxrl9GNl/ZcmSJcY9uQvYfMoE/PP5eotXbeD0bq2ClTQd7+KM9Dojjmx/homJu82AiW7hVsqlbmfhwu3F/jx6fRdHVyUfLCYLWxLT+fDbhdT0v7bHKQvHek7Ole0mdpiifezYsezcuZPVq1eX+HM988wzPProoxe/zszMpEqVKvTo0QN//2s8KqRE3FBQxI9vr+DMuUIC6raiQ62KpZ6hoKCAJUuW0L17d9zd3Uv9+V2F776TfLl/6z/ez1wxku496+Bu0fCLkqDjXZzajhS+3P/PRVCPDq210i6l6uDJbJ6fvIEiWyE3NgzhPwMbF3uneL2+S1myy7SLWZuS2F4QyoM3Nr+q7y1Lx/qFHd//xCGK9nHjxrFgwQJWrlxJ5cqVL14fGhpKfn4+6enpl6y2nzhxgtDQ0Iv32bhx4yWPd6G7/IX7/JGnpyeenp5/ut7d3d3h/8e6Gnd3d/o2jWD6uiN8vzWZrvXDDM2i46NknD6bxwfLDl7RfaetS2TF/tM83qMuNzYKxWTS+JuSoONdnM2+E1lMWLT3H+9XwcedmFrBWDRaS0rJ6bN5jJqxlczcQppXLc97g5vh6V5yneL1+i5lwf2dajF7cxLL953i0Olc6oZefW+HsnCsX2k+Q5eqbDYb48aNY968eSxbtozIyMhLbm/RogXu7u789ttvF6/bu3cviYmJxMTEABATE8OOHTtITf1fo4IlS5bg7+9PVFRU6fwgUqIGnu8iv3jXCc5kq7mgszlyOpv+E9eyPSkT3/PjbP74Vtl0/jIoujJBvh4knMpm7DdbuPXjNaw9cKq0I4tIGbMxIY0BE9eSkplHiL/9Q/u/KsnP5BQwY/2R0gsnLi23oIj7vtxEYloOVQN9+OyuaLxKsGAXKStqVCpH74b2BdhPV1zZwo4zM7RoHzt2LDNmzOCbb77Bz8+PlJQUUlJSOHfuHAABAQHcc889PProo/z+++9s3ryZu+++m5iYGNq0aQNAjx49iIqK4s4772Tbtm38+uuvPPfcc4wdO/ayq+lS9jSMCKBBuD/5RVZ+iEsyOo4Uox3HMug/cS2HT+dQuYI3Pz3YnknDmhMacOlom9AALyYOa85bA5qw4skuPNytNr4eFrYfy+COzzdw55QN7EzKMOinEBFHtmhnMsOmbCAzt5AW1Sqw6KGOl32dCQvwokNt+ylYL/60izcX7cFm03ntUnKsVhuPzdnGlsR0/L3c+GJES4LK6b2ryAWjO9UE4Kdtxzl2xrUnSRm6PX7ixIkAdO7c+ZLrp06dyogRIwD4z3/+g9lspn///uTl5dGzZ08++eSTi/e1WCwsWLCAMWPGEBMTg6+vL8OHD+fll18urR9DSsHgllV44cddzIo9yoi21bUl2gms2HeSMTM2k5NfRFSYP9Pubkmwvxc1K5Wje1QoGxPSSM3KJdjPi1aRgRe3qpbzdOPhbnUY1qYaHy07wNcbjrBq/ylW7V/NzU3CebxHHaoF+Rr804mII/hy3WFe/GkXNht0jwrhw9ub4eVuoVfDMLpHhbLuQCqLV22gR4fWxNQKxmyCj5Yd4N0l+5i4/CAnMnN5s39j9dCQEvHO4r38vD0Zd4uJT++MplZwOaMjiTiUxpXL07ZmEGsPnubzVQm8dEsDoyMZxtCi/Uo+wfby8uLjjz/m448//sv7VKtWjYULFxZnNHEwtzaJ4NWfd7MnJYudSZk0qhxgdCS5Dt9vOcaTc7dTaLXRvlZFJg5rjp/X/87psZhNxNQM+tvHqFjOk5duacDIdpG8u2QvP8YdZ/624/yyI5k7Wlflwa61qeSnFQsRV2Sz2Xj71718sty+pfKO1lV5+ZYGuP2/4ttiNtE6MpDTu220/n8fDD54Q21C/L14Zt4Ovt+SxKmz+Uwc2hxfT4doAyROYlZs4sXj841+jf/xb56IqxrdqSZrD55mVuxRHrqhNhV8PYyOZAh9dCxlQoCPO70a2M9rmbUp0eA0cq1sNhsTlx/k0dnbKLTauLVpOF+MaHlJwX61qgb58N8hzfj5X+3pVKcShVYbX647Qqe3f+e9JfvIynX8GZ0iUnwKiqw8Pmf7xYLose51eK1vw0sK9n8yqGUVPrurBd7uFlbuO8mQyes5mZVXUpHFxazef4p/z9sJwL9uqE3/FpX/4TtEXFeH2hVpEO7PuYIipq87bHQcw6holzJjcEt7Q7of446TW1BkcBq5WkVWGy+dP08UYFTHGvxnUFM83IrnZahBeADTR7bim/ta06RyADn5RXzw2346vb2cqWsSyCvUMSPi7LLzCrl3+ia+23IMi9nEm/0b8eANta/plKqu9UKYOaoNgb4e7Eg633/jVHYJpBZXsu9EFmNmbL74wfUj3WobHUnEoZlMpovntk9be5ic/EKDExlDRbuUGTE1gqhcwZus3EIW7UwxOo5chdyCIh6cuYXp645gMsHzN0Xx7I31i30GLUDbmhX5YWw7PhnanBoVfUnLzmf8/HhueHcF87Yew2pVYykRZ3TqbB63f7aeFftO4uVu5rO7WjC4ZdXresymVcozd3QMVQK9SUzLof/EtWw7ml48gcXlpGblcvfUWLLyCmlVPZC3BjRWjx6RK9C7YShVA31IzylgVuxRo+MYQkW7lBlms4mBLeyr7a76C1sWZeQUcNcXG1m4IwUPi5kPb2/GPe0j//kbr4PJZOLGRmH8+khHXr+tEcF+nhw7c45HZm2jz4er+X1vqrpCiziRw6fOj448lkGgrwcz72tD13ohxfLYNSqV47sxbWkY4c/p7HyGTF7P73tT//kbRf6fc/lF3Dd9E0np54is6Mund7bA002j3USuhJvFzKiONQD4fFUCBUVWgxOVPhXtUqYMiK6MyQTrDp3myGltU3R0yRnnGPjpWjYmpOHn6ca0kS25qXF4qT2/u8XMHa2rsuKJLjzRsy5+Xm7sTs7k7qmxDJm8nq2JZ0oti4iUjO3H0uk/cS1HTudQJdCbuaNjaFa1QrE+R7CfF9+OiqFD7YqcKyji3umbmLNJHx7LlbFabTw8ayvbjmVQwcedqSNaumwzLZFrNaBFZSqW8yAp/RwLth83Ok6pU9EuZUpEeW861K4EwJxNxwxOI39n34ks+n2yln0nzhLs58ns0TG0rVnRkCzeHhbGdqnFyie6MKpjDTzczGxISOO2T9Yy+qvNHEg9a0guEbk+y/emMmTyek5n59Mg3J/vxrSlRqWSGZtVztONKcNbcluzCIqsNp6Yu52Plu3Xrh35RxN+2c2vu07gYTEz+a5oqlfUWFKRq+XlbuHudvadmpOWH3K5114V7VLmDI62b5Gfu/kYRTo/2SFtTEhjwMS1JGfkUiu4HN8/0Jb6Yf5Gx6KCrwfP3lif3x/vzMAWlTGbYNGuFHq+v5Jnvt9OSkau0RFF5ArN3XyMe6dvIie/iA61KzLr/hiC/bxK9Dk93My8O7DJxaZI7yzexws/7tLfIvlLX60/wmerEgB4e2BjWlYPNDiRSNk1rHU1fD0s7D2R5XKnKalolzKnW1QwFXzcScnMZeX+k0bHkT/4ZUcyw6ZsIDO3kBbVKjB3dAyVK/gYHesSEeW9eXtgExY93JFu9UMostqYufEond7+nTd+2UNGjsbEiTgqm83Gx78f4PE59tGRtzWLYMrwlpQrpTnqZrOJp3vX46WbozCZ7EXZA19v1lQT+ZPf96by4o/20W6Pda/DrU0jDE4kUrYF+LgztE01wL7a7kpUtEuZ4+lmoW8z+x++2WpI51Cmrz3MA99sIb/QSo+oEL6+tzXlfRz3vL06IX58PjyauaNjiK5WgbxCK5NWHKTj27/z6YqDehMu4mCKrDZe+HEXb/+6F4D7O9Xg3YFNim105NUY0S6Sj25vjofFzK+7TjDs8w2k5+SXeg5xTPHHMxn39RasNvu5uOO61jI6kohTGNkuEneLiY2H09h8JM3oOKVGRbuUSRdmti/dfYLTZ/MMTiM2m423Fu3hxZ92YbPB0NZVmTisBV7uZaMzbnT1QOaMjuHzu6KpE1KOjHMFTPhlD13eWc7s2KMUumCXUhFHk1tQxNivt/DVevvoyBdvjuKZ3iUzOvJK9Wkcxpf3tMLPy41NR84wYNI6ktLPGZZHHMOJzFzumR5Ldn4RMTWCeP22RhrtJlJMQgO8uO384t1EF1ptV9EuZVK9UH8aVw6goMjGvK1JRsdxaQVFVh6bs41Plh8E7FsAX+3bEIuBb6SvhclkoltUCL881JG3BzQmPMCL5IxcnvxuO73+u4pfd6W4XNMTEUeRkVPAnVM2sGjX/0ZHXmhIZLQ2NYKYMzqGUH8vDqSepf8na9mTkml0LDFIdl4hI6fFkpyRS81Kvkwa1sKQnSAizmxUx5qYTPbFu/0nsoyOUyr0KiJl1qDzDelmbzqqYsog2XmF3DN9E99vScJiNvFW/8Y8eEPtMr2iYDGbGBhdhWWPd+a5PvUp7+POgdSz3P/VZvpPtI+vE5HSczz9HAMmrSX28Bn8vNyYPrJVqY6OvBL1Qv35/oG21A4uR0pmLgMnrmPdwdNGx5JSVmS18a+ZW9l1PJMgXw+mjmhFgI+70bFEnE6t4HL0iAoB4NOVrrHarqJdyqxbmobj5W5m34mzxB1NNzqOyzmZlceQyetZue8k3u4WPrurBYPOn7bgDLzcLdzboQYrn+zC2C418XI3syUxnUGfrmPktFitpImUgj0pmfT7ZC37U88S4u/JnNExxNQMMjrWZYWX92bO6BhaVq9AVl4hw7/YyM/bk42OJaXolQXx/LYnFU83M58Nj6ZqkGM1YRVxJhemePywNYnjLnBakop2KbP8vdy5sWEYALM1s71UHT6VzYBJa9mRlEGgrwczR7Wha70Qo2OVCH8vd57oWY8VT3ThjtZVsZhNLNuTSu//ruLR2XEcO5NjdEQRp7T+0GkGTlpHSmYutYPL8f0D7agXavzoyL9T3seDr+5pTa8GoeQXWRk3cwtT1yQYHUtKwdQ1CUxbexiA/wxuSvOqFYwNJOLkmlWtQOvIQAqtNqasdv7XWRXtUqYNPL9Ffv624+TkFxqcxjVsO5pO/4lrOXI6hyqB3nw3pi1Nq5Q3OlaJC/H34vXbGrHkkY70aRSGzQbfb0mi6zsreGVBPGnZ6hotUlx+3p7MXVM2kpVbSMvqFZgzOoaI8t5Gx7oiXu4WPh7anDvbVMNmg/Hz45mwcDdWzXJ3WkvjT/DKgngAnu5djxsbhRmcSMQ1jOlsX22fuTHR6ad3qGiXMq1NjUCqBflwNq+QhTtSjI7j9H7fm8qQyes5nZ1Pwwh/vh/TjsiKvkbHKlU1KpXj46HN+XFsO2JqBJFfZGXK6gQ6vfU7Hy3brw+PRK7TtDUJjJu5hfwiKz0bhPDVPY49OvJyLGYTL9/agCd61gXs51w+OjuO/EJNonA2O45l8ODMrVhtcHurKtzfsYbRkURcRqc6lagf5k9OfhFfrjtidJwSpaJdyjSTyfS/hnSa2V6i5mw6yr3TN3GuoIgOtSvy7agYKvl5Gh3LME2qlOeb+1ozfWQrosL8ycor5J3F++j09nK+Wn+EAo2JE7kqVquNN37Zw0vz47HZ4M421fhkaNkZHflHJpOJsV1q8faAxljMJn6IO84902M5m6cP9pzF8fRz3DM99uLfxZdvbVimG7GKlDUmk4nRnewflE1be5hz+UUGJyo5KtqlzOvfvDJmE2w8nMahk2eNjuN0bDYbH/9+gCfmbqfIauO2ZhFMGd6Scp5uRkcznMlkolOdSix4sD3/HdKUqoE+nMzK4/kfdtL9vRUs2H5cW2JFrkB+oX105KQV9tGRT/Ssy8u3NihzoyMvZ2B0FaYMj8bHw8Kq/acY/Ok6UrNyjY4l1ykrt4CR02JJzcqjbogfHw9tjrtFb6tFSlufRmFUruBNWnY+czY77wKeXl2kzAsN8KJTnUoAzNmshnTFqchq44Ufd/H2r3sBe6fO9wY10czZPzCbTdzaNIKlj3Zi/C0NqFjOg8Oncxj3zVZu/XgNaw6cMjqiiMM6m1fIPdNjmbfVPjry7QGNGdulllOtWHauG8zM+9oQ5OvBruOZ9J+4Vh8yl2GFRVbGfbOVPSlZVPLz5Iu7W+LvpdFuIkZws5gZdf60lMkrD1HopDsd9c5bnMLg86PGvtt8zGl/WUtbbkERY7/ewlfrj2AywUs3R/F073pO9Ua6uHm4mRnetjrLn+jCI93q4OthYUdSBkM/38CdUzawMynD6IgiDiU1K5chk9exav8pvN0tfD48+mKDUWfTpEp5vhvTlmpBPhxNO8eASevYmnjG6FhylWw2Gy/+tIsV+07i5W5myvDoMtMkUcRZDWxRhUBfD46dOcfPO5xz1KaKdnEKXeuFEOTrQWpWHiv2nTQ6TpmXnpPPnVM2sGhXCh4WMx/d3pwR7SKNjlVmlPN046FutVnxZBdGtK2Ou8XEqv2nuOnD1Tw4cytHTmcbHVHEcAmnsuk/cS07kzIJ8vXg21Ft6FI32OhYJap6RV++G9OWxpUDSMvO547PNrBszwmjY8lV+HxVAl9vSMRkgv8OaUbjyuWNjiTi8rw9LIxoWx2ASSsOYbM536mJKtrFKXi4mbmtWQQAs9SQ7rokpdtXgGIPn8HPy40v72lFn8YaX3MtKpbz5KVbGvDbo53p2zQck8k+nvCGd1fwwo87OZmVZ3REEUPEnR8deTTtHFUDffhuTFuauMDoSLC/Lsy8rw0d61TiXEER9325mVmxiUbHkiuwaGcyr/+yG4B/31ifng1CDU4kIhfcFVMNHw8Lu5Mz+Wz1YTafMrEhIY0iJ+ktpKJdnMaFLfLL9qSqGLpGe1Iy6f/JWg6kniXU34s5o2NoUyPI6FhlXtUgH94f0owFD7anU51KFFptfLnuCJ3e/p33Fu8lK7fA6IgipWbZnhPcPnk9adn5NIoI4LsxbanuYqMjfT3dmDI8mn7NIyiy2njqux188Nt+p1wdchZxR9N5eFYcNpu9OLinvXafiTiS8j4exJx/z/r24v18ud/CsC820f7NZSzaWfa3zKtoF6dRO8SPZlXLU2i18f0WNaS7WusPnWbgpHWkZOZSO7gc3z/Qlnqh/kbHcioNwgOYPrIVM+9rQ5Mq5cnJL+KDZQfo9PZyvlidQF6h844qEQH7aM77vtzMuYIiOtapxLej2rjs6Eh3i5l3BzZhbJeaALy3ZB///mGn06wKOZOjaTncOz2W3AIrXepW4oWbotTfRcTBLNqZzG97Uv90fUpGLmNmbCnzhbuKdnEqgy/MbN90VCsWV+Hn7cncNWUjWbmFtKxegTmjYwhXY50SE1MziB8eaMukYc2pUdGXtOx8Xl4Qzw3vruD7Lcf0pl2cjs1m48Pf9vPkd/bRkf2aRzBleDS+Lj460mQy8UTPerx8awNMJvhmQyKjZ2x26lnDZU3GOftot1Nn86kf5s+HdzTHTaPdRBxKkdXG+Pnxl73twjuq8fPjy/T7K73qiFPp0zgMb3cLB09ms0Vdea/I1DUJjJu5hfwiK70ahPLVPa0p7+NhdCynZzKZ6NUwjMWPdGRCv0YE+3ly7Mw5Hp29jT4frOL3Pan64EmcQpHVxnM/7OTdJfsAeKBzTd4d2EQzrf+fu2Kq88kdzfFwM7Mk/gRDP1/Pmex8o2O5vIIiKw98vZn9qWcJ8ffkixHRlHPxD5pEHNHGhDSSM3L/8nYbkJyRy8aEtNILVcz0F1Ocip+X+8WmaWpI9/esVhsTftnN+Pnx2GxwZ5tqfDy0OV7uFqOjuRQ3i5nbW1VlxRNdeLJXXfy83NiTksXd02IZMnm9PnySMi23oIgxMzZf7LY9/pYGPNlLoyMvp3ejMGbc0xp/Lze2JKYzYNJajp3JMTqWy7LZbDw3bydrDpzGx8PCFyNaEhagHWgijig1668L9mu5nyNS0S5O50JDugXbk8nOKzQ4jWPKL7Ty2JxtfLriEABP9KzLy7c2wGLWG2mjeHtYeKBzLVY92YVRHWvg4WZmQ0Ia/T5Zy/1fbeJA6lmjI4pclfScfIZ+voHF8SfwcDPz8R3NGX5+JI9cXqvIQOaOaUtYgBcHT2bT75O1xB/PNDqWS5q44iCzNh3FbIKP7mhGg/AAoyOJyF8I9vMq1vs5IhXt4nSiq1WgRkVfcvKL+Hl72W46URLO5hVyz/RY5m1NwmI28c7AJoztUksrXw6ivI8Hz95Yn+WPd2Zgi8qYTfDrrhP0+M8Knv5uOyl/s/1LxFEcO5ND/4lr2XzkDP5ebnw1shU3NtLoyCtRJ8SP7x9oS90QP1Kz8hj86TrWHjhldCyXMn/bcd5atBeAl25pQNd6IQYnEpG/0yoykLAAL/7qnawJCAvwolVkYGnGKlYq2sXpmEwmBp5vSDdrk7bI/3+pWbkMmbyOVftP4eNhYcrwaAa0qGx0LLmM8PLevD2wCYse7kj3qBCsNvg29iid3v6dN37ZQ0aOxsSJY9qdnEn/iWs5eDKbsAAv5o5pS2uNjrwqYQHezB4dQ6vIQLLyChk+dSM/bTtudCyXsPlIGo/N2QbAyHaR3BVT3dhAIvKPLGYTL94cBfCnwv3C1y/eHFWmd5SqaBen1L9FBBazic1HznAgNcvoOA4h4VQ2/SeuZWdSJkG+Hsy8rw2d6wYbHUv+QZ0QPz67K5rvxsTQsnoF8gqtTFpxkA5vLWPSioPkFqjLtDiOtQdPMWjSOk5k5lEnpBzfjWlLnRA/o2OVSQHe7nw5shU3NgqloMjGv2Zu5fNVh4yO5dSOnM7mvi83k19opXtUCP/uU9/oSCJyhXo1DGPisOaEBly6BT40wIuJw5rTq2HZ3u2lol2cUrCfF13OF6RzNmlme9zRdPpPXMvRtHNUC/LhuzFtaVKlvNGx5Cq0qBbI7PtjmDI8mrohfmTmFvLGL3vo/PZyZsUmUlhkNTqiuLj5244z4otYsvIKaRUZyJz722p05HXycrfw4e3NGXG+F8CrP+/mtZ/jsZbhsUWOKj0nn7unxZKWnU+jiAD+O6RpmV6VE3FFvRqGsfqprswYGc1dtYuYMTKa1U91LfMFO6hoFyc2KNq+7fu7LccocOGCZtmeE9w+eT1p2fk0rhzAd2PaUr2ir9Gx5BqYTCZuqB/Cwoc68M7AJkSU9yYlM5envttBr/+u4tddKRoTJ4aYsjqBB2duJb/ISu+GoXw5shUBPu5Gx3IKF7Z9PtWrHgCfrUrg4Vlx5Be67t+14pZXWMT9X23m0MlswgO8mDI8Gh8PjXYTKYssZhOtIwNpUdFG68hAp/nwTUW7OK0u9YKpWM6TU2fzWbYn1eg4hpgde5T7vtzMuYIiOtapxMz72lCxnKfRseQ6WcwmBrSozG+PdeK5PvUp7+POgdSz3P/VZvpPXMuGQ6eNjiguwmq18drP8byyIB6A4THV+OgOjY4sbiaTiTGda/LeoCa4mU38tO04d0/bSFaueltcL5vNxjPf7WBDQhrlPN344u6WBPuX3Q7TIuKcVLSL03K3mOnfIgKwF6+uxGaz8cFv+3nyu+0UWW30b16ZKcOj8fXUyoEz8XK3cG+HGqx8sgvjutTCy93MlsR0Bk9ez8hpsexJ0agoKTn5hVYemR3HZ6sSAHiyV11eukWjI0tSv+aV+WJES3w8LKw5cJpBn64nNVMTJa7HB78d4Pvz01Q+GdqceqH+RkcSEfkTFe3i1Aad7yL/+95UTrjIG5siq41//7CT95bsA2Bsl5q8M7Ax7hb9ujsrfy93Hu9Zl5VPdGFo66pYzCaW7Uml939X8ejsOI6dyTE6ojiZrNwC7p62kR/jjuNmNvHuwCY80FmjI0tDxzqVmDUqhorlPNidnMltn6zl4MmzRscqk+ZtPcZ/ltr/Vr7atyEd61QyOJGIyOXpXbw4tZqVyhFdrQJWm/3cdmeXW1DE6Bmb+WZDIiYTvHxrA57oWU9vpF1EsL8Xr93WiKWPdqJP4zBsNvh+SxJd31nBy/PjScvONzqiOIHUzFwGf7qeNQdO20dHjmhJf42OLFWNKgfw/Zh2VA/yISn9HP0nrmXzkTNGxypTNhw6zVNzdwBwf6ca3N6qqsGJRET+mop2cXqDWtpX2+dsOubUTbrOZOcz9PMNLIk/gYebmU/uaK75si4qsqIvH9/RnJ/GtaNtzSDyi6x8sSaBjm/9zoe/7Scnv9DoiFJGHTx5ln4T1xKfnEnFch58O6oNnbQ6aYiqFyaBVA4gPaeAoZ+vZ0n8CaNjlQmHTp7l/hmbLzZOfKpnPaMjiYj8LRXt4vT6NArD18NCwqlsYg8750rEsTM5DJhkX2nx93Jjxj2t6d2o7I+3kOvTuHJ5vr63NV+ObEWDcH/O5hXy7pJ9dHxrOV+tP/KnqQpFVhsbEtLYfMrEhoQ0ijRWSv6fLYlnGDBxLcfOnKP6+YKxceXyRsdyaUHlPJk5qg1d6lYit8DK/V9tYubGRKNjObS0bPtot/ScAppWKc9/BjfFrD4MIuLgVLSL0/P1dOOmxuEAzHLChnTxxzPp98laDp7MJizAi7lj2tIqMtDoWOIgTCYTHetUYv649nxwezOqBvpw6mwez/+wk+7vrWD+tuNYrTYW7Uym/ZvLGPbFJr7cb2HYF5to/+YyFu1MNvpHEAewNP4Ed3y2njM5BTSpHMDcMW2pFqTRkY7Ax8ONyXdFM7BFZaw2eOb7HfxnyT6n3ll2rXILihj15SaOnM6hcgVvPrsrWpMORKRMUNEuLuHCFvmFO5KdakTO2oOnGPzpOlKz8qgb4sf3D7SlToif0bHEAZnNJm5pEs7SRzvx8q0NqFjOg8Onc3hw5lY6v7Oc0TO2kJxxabPGlIxcxszYosLdxX27MZFRX20it8BK57qV+EajIx2Ou8XMWwMa82DXWgD897f9PDtvB4VFmuV+gdVq44m529l05Ax+Xm5Mu7sllfx0HItI2aCiXVxC86rlqRVcjnMFRczf5hwFyPxtxxnxRSxZeYW0igxk9ugYwgK8jY4lDs7DzcxdMdVZ8UQXHulWBx93M4lpl+8uf2Gdbvz8eG2Vd0E2m433l+7j6e93YLXBgBaV+ewujY50VCaTicd61OXVvg0xm2DmxqOMnrGZc/lFRkdzCO8t2cf8bfZpB58Oa0GtYH3ALSJlh4p2cQkmk4nB58e/zd5U9rfIf77qEA/O3Ep+kZUbG4Xy5chWBHi7Gx1LyhBfTzce6lab/wxu+rf3swHJGblsTEgrlVziGAqLrDw7bwfvL90PwLgutXh7gEZHlgXD2lRj4rAWeLqZWbo7lTs+X+/ykyNmbzrKR78fAOD1fo1oW6uiwYlERK6O/vqKy7iteQRuZhNxR9PZdyLL6DjXxGq18drP8bz6824ARrStzoe3N9c5eXLNcguvbPtsSsa5Ek4ijuJcvn105MyNRzGZ4JW+DXm8Z12NjixDejYI5et7WxPg7c7WxHQGTFzL0b/YUePs1h44xbPf20e7jetSi0HnP8AXESlLVLSLy6hYzpMb6gcDZbMhXX6hlUdmx/HZqgQAnupVjxdvjsKirrdyHYL9vK7ofi/+tIuXftpF3NF0NbhyYmnZ+dzx+XqW7k7Fw83MxKEtuLNNNaNjyTWIrh7Id2NiiCjvzaFT2fSbuJadSRlGxypVB1KzuH/GZgqtNm5pEs5jPeoYHUlE5JqoaBeXMvh8Q7p5W5PIv8IVRkeQlVvA3dM28mOc/Xy89wY1YUznmlr5kuvWKjKQsAAv/u5IMpsgM7eQaWsP0/fjNXR5ZznvL93H4VPZpZZTSt7RNPvoyK2J6QR4u/P1va3p1TDU6FhyHWoF+/HdmLbUC/XjZFYeQyavZ/X+U0bHKhUns/IYMTWWrNxCoqtV4K0BjfU3U0TKLBXt4lI61q5EsJ8nadn5/Lb7hNFxrkhqZi6DP13PmgOn8fGw8MWIlvRrXtnoWOIkLGYTL94cBfCnwt10/vLB7c2YendLbm0ajre7hcOnc3h/6X46v7Ocvh+vYfraw5w+m1fa0aUY7TqeQb+Jazl0MpvwAC/mjo6hZXWNjnQGoQFezLo/hjY1AjmbV3j+A+Ako2OVqHP5Rdz75SaOnTlHtSAfJmu0m4iUcSraxaW4WcwMaGEveGeVgYZ0B0+epd/EtcQnZ1KxnAezRsXQsU4lo2OJk+nVMIyJw5oTGnDpVvnQAC8mDmvOTY3D6VI3mP8Oacam57rxn8FN6FSnEmYTxB1N58WfdtHq9d+4e6q9GMjJLzToJ5FrsebAKQZ/up6TWXnUC/Xj+wfaUVujI51KgLc700e2ok/jMAqKbDz0bRyfrTxkdKwSYbXaeHR2HNuO2neMTB3RkkBfD6NjiYhcF81tEZczKLoKnyw/yMp9J0nOOOewY9K2JJ7hnmmxnMkpoHqQD9NHtqJakK/RscRJ9WoYRveoUNYdSGXxqg306NCamFrBf+qZ4Ovpxm3NKnNbs8qczMpjwfbj/LA1iW3HMvh970l+33sSHw8LPRuE0rdZBO1qBuGmjuMO68e4JB6fs42CIhutIwOZfFe0JlE4KU83Cx8OaUaInxdfrEngtYW7ScnM5d831sfsRL1R3vx1D7/sTMHDYmbynS2oUamc0ZFERK6binZxOdUr+tI6MpANCWl8t/kY47rWNjrSnyyNP8G4mVvILbDSpHIAU0a0pGI5T6NjiZOzmE20jgzk9G57AfdPTQ4r+Xlyd7tI7m4XyaGTZ/khzl7AJ6blMG9rEvO2JlGxnCc3NwnjtmYRNIoI0DmlDuSzlYd4baF9EkWfRmG8O6iJthA7ObPZxPM31Sc0wJPXF+5hyuoETmTm8u6gJni6lf3/999sSOTTFfYdBG8NaEzrGkEGJxIRKR5a/hCXNOjizPZjWK2O1Qn7242JjPpqE7kFVrrUrcTMUW1UsIvDq1GpHI92r8OKJzrz/QNtuSumGoG+Hpw6m8fUNYe55aM13PDuCj74bT+Jp11z9JSjsFptvLIg/mLBfne76nx4ezMV7C7CZDIxqmNN3h/cFHeLiQXbkxnxRSyZuQVGR7suK/ad5PkfdwLwSLc69G0WYXAiEZHio6JdXNKNjcLw83QjMS2H9QmnjY4DgM1m4/2l+3j6+x1YbTCwRWUm3xWNj4c2xEjZYTKZaF61Ai/f2pANz97AFyOiublJOF7uZg6dyua9Jfvo+Pbv9PtkDV+uUwO70pZXWMRDs+KYsto+OvKZ3vV44aYop9oeLVemb7MIpo5oha+HhXWHTjNo0jpOZOYaHeua7EnJZOzXWyiy2ujXLIJ/3VDL6EgiIsVKRbu4JG8PCzc3DQdgzqZjBqeBwiIrz87bwftL9wPwYNdavDWgMe46F1jKMHeLma71Qvjw9mZseq477w5sQofaFTGbYEtiOi/8uIvWr//GyGmx/LTtOOfyi4yO7NQycwsY8UUs87fZR0f+Z3AT7u+k0ZGurH3tisy6P4aK5TzZk5JFv0/WciA1y+hYVyU1M5eRU2M5m1dI68hAJvRvpGNaRJyOKgJxWYPPb5FfuCOZjHPGbQs8l1/E6BmbmbnxKGYTvNq3IY/1qKs3HeJUynm60b9FZb66pzXrn7mB52+KolFEAIVWG8v2pPKvmVuJfnUJj86OY9X+kxQ52GkrZd2JzFwGTVrHukOn8fWwMPXultzWTKMjBRpGBDDvgbbUqOhLUvo5+k9cx+YjaUbHuiI5+YXcM30TxzNyqVHJl0/vbOEU5+aLiPyRinZxWY0rB1A3xI+8Qis/bTtuSIa07Hzu+Hw9S3en4ulmZuKwFgxrU82QLCKlJdjfi3vaRzL/wfYsfbQTD3atReUK3mTnF/H9liTunLKRmAm/8cqCeHYmZWCzqYC/HgdS7Suoe1KyqFjOk1n3x9ChtkZHyv9UCfRh7pi2NK1SnoxzBdzx2QYW70oxOtbfKrLa+NfMOHYkZRDo68HUES0p76PRbiLinFS0i8symUwManm+IV1s6c9sP5qWw4BJa9maaJ8l+/W9renZILTUc4gYqVZwOR7rUZdVT3bhuzExDGtTlQo+7qRm5TFldQI3fbiabu+t4KNl+zmapgZ2V2vzkTQGTFpHUvo5Iiv68v2YtjSMCDA6ljigQF8PvrmvNTfUCyav0MroGZv5esMRo2P9pdd+3s3S3SfwcDPz2V0tNBJVRJyainZxabc1i8DdYmJHUgbxxzNL7Xl3Hc+g38S1HDqZTXiAF3NHxxBdPbDUnl/E0ZhMJlpUC+TVvo3Y8Gw3Pr8rmpsah+HpZubgyWzeWbyPDm/9zoCJa/lq/RHOZOcbHdnhLd6Vwh2fbSA9p4AmVcozd3QMVYN8jI4lDszHw41P72zB4OgqWG3w73k7eXfxXofb7TJ97WG+WGNvpvjuwCa0qKa/nyLi3NSWWlxaoK8H3aNCWLgjhdmbjvLSLQ1K/DnXHDjF/V9t5mxeIfVC/Zh2dytCA7xK/HlFygoPNzPdokLoFhVCVm4Bi3am8GPccdYcPMWmI2fYdOQM43/aRee6lejbLIJu9UM0ruwPvt5whOd/2InVBl3rBfPRHc00iUKuiJvFzBv9GxEa4MV/f9vPh8sOcCIzl9dva4SbAzRHXbbnBOPn7wLgiZ51ublJuMGJRERKnv6Ci8sbFF2FhTtS+CEuiWdurFeiTWx+jEvi8TnbKCiy0aZGIJ/eGU2At3uJPZ9IWefn5c7A6CoMjK5CSkYu87cd54e4JHYdz2Tp7lSW7k6lnKcbvRqGcluzCNrUCMLiwuPLbDYb/1myjw+WHQBgUHRlhym2pOwwmUw80r0OIf5ePPfDDmZvOsbJrDw+Htrc0A9/dh3PYNw3W7Ha7M1kH+hc07AsIiKlSUW7uLwOtSsRHuDF8YxclsSf4KbGJfOp/WcrD/Hawt0A9GkcxnuDmqjLrchVCA3w4r6ONbivYw32n8jih7gkfth6nKT0c8zdfIy5m48R4u/JLU3CubVpBA3C/V1qCsOF0ZGzz4+x/NcNtXmkW22X+m8gxeuO1lWp5OfJuG+28Pvek9z+2Qa+GB5NUDnPUs+SnHGOkdNiyckvol2tIF69raGObRFxGfroXVyexWxiQAv76KNZJdCQzmq18cqC+IsF+8h2kXw4pJkKdpHrUDvEjyd61mPVk12YMzqGO1pXJcDbnROZeXy2yt7Arsd/VvLx7wdcooFdTn4ho77azOxNxzCb4LXbGvJo9zoqauS6dY8K4Zv72lDex51tR9MZMGkdiadL93fqbF4hI6dt4kRmHrWDy/HJ0Ba4a/eIiLgQveKJAANa2LvIrz5wimNniu/NSF5hEQ/NimPKanvDnGdvrMfzN9XH7MLbd0WKk9lsomX1QF6/rREb/30Dk+9swY2NQvFwM7M/9Sxv/7qXDm/9zqBJ6/h6wxHSc5yvgd3ps3nc/tkGlu2xj46cNKwFQ1trdKQUnxbVKjB3dFsiynuTcCqbfhPXsjMpo1Seu7DIyoPfbGF3ciYVy3nyxYiWOq1MRFyOinYRoGqQD21rBmGzwdzNx4rlMTNzCxjxRSzztx3HzWzi/cFNGdWxpla+REqIp5uFHg1C+WRoCzY91423+jembc0gTCbYeDiNf8/bScvXlnLfl5tYuCOZ3IIioyNft8TTOQyYtI5tR9Mp7+PON/e1podGR0oJqBVcju8faEv9MH9Onc1j8KfrWLnvZIk+p81mY/z8eH7fexIvdzOfD4+mSqAmIIiI61HRLnLe4PMz2+dsOobVen3jbU5k5jJo0jrWHTqNr4eFqXe3pG+ziOKIKSJXwN/LnUEtq/DNfW1Y+3RXnr2xHvXD/CkosrEk/gQPfL2Flq8u5cm521h78NR1/84bYWeSfXRkwqlsIsp7M3d0jEZfSYkK8fdi1v1taFsziOz8IkZOi2Xe1uL5oPtypqxO4Kv1RzCZ4P3BzWhapXyJPZeIiCNTIzqR83o2CMXPy42k9HOsPXia9rUrXtPjHEjNYvgXsSSln6NiOU+m3d2ShhEBxZxWRK5UWIA3ozrWZFTHmuxNsTew+3FrEsczcpm96RizNx0j1N+LW5vaG9jVD/Nz+B0xq/afZPRXm8nOL6JeqB/TR7YixF+jI6Xk+Xu5M+3uVjw+Zxs/bTvOI7O2cSIzj/s71ijW35tfd6Vc7AXzbO/69GqoHSQi4rq00i5ynpe7hb5N7avhszZdW0O6zUfSGDBpHUnp54is6Mu8B9qqYBdxIHVD/XiqVz1WP9WVWaPacHurKvh7uZGSmcunKw9x4wer6PX+Kj5ZfoCk9HNGx72seVuPcffUWLLzi4ipEcTs0TEq2KVUebiZeX9wU+7rEAnAG7/sYfz8eIqKacfK9mPpPPTtVmw2GNq6Kveefx4REVelol3k/7mwRf7XXSlX3bBq8a4U7vhsA+k5BTStUp7vxrTVuXciDspsNtG6RhAT+jUm9rluTBrWgl4NQvGwmNl7Iou3Fu2l3RvLGPzpOmZuTCQjp8DoyNhsNiatOMgjs7ZRaLVxc5Nwpo1sib+XmnJJ6TObTfy7TxTP9akPwLS1h3lw5pbr7hVx7EwO90zfRG6BlU51KjH+lgYOv/NFRKSkaXu8yP/TMCKAqDB/4pMz+THuOMPbVr+i7/t6wxGe/2EnVhvcUC+YD+9oho+Hfr1EygJPNwu9GobSq2EoGTkF/LIzmR/iklh/KI0NCfbLiz/uoku9StzWLILOdYPxci/dkY1Wq42XF8Qzbe1hAO5tH8mzN2oShRjv3g41CPb34rHZcSzckcLpsxuZfFf0NXV4z8wt4J5pmziZlUe9UD8+uqMZbhrtJiKilXaRPxoUfeUz2202G+8t3su/59kL9sHRVfj0zhYq2EXKqAAfd4a0qsq3o2JY+3RXnu5dj3qhfuQXWfl11wlGz9hCy9eW8vR321l38HSpNLDLLSjiwZlbLxbs/76xPs/dFKWCXRzGLU3CmX53K8p5urEhIY1Bk9aRnHF1p5cUFFkZ+/UW9p7IItjPPtrNT7tIREQAFe0if9K3WQQebmbikzP/dg5tYZGVp77bzgfLDgDwrxtq80b/RloVEHES4eW9Gd2pJose7sgvD3Xg/k41CAvwIiu3kG9jj3L7Z+tp/+Yy3vhlD3tSMkskQ8a5AoZ/sZGfdyTjbjHx3yFNua9jjRJ5LpHr0bZWRWbfH0Ownyd7T2TR75O17DuRdUXfa7PZeP6HnazafwpvdwtfjGhJeHnvEk4sIlJ2qLoQ+YPyPh70PD/nePZfNKTLyS9k1Febmb3pGGYTvH5bIx7tXkfn3Yk4qfph/jzTuz5rnurKzPvaMDi6Cn5ebhzPyGXSioP0en8Vvd5fyaQVB696hfGvpGTYR0duSEijnKcb0+5uxa1NNTpSHFdUuD/fjWlLjUq+JGfkMmDiWmIPp/3j93268hDfxh7FbIIPb2+mBq4iIn+gol3kMgZH2xvS/bA16U9NdU6fzeP2zzawbE8qnm5mPr0zmjtaVzUipoiUMrPZREzNIN4c0JjYf3dj4tDm9IgKwd1iYk9KFm/8soe2byxjyOR1zIpNJOPctTWw238ii36frGHviSwq+Xky6/42tKt1bWMoRUpTlUAfvhvdluZVy5OZW8jQzzewaGfyX95/4Y5k3vhlDwAv3BRFt6iQ0ooqIlJm6MRbkctoWzOIiPLeJKWf45Plh8g+ZSIoIY2ICuUYOT2WhFPZlPdxZ8rwaFpUCzQ6rogYwMvdQu9GYfRuFEZ6Tj4Ld6TwQ1wSGxPSWH/Ifnn+x13cUC+Yvs0i6Fy3Ep5uf25gV2S1sTEhjdSsXIL9vDCZYNSXm8jMLaRGJV+m391KkyikTKng68HX97bhwZlbWbr7BGO+3sLLtzTgzpjqlxzvGecKeHVBPAAj2lZnRDuNdhMRuRxDi/aVK1fy9ttvs3nzZpKTk5k3bx59+/a9ePuIESOYPn36Jd/Ts2dPFi1adPHrtLQ0HnzwQebPn4/ZbKZ///7897//pVy5cqX1Y4gTMptNNKtanqT0c0xcmQBY+HL/JswmsNogorw300e2olawjjMRsZ9Wc0frqtzRuirHzuTw07bjzNuSxP7Us/yyM4Vfdqbg7+VGn8bh9G0aTsvqgZjNJhbtTGb8/HiSM3L/9JjNqpZnyvCWBPp6GPATiVwfbw8Lk4Y15/kfdzFzYyLP/7iLNQdPEXc0g5Q/HO+NI/x5/qYog5KKiDg+Q4v27OxsmjRpwsiRI+nXr99l79OrVy+mTp168WtPT89Lbh86dCjJycksWbKEgoIC7r77bkaNGsU333xTotnFuS3amcyC7X/eznehUfSDXWupYBeRy6pcwYcHOtdiTKeaF8dH/hiXxInMPGZuTGTmxkQiynvTMMKfX3ed+MvHGdG2ugp2KdPcLGZev60hYQFevLdkH4t2Xv5435GUyZL4FHo1DCvlhCIiZYOhRXvv3r3p3bv3397H09OT0NDQy962e/duFi1aRGxsLNHR0QB8+OGH3HjjjbzzzjuEh4cXe2ZxfkVWG+Pnx//l7Sbgv7/tZ2B0FSwauSQif8FkMtEgPIAG4QE81aseGw6dZt7WJBbtTCEp/RxJ6X/dsM4EvPHLHm5qHK7XGSnTTCYTY7vUYsrqhL/t8TB+fjzdo0J1vIuIXIbDn9O+fPlygoODqVChAl27duXVV18lKCgIgHXr1lG+fPmLBTtAt27dMJvNbNiwgdtuu+2yj5mXl0deXt7FrzMz7aN6CgoKKCi4tqZB4jw2JKRddqvqBTYgOSOXdQdSaR2p89nFuVx4DdRrYfFrWS2AltUCeKFPXSavSuDD3w/95X31OlM6dLyXjg0JaX9bsOt4Lx063sVVlKVj/UozOnTR3qtXL/r160dkZCQHDx7k2WefpXfv3qxbtw6LxUJKSgrBwcGXfI+bmxuBgYGkpKT85eNOmDCB8ePH/+n6xYsX4+OjZj+ubvMpE/DnZlF/tHjVBk7vtpV8IBEDLFmyxOgITi1DrzMORcd7ydLfVcei411cRVk41nNycq7ofg5dtA8ZMuTivzdq1IjGjRtTs2ZNli9fzg033HDNj/vMM8/w6KOPXvw6MzOTKlWq0KNHD/z9/a8rs5R9QQlpfLl/0z/er0eH1loREKdTUFDAkiVL6N69O+7u7kbHcVp6nXEMOt5Lh453x6DjXVxFWTrWL+z4/icOXbT/UY0aNahYsSIHDhzghhtuIDQ0lNTU1EvuU1hYSFpa2l+eBw/28+T/2NAOwN3d3eH/x0rJi6kVTFiAFykZuVzu834TEBrgRUytYJ17J05Lr4clS68zjkXHe8nS8e5YdLyLqygLx/qV5jOXcI5idezYMU6fPk1YmL27aExMDOnp6WzevPnifZYtW4bVaqV169ZGxZQyzmI28eLN9tEzf3zrcOHrF2+O0hsLEblmep0RV6LjXUTk+hhatJ89e5a4uDji4uIASEhIIC4ujsTERM6ePcsTTzzB+vXrOXz4ML/99hu33nortWrVomfPngDUr1+fXr16cd9997Fx40bWrFnDuHHjGDJkiDrHy3Xp1TCMicOaExrgdcn1oQFeTBzWXGNpROS66XVGXImOdxGRa2fo9vhNmzbRpUuXi19fOM98+PDhTJw4ke3btzN9+nTS09MJDw+nR48evPLKK5dsbf/6668ZN24cN9xwA2azmf79+/PBBx+U+s8izqdXwzC6R4Wy7kAqi1dtoEeH1tq6JyLF6sLrzMaENFKzcgn286JVZKBeZ8Qp6XgXEbk2hhbtnTt3xmb76y6hv/766z8+RmBgIN98801xxhK5yGI20ToykNO7bbTWGwsRKQEWs4mYmkFGxxApFTreRUSuXpk6p11ERERERETElahoFxEREREREXFQKtpFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEREREREQclIp2EREREREREQelol1ERERERETEQbkZHcAR2Gw2ADIzMw1OIo6ooKCAnJwcMjMzcXd3NzqOSInS8S6uRMe7uBId7+IqytKxfqH+vFCP/hUV7UBWVhYAVapUMTiJiIiIiIiIuJKsrCwCAgL+8naT7Z/KehdgtVo5fvw4fn5+mEwmo+OIg8nMzKRKlSocPXoUf39/o+OIlCgd7+JKdLyLK9HxLq6iLB3rNpuNrKwswsPDMZv/+sx1rbQDZrOZypUrGx1DHJy/v7/D/+KLFBcd7+JKdLyLK9HxLq6irBzrf7fCfoEa0YmIiIiIiIg4KBXtIiIiIiIiIg5KRbvIP/D09OTFF1/E09PT6CgiJU7Hu7gSHe/iSnS8i6twxmNdjehEREREREREHJRW2kVEREREREQclIp2EREREREREQelol1ERERERETEQaloFxEREREREXFQKtpFLmPChAm0bNkSPz8/goOD6du3L3v37jU6lkipeOONNzCZTDz88MNGRxEpEUlJSQwbNoygoCC8vb1p1KgRmzZtMjqWSLErKiri+eefJzIyEm9vb2rWrMkrr7yC+lCLM1i5ciU333wz4eHhmEwmfvjhh0tut9lsvPDCC4SFheHt7U23bt3Yv3+/MWGvk4p2kctYsWIFY8eOZf369SxZsoSCggJ69OhBdna20dFESlRsbCyffvopjRs3NjqKSIk4c+YM7dq1w93dnV9++YX4+HjeffddKlSoYHQ0kWL35ptvMnHiRD766CN2797Nm2++yVtvvcWHH35odDSR65adnU2TJk34+OOPL3v7W2+9xQcffMCkSZPYsGEDvr6+9OzZk9zc3FJOev008k3kCpw8eZLg4GBWrFhBx44djY4jUiLOnj1L8+bN+eSTT3j11Vdp2rQp77//vtGxRIrV008/zZo1a1i1apXRUURK3E033URISAhTpky5eF3//v3x9vZmxowZBiYTKV4mk4l58+bRt29fwL7KHh4ezmOPPcbjjz8OQEZGBiEhIUybNo0hQ4YYmPbqaaVd5ApkZGQAEBgYaHASkZIzduxY+vTpQ7du3YyOIlJifvrpJ6Kjoxk4cCDBwcE0a9aMzz77zOhYIiWibdu2/Pbbb+zbtw+Abdu2sXr1anr37m1wMpGSlZCQQEpKyiXvaQICAmjdujXr1q0zMNm1cTM6gIijs1qtPPzww7Rr146GDRsaHUekRHz77bds2bKF2NhYo6OIlKhDhw4xceJEHn30UZ599lliY2P517/+hYeHB8OHDzc6nkixevrpp8nMzKRevXpYLBaKiop47bXXGDp0qNHRREpUSkoKACEhIZdcHxIScvG2skRFu8g/GDt2LDt37mT16tVGRxEpEUePHuWhhx5iyZIleHl5GR1HpERZrVaio6N5/fXXAWjWrBk7d+5k0qRJKtrF6cyePZuvv/6ab775hgYNGhAXF8fDDz9MeHi4jneRMkTb40X+xrhx41iwYAG///47lStXNjqOSInYvHkzqampNG/eHDc3N9zc3FixYgUffPABbm5uFBUVGR1RpNiEhYURFRV1yXX169cnMTHRoEQiJeeJJ57g6aefZsiQITRq1Ig777yTRx55hAkTJhgdTaREhYaGAnDixIlLrj9x4sTF28oSFe0il2Gz2Rg3bhzz5s1j2bJlREZGGh1JpMTccMMN7Nixg7i4uIuX6Ohohg4dSlxcHBaLxeiIIsWmXbt2fxrhuW/fPqpVq2ZQIpGSk5OTg9l86dt9i8WC1Wo1KJFI6YiMjCQ0NJTffvvt4nWZmZls2LCBmJgYA5NdG22PF7mMsWPH8s033/Djjz/i5+d38dyXgIAAvL29DU4nUrz8/Pz+1K/B19eXoKAg9XEQp/PII4/Qtm1bXn/9dQYNGsTGjRuZPHkykydPNjqaSLG7+eabee2116hatSoNGjRg69atvPfee4wcOdLoaCLX7ezZsxw4cODi1wkJCcTFxREYGEjVqlV5+OGHefXVV6lduzaRkZE8//zzhIeHX+wwX5Zo5JvIZZhMpsteP3XqVEaMGFG6YUQM0LlzZ418E6e1YMECnnnmGfbv309kZCSPPvoo9913n9GxRIpdVlYWzz//PPPmzSM1NZXw8HBuv/12XnjhBTw8PIyOJ3Jdli9fTpcuXf50/fDhw5k2bRo2m40XX3yRyZMnk56eTvv27fnkk0+oU6eOAWmvj4p2EREREREREQelc9pFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEROSyDh8+jMlkIi4ursSeY8SIEfTt27fEHl9ERKSsU9EuIiLipEaMGIHJZPrTpVevXlf0/VWqVCE5OZmGDRuWcFIRERH5K25GBxAREZGS06tXL6ZOnXrJdZ6enlf0vRaLhdDQ0JKIJSIiIldIK+0iIiJOzNPTk9DQ0EsuFSpUAMBkMjFx4kR69+6Nt7c3NWrUYO7cuRe/94/b48+cOcPQoUOpVKkS3t7e1K5d+5IPBHbs2EHXrl3x9vYmKCiIUaNGcfbs2Yu3FxUV8eijj1K+fHmCgoJ48sknsdlsl+S1Wq1MmDCByMhIvL29adKkySWZREREXI2KdhERERf2/PPP079/f7Zt28bQoUMZMmQIu3fv/sv7xsfH88svv7B7924mTpxIxYoVAcjOzqZnz55UqFCB2NhY5syZw9KlSxk3btzF73/33XeZNm0aX3zxBatXryYtLY158+Zd8hwTJkzgyy+/ZNKkSezatYtHHnmEYcOGsWLFipL7jyAiIuLATLY/fsQtIiIiTmHEiBHMmDEDLy+vS65/9tlnefbZZzGZTIwePZqJEydevK1NmzY0b96cTz75hMOHDxMZGcnWrVtp2rQpt9xyCxUrVuSLL77403N99tlnPPXUUxw9ehRfX18AFi5cyM0338zx48cJCQkhPDycRx55hCeeeAKAwsJCIiMjadGiBT/88AN5eXkEBgaydOlSYmJiLj72vffeS05ODt98801J/GcSERFxaDqnXURExIl16dLlkqIcIDAw8OK////i+MLXf9UtfsyYMfTv358tW7bQo0cP+vbtS9u2bQHYvXs3TZo0uViwA7Rr1w6r1crevXvx8vIiOTmZ1q1bX7zdzc2N6Ojoi1vkDxw4QE5ODt27d7/kefPz82nWrNnV//AiIiJOQEW7iIiIE/P19aVWrVrF8li9e/fmyJEjLFy4kCVLlnDDDTcwduxY3nnnnWJ5/Avnv//8889ERERcctuVNs8TERFxNjqnXURExIWtX7/+T1/Xr1//L+9fqVIlhg8fzowZM3j//feZPHkyAPXr12fbtm1kZ2dfvO+aNWswm83UrVuXgIAAwsLC2LBhw8XbCwsL2bx588Wvo6Ki8PT0JDExkVq1al1yqVKlSnH9yCIiImWKVtpFREScWF5eHikpKZdc5+bmdrGB3Jw5c4iOjqZ9+/Z8/fXXbNy4kSlTplz2sV544QVatGhBgwYNyMvLY8GCBRcL/KFDh/Liiy8yfPhwXnrpJU6ePMmDDz7InXfeSUhICAAPPfQQb7zxBrVr16ZevXq89957pKenX3x8Pz8/Hn/8cR555BGsVivt27cnIyODNWvW4O/vz/Dhw0vgv5CIiIhjU9EuIiLixBYtWkRYWNgl19WtW5c9e/YAMH78eL799lseeOABwsLCmDlzJlFRUZd9LA8PD5555hkOHz6Mt7c3HTp04NtvvwXAx8eHX3/9lYceeoiWLVvi4+ND//79ee+99y5+/2OPPUZycjLDhw/HbDYzcuRIbrvtNjIyMi7e55VXXqFSpUpMmDCBQ4cOUb58eZo3b86zzz5b3P9pREREygR1jxcREXFRJpOJefPm0bdvX6OjiIiIyF/QOe0iIiIiIiIiDkpFu4iIiIiIiIiD0jntIiIiLkpnyImIiDg+rbSLiIiIiIiIOCgV7SIiIiIiIiIOSkW7iIiIiIiIiINS0S4iIiIiIiLioFS0i4iIiIiIiDgoFe0iIiIiIiIiDkpFu4iIiIiIiIiDUtEuIiIiIiIi4qD+DxJejuvm+1wFAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1200x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def evaluate_ppo_agent(env,\n",
    "                       actor_critic,\n",
    "                       num_episodes=10,\n",
    "                       output_dir='eval_gifs'):\n",
    "    if not os.path.exists(output_dir):\n",
    "        os.makedirs(output_dir)\n",
    "    \n",
    "    eval_episode_rwds=[]     \n",
    "    for episode in range(num_episodes):\n",
    "        obs=env.reset()\n",
    "        episode_rwds_ppo=np.zeros((2,))\n",
    "        frames_paths=[]\n",
    "        done=False\n",
    "        timestep=0\n",
    "        while not done:\n",
    "            with torch.no_grad():\n",
    "                obs_tensor=torch.tensor(obs,\n",
    "                                          dtype=torch.float32).unsqueeze(0)\n",
    "                policy_logits,_=actor_critic(obs_tensor)\n",
    "                action1=Categorical(logits=policy_logits).sample().item()\n",
    "                action2=Categorical(logits=policy_logits).sample().item()\n",
    "            next_obs,rewards,done,_=env.step([action1,\n",
    "                                                   action2])\n",
    "            episode_rwds_ppo+=rewards \n",
    "            obs=next_obs\n",
    "            frame_path=os.path.join(output_dir,\n",
    "                                      f\"episode_{episode+1}_frame_{timestep}.png\")\n",
    "            env.render(save_path=frame_path) \n",
    "            frames_paths.append(frame_path)            \n",
    "            timestep+=1\n",
    "        eval_episode_rwds.append(episode_rwds_ppo) \n",
    "    \n",
    "        frames=[imageio.imread(path) for path in frames_paths]\n",
    "        gif_path=os.path.join(output_dir,f\"episode_{episode+1}.gif\")\n",
    "        imageio.mimsave(gif_path,frames,fps=10) \n",
    "        for path in frames_paths:\n",
    "            os.remove(path)\n",
    "        print(f\"Episode {episode+1} evaluated, GIF saved to {gif_path}.\")\n",
    "\n",
    "    eval_episode_rwds=np.array(eval_episode_rwds)  \n",
    "    plt.figure(figsize=(12,6))\n",
    "    for agent_index in range(2):\n",
    "        plt.plot(range(1,num_episodes+1),eval_episode_rwds[:,agent_index],marker='o',label=f'Agent {agent_index+1}')\n",
    "    plt.title('Total Rewards per Episode for Each Agent')\n",
    "    plt.xlabel('Episode')\n",
    "    plt.ylabel('Total Reward')\n",
    "    plt.legend()\n",
    "    plt.grid(True)\n",
    "    plt.savefig(os.path.join(output_dir,'rewards_plot.png'))\n",
    "    plt.show()\n",
    "\n",
    "evaluate_ppo_agent(env,actor_critic,num_episodes=10)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}