File size: 226,473 Bytes
cf14949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Proximal Policy Optimization"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"from gym import spaces\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Rectangle\n",
"\n",
"import os\n",
"import random\n",
"import imageio\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.distributions import Categorical"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"class RoverGridEnv(gym.Env):\n",
" metadata={'render.modes': ['human']} \n",
" def __init__(self,max_ts=20): \n",
" super(RoverGridEnv,self).__init__()\n",
" self.max_ts=max_ts # Note: The Max_Timestamps is set to 20 by default.\n",
" self.grid_size=(15,15) \n",
" self.action_space=spaces.Discrete(5) \n",
" self.observation_space=spaces.MultiDiscrete([15,15,15,15,15,15])\n",
" self.rover_positions=np.array([[6,4],[10,4]])\n",
" self.operation_desks=np.array([[6,3],[10,3]])\n",
" self.rooms=np.array([[4,7],[4,10],[4,13],[8,7],[8,10],[8,13],[12,7],[12,10],[12,13]])\n",
" self.human_position=np.array([8,9])\n",
" self.targets=np.array([[5,10],[9,13]])\n",
" self.actions=[(0,-1),(0,1),(-1,0),(1,0),(0,0)] # Down,Up,Left,Right,Wait\n",
" self.rover_done=[False,False] \n",
" self.reset()\n",
" \n",
" def seed(self,seed=None):\n",
" np.random.seed(seed)\n",
" random.seed(seed)\n",
" \n",
" def reset(self):\n",
" self.current_step=0\n",
" self.rover_positions=np.array([[6,4],[10,4]])\n",
" self.rover_done=[False,False]\n",
" self.human_position=np.array([7,8])\n",
" self.current_step=0\n",
" return self._get_obs()\n",
" \n",
" def _get_obs(self):\n",
" return np.concatenate((self.rover_positions.flatten(),self.human_position))\n",
" \n",
" def step(self,actions):\n",
" rewards=np.zeros(2)\n",
" done=[False,False]\n",
" info={'message': ''} \n",
" for i,action in enumerate(actions):\n",
" if self.rover_done[i]:\n",
" done[i]=True \n",
" continue\n",
" prev_distance=np.linalg.norm(self.targets[i]-self.rover_positions[i])\n",
" if self._is_human_adjacent(self.rover_positions[i]):\n",
" rewards[i] -= 5\n",
" else:\n",
" delta=np.array(self.actions[action])\n",
" new_position=self.rover_positions[i]+delta\n",
" if self._out_of_bounds(new_position):\n",
" rewards[i] -= 15\n",
" continue\n",
" if self._collision(new_position,i):\n",
" rewards[i] -= 15\n",
" continue\n",
" self.rover_positions[i]=new_position\n",
" new_distance=np.linalg.norm(self.targets[i]-new_position)\n",
" if new_distance < prev_distance:\n",
" rewards[i]+=30 \n",
" else:\n",
" rewards[i] -= 20 \n",
" if np.array_equal(new_position,self.targets[i]):\n",
" rewards[i]+=100\n",
" self.rover_done[i]=True \n",
" done[i]=True\n",
"\n",
" # move human randomly\n",
" self._move_human()\n",
" self.current_step+=1\n",
" all_done=all(done) or self.current_step >= self.max_ts\n",
" if all_done and not all(done): # if the maximum number of steps is reached but not all targets were reached\n",
" info['message']='Maximum number of timestamps reached'\n",
" return self._get_obs(),rewards,all_done,info\n",
"\n",
" def _is_human_adjacent(self,position):\n",
" for delta in [(1,1),(1,-1),(-1,1),(-1,-1)]:\n",
" adjacent_position=position+np.array(delta)\n",
" if np.array_equal(adjacent_position,self.human_position):\n",
" return True\n",
" return False\n",
"\n",
" def _out_of_bounds(self,position):\n",
" return not (0 <= position[0] < self.grid_size[0] and 0 <= position[1] < self.grid_size[1])\n",
" \n",
" def _collision(self,new_position,rover_index):\n",
" if any(np.array_equal(new_position,pos) for pos in np.delete(self.rover_positions,rover_index,axis=0)):\n",
" return True # Collision with the other rover\n",
" if any(np.array_equal(new_position,pos) for pos in self.rooms):\n",
" return True # Collision with a room\n",
" if any(np.array_equal(new_position,pos) for pos in self.operation_desks):\n",
" return True # Collision with an operation desk\n",
" if np.array_equal(new_position,self.human_position):\n",
" return True # Collision with the human\n",
" return False\n",
" \n",
" def _move_human(self):\n",
" valid_moves=[move for move in self.actions if not self._out_of_bounds(self.human_position+np.array(move))]\n",
" self.human_position+=np.array(valid_moves[np.random.choice(len(valid_moves))])\n",
" \n",
" def render(self,mode='human',save_path=None):\n",
" fig,ax=plt.subplots(figsize=(7,7))\n",
" ax.set_xlim(0,self.grid_size[0])\n",
" ax.set_ylim(0,self.grid_size[1])\n",
" ax.set_xticks(np.arange(0,15,1))\n",
" ax.set_yticks(np.arange(0,15,1))\n",
" ax.grid(which='both')\n",
"\n",
" # draw elements\n",
" for pos in self.rover_positions:\n",
" ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='blue'))\n",
" for pos in self.operation_desks:\n",
" ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='darkgreen'))\n",
" for pos in self.rooms:\n",
" ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='black'))\n",
" ax.add_patch(Rectangle((self.human_position[0]-0.5,self.human_position[1]-0.5),1,1,color='purple'))\n",
" for pos in self.targets:\n",
" ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='yellow',alpha=0.5))\n",
"\n",
" if save_path is not None:\n",
" plt.savefig(save_path)\n",
" plt.close()\n",
" \n",
" def close(self):\n",
" plt.close()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initial Setup\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJGCAYAAABGPbGbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9MklEQVR4nO3df3RU5YH/8c8kmUwmQCJk+JFoBlAEKmpEUYv4pVAJnCxFabeixmIKbXd7ilWalrW0iyRVitizLLZyoLiK3bZBu61QyzmWRqukHOW3odC1EbpIbIjQVMlAfoyXzP3+QZMSEyZPMndmLun7dQ4n59658zwfZx4vn9wZZjy2bdsCAABAVCnJDgAAAHAxoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYSEt2gI+KRCI6fvy4Bg0aJI/Hk+w4AACgn7NtW6dPn1ZeXp5SUi58Pcl1pen48ePKz89PdgwAAPAP5t1339Vll112wdtdV5oGDRokSTp69KiGDBmS5DTnWJal3/zmN5o5c6a8Xm+y45CHPP0qj+S+TOQhT3/KI7kvk9vyhEIh5efnd3SQC3FdaWp/SW7QoEHKyspKcppzLMtSZmamsrKyXPHkkoc8/SmP5L5M5CFPf8ojuS+T2/K06+ltQbwRHAAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwECvS1NVVZXmzJmjvLw8eTwebdmy5YLHfvnLX5bH49GaNWtiiAgAAJB8vS5NTU1NKigo0Nq1a6Met3nzZu3cuVN5eXl9DgcAAOAWab29Q1FRkYqKiqIeU1dXp69+9avatm2bZs+e3edwAAAAbtHr0tSTSCSi+fPna8mSJZowYUKPx4fDYYXD4Y7tUCgkSbIsS5ZlOR2vT9pzkKd75ImOPD1zWybyREee6NyWR3JfJrfm6YnHtm27r5N4PB5t3rxZc+fO7di3cuVKvfrqq9q2bZs8Ho9GjRqlxYsXa/Hixd2OUVZWpvLy8i77KyoqlJmZ2ddoAAAARpqbm1VcXKzGxkZlZWVd8DhHrzTt27dPTzzxhPbv3y+Px2N0n6VLl6q0tLRjOxQKKT8/X9OnT1dOTo6T8frMsixVVlaqsLBQXq832XHIQ55+lUdyXybykKc/5ZHcl8ltedpf5eqJo6Xpd7/7nU6ePKlgMNixr62tTV//+te1Zs0avfPOO13u4/P55PP5uuz3er2ueCDP57ZM5ImOPNG5LY/kvkzkiY480bktj+S+TG7JY5rB0dI0f/58zZgxo9O+WbNmaf78+VqwYIGTUwEAACRUr0vTmTNndOTIkY7to0ePqrq6WkOGDFEwGOzykprX69WIESM0bty42NMCAAAkSa9L0969ezV9+vSO7fb3I5WUlOjZZ591LBgAAICb9Lo0TZs2Tb35B3fdvY8JAADgYsN3zwEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABjo9deoAPFUW1urhoaGmMaIRCKSpAMHDiglJbbfCwKBgILBYExjILHctoaGDk1Xfn5OzwdG1fa3nyckpcY4Vqak7BjH6L/ctn4kzkNuQmmCa9TW1mrcuHFqbW2NaRy/369NmzZp6tSpamlpiWmsjIwM1dTUcMK6SLhtDWVlSWVlqfrSl+Zq4MCBMSRKkzRHUpmkszGMI0kBSctEcerKbeunHech96A0wTUaGhpiPlk5rbW1VQ0NDZysLhJuW0OZmdLgwW1qaZEGDozlalP71aUh+vtVp75oltTwt5+Upo9y2/ppx3nIPShNABBnkYhf0qAYRmh/iWegpEiMaWK/8gH8o+KN4AAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAZ6XZqqqqo0Z84c5eXlyePxaMuWLZ1uLysr0/jx4zVgwAANHjxYM2bM0K5du5zKCwAAkBS9Lk1NTU0qKCjQ2rVru7197NixevLJJ3Xw4EHt2LFDo0aN0syZM/WXv/wl5rAAAADJktbbOxQVFamoqOiCtxcXF3faXr16tZ5++mn9/ve/12233db7hAAAAC7Q69LUGx9++KE2bNig7OxsFRQUdHtMOBxWOBzu2A6FQpIky7JkWVY84xlrz0Ge7jmVJxKJyO/3x5ynfQwnxpLO5Yrlv62/Pl9O6q9rKCPj3M+zZ9NkWX1/C2n7fWMZ45xUnTvtt0liTX+U29bP+TgPxZdpDo9t23ZfJ/F4PNq8ebPmzp3baf/WrVt19913q7m5Wbm5udqyZYtuvPHGbscoKytTeXl5l/0VFRXKzMzsazQAAAAjzc3NKi4uVmNjo7Kysi54XFxKU1NTk+rr69XQ0KCnnnpKv/3tb7Vr1y4NGzasyxjdXWnKz89XfX29cnJy+hrNUZZlqbKyUoWFhfJ6vcmO02/zHDhwQFOnTo05j9/v1zPPPKOFCxeqpaUl5vGqqqoueKXURH99vpzUX9fQ8OHS8uVSYeFdGjZsdJ/HsawUVVZeo8LCg/J6I30eRzoj6X1JZZKGx5DHXWuov66f83Eeiq9QKKRAINBjaYrLy3MDBgzQmDFjNGbMGH384x/XlVdeqaefflpLly7tcqzP55PP5+uy3+v1uuKBPJ/bMvW3PCkpKY6dYCSppaXFkfFSUlIceZz72/MVD/1tDbW2nvuZlnY2xrJzjtcbiXGcNklnde5lOtb0R7lt/ZyP81D8c5hIyOc0RSKRTleTAAAALja9vtJ05swZHTlypGP76NGjqq6u1pAhQ5STk6MVK1bo9ttvV25urhoaGrR27VrV1dXpzjvvdDQ4AABAIvW6NO3du1fTp0/v2C4tLZUklZSUaP369frjH/+oH/3oR2poaFBOTo5uvPFG/e53v9OECROcSw0AAJBgvS5N06ZNU7T3jr/wwgsxBQIAAHAjvnsOAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAQK+/RgUA0DspKS2STscwQurffp6R1BbDOM0x3BcApQmuEQgElJGRodbW1mRH6ZCRkaFAIJDsGDDktjXU3Cx98EGq/H5J+msMI7Wfqt+XdDbGVAFJmTGO0T+5bf204zzkHpQmuEYwGFRNTY0aGhpiGicSiaiurk5VVVVKSYntFehAIKBgMBjTGEgcN66hoUPTNXBgTkxjnLu6tE9Smf5+1amvMiVlxzhG/+TG9SNxHnITShNcJRgMxnxysCxLdXV1KigokNfrdSgZLhb9cw1Zf/s5XJIb8vRf/XP9wCm8ERwAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMBAr0tTVVWV5syZo7y8PHk8Hm3ZsqXjNsuy9NBDD+maa67RgAEDlJeXp/vuu0/Hjx93MjMAAEDC9bo0NTU1qaCgQGvXru1yW3Nzs/bv369ly5Zp//79euGFF1RTU6Pbb7/dkbAAAADJktbbOxQVFamoqKjb27Kzs1VZWdlp35NPPqmbbrpJtbW1MX9zNAAAQLL0ujT1VmNjozwejy655JJubw+HwwqHwx3boVBI0rmX+izLinc8I+05yNM98kRHnp65LRN5oiNPdG7LI7kvk1vz9MRj27bd10k8Ho82b96suXPndnt7a2urpkyZovHjx+unP/1pt8eUlZWpvLy8y/6KigplZmb2NRoAAICR5uZmFRcXq7GxUVlZWRc8Lm6lybIs/fM//7P+/Oc/67XXXrtgiO6uNOXn56u+vl45OTl9jeYoy7JUWVmpwsJCeb3eZMchD3n6VR7JfZnIQ57+lEdyXya35QmFQgoEAj2Wpri8PGdZlubNm6djx47pt7/9bdQAPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phkcL03thenw4cN69dVXXXO1CAAAIBa9Lk1nzpzRkSNHOraPHj2q6upqDRkyRLm5ufrsZz+r/fv3a+vWrWpra9N7770nSRoyZIjS09OdSw4AAJBAvS5Ne/fu1fTp0zu2S0tLJUklJSUqKyvTiy++KEm67rrrOt3v1Vdf1bRp0/qeFAAAIIl6XZqmTZumaO8dj+F95QAAAK7Fd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAY6HVpqqqq0pw5c5SXlyePx6MtW7Z0uv2FF17QzJkzlZOTI4/Ho+rqaoeiAgAAJE+vS1NTU5MKCgq0du3aC95+6623atWqVTGHAwAAcIu03t6hqKhIRUVFF7x9/vz5kqR33nmnz6EAAADcptelyWnhcFjhcLhjOxQKSZIsy5JlWcmK1Ul7DvJ0jzzRkadnbstEnujIE53b8kjuy+TWPD3x2LZt93USj8ejzZs3a+7cuV1ue+eddzR69Gi9+eabuu666y44RllZmcrLy7vsr6ioUGZmZl+jAQAAGGlublZxcbEaGxuVlZV1weOSfqVp6dKlKi0t7dgOhULKz8/X9OnTlZOTk8Rkf2dZliorK1VYWCiv15vsOOQhT7/KI7kvE3nI05/ySO7L5LY87a9y9STppcnn88nn83XZ7/V6XfFAns9tmcgTHXmic1seyX2ZyBMdeaJzWx7JfZncksc0A5/TBAAAYKDXV5rOnDmjI0eOdGwfPXpU1dXVGjJkiILBoN5//33V1tbq+PHjkqSamhpJ0ogRIzRixAiHYgMAACRWr6807d27VxMnTtTEiRMlSaWlpZo4caIefvhhSdKLL76oiRMnavbs2ZKku+++WxMnTtT69esdjA0AAJBYvb7SNG3aNEX7B3ef//zn9fnPfz6WTAAAAK7De5oAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAM9PprVIB4qq2tVUNDQ0xjRCIRSdKBAweUkhLb7wVDh6YrPz8npjGktr/9PCEpNcaxMiVlxzhG/+a2NRQIBBQMBmMaA4njtvUjsYbchNIE16itrdW4cePU2toa0zh+v1+bNm3S1KlT1dLS0udxsrKksrJUfelLczVw4MAYEqVJmiOpTNLZGMaRpICkZaI4dc9ta0iSMjIyVFNTw196FwE3rh+JNeQmlCa4RkNDQ8wnKydlZkqDB7eppUUaODCWq03tV5eG6O9XnfqiWVLD335SmrrjtjUkSa2trWpoaOAvvIuAG9ePxBpyE0oT0INIxC9pUAwjtF+eHygpEmOa2H9rBQD0DW8EBwAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMNDr0lRVVaU5c+YoLy9PHo9HW7Zs6XS7bdt6+OGHlZubK7/frxkzZujw4cNO5QUAAEiKXpempqYmFRQUaO3atd3e/vjjj+v73/++1q9fr127dmnAgAGaNWuWK785GgAAwFRab+9QVFSkoqKibm+zbVtr1qzRv//7v+uOO+6QJP33f/+3hg8fri1btujuu++OLS0AAECS9Lo0RXP06FG99957mjFjRse+7Oxs3XzzzXrjjTe6LU3hcFjhcLhjOxQKSZIsy5JlWU7G67P2HOTpnlN5IpGI/H5/zHnax4h1rIyMcz/Pnk2TZfX97X/t941ljHNSde5/2TZJfX+s3bZ+pP67htpFIpGY/tvc9pz11zxuXT8SayjeTHN4bNu2+zqJx+PR5s2bNXfuXEnS66+/rilTpuj48ePKzc3tOG7evHnyeDx6/vnnu4xRVlam8vLyLvsrKiqUmZnZ12gAAABGmpubVVxcrMbGRmVlZV3wOEevNPXF0qVLVVpa2rEdCoWUn5+v6dOnKycnJ4nJ/s6yLFVWVqqwsFBerzfZcfptngMHDmjq1Kkx5/H7/XrmmWe0cOFCtbS09Hmc4cOl5culwsK7NGzY6D6PY1kpqqy8RoWFB+X1Rvo8jnRG0vuSyiQNjyGPu9aP1H/XULuqqioVFBT0+f5ue876ax63rh+JNRRv7a9y9cTR0jRixAhJ0okTJzpdaTpx4oSuu+66bu/j8/nk8/m67Pd6va54IM/ntkz9LU9KSopjJxhJamlpiWm89n+7kJZ2Nsayc47XG4lxnDZJZ3XuZbrYn3e3rR+p/62hdikpKY481m57zvpbHreuH4k1lIgcJhz9nKbRo0drxIgReuWVVzr2hUIh7dq1S5MnT3ZyKgAAgITq9ZWmM2fO6MiRIx3bR48eVXV1tYYMGaJgMKjFixfr0Ucf1ZVXXqnRo0dr2bJlysvL63jfEwAAwMWo16Vp7969mj59esd2+/uRSkpK9Oyzz+rf/u3f1NTUpH/5l3/RqVOndOutt+rXv/61Mtr/KRIAAMBFqNeladq0aYr2D+48Ho++853v6Dvf+U5MwQAAANyE754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAw0OuvUQH+0aSktEg6HcMIqX/7eUZSWwzjNMdwXwBArChNcI1AIKCMjAy1trYmO4okqblZ+uCDVPn9kvTXGEZq/9/sfUlnY0wVkJQZ4xj9l9vWkCRlZGQoEAgkOwYMuHH9SKwhN6E0wTWCwaBqamrU0NAQ0ziRSER1dXWqqqpSSkpsr0APHZqugQNzYhrj3NWlfZLK9PerTn2VKSk7xjH6LzeuoUAgoGAwGNMYSAw3rh+JNeQmlCa4SjAYjPnkYFmW6urqVFBQIK/X61CyWFh/+zlckhvy9G/9cw0hUVg/iIY3ggMAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIS2k6ffq0Fi9erJEjR8rv9+uWW27Rnj174jEVAABAQsSlNH3xi19UZWWlfvzjH+vgwYOaOXOmZsyYobq6unhMBwAAEHeOl6aWlhb94he/0OOPP66pU6dqzJgxKisr05gxY7Ru3TqnpwMAAEiINKcHPHv2rNra2pSRkdFpv9/v144dO7ocHw6HFQ6HO7ZDoZAkybIsWZbldLw+ac9Bnu6RJzry9MxtmcgTHXmic1seyX2Z3JqnJx7btm2nJ7/llluUnp6uiooKDR8+XJs2bVJJSYnGjBmjmpqaTseWlZWpvLy8yxgVFRXKzMx0OhoAAEAnzc3NKi4uVmNjo7Kysi54XFxK05/+9CctXLhQVVVVSk1N1fXXX6+xY8dq3759euuttzod292Vpvz8fNXX1ysnJ8fpaH1iWZYqKytVWFgor9eb7DjkIU+/yiO5LxN5yNOf8kjuy+S2PKFQSIFAoMfS5PjLc5J0xRVXaPv27WpqalIoFFJubq7uuusuXX755V2O9fl88vl8XfZ7vV5XPJDnc1sm8kRHnujclkdyXybyREee6NyWR3JfJrfkMc0Q189pGjBggHJzc/XBBx9o27ZtuuOOO+I5HQAAQNzE5UrTtm3bZNu2xo0bpyNHjmjJkiUaP368FixYEI/pAAAA4i4uV5oaGxu1aNEijR8/Xvfdd59uvfVWbdu2zRWX4AAAAPoiLlea5s2bp3nz5sVjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMxOVrVAD842isbVRzQ3NMY7RF2iRJJw6cUGpKakxjZQYylR3MjmkMAOgOpQlAnzXWNurJcU/qbOvZmMZJ8afo2k3XauPUjYq0RGIaKy0jTffX3E9xAuA4Xp4D0GfNDc0xFyannW09G/OVLwDoDqUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAgOOlqa2tTcuWLdPo0aPl9/t1xRVX6JFHHpFt205PBQAAkDBpTg+4atUqrVu3Tj/60Y80YcIE7d27VwsWLFB2drYeeOABp6cDAABICMdL0+uvv6477rhDs2fPliSNGjVKmzZt0u7du52eCgAAIGEcL0233HKLNmzYoLfffltjx47VgQMHtGPHDq1evbrb48PhsMLhcMd2KBSSJFmWJcuynI7XJ+05yNM98kTXn/O0RdqU4o/9Vf72MZwYSzqXK5b/vv78nDmBPNG5LY/kvkxuzdMTj+3wm40ikYi+9a1v6fHHH1dqaqra2tq0YsUKLV26tNvjy8rKVF5e3mV/RUWFMjMznYwGAADQRXNzs4qLi9XY2KisrKwLHud4aXruuee0ZMkSfe9739OECRNUXV2txYsXa/Xq1SopKelyfHdXmvLz81VfX6+cnBwno/WZZVmqrKxUYWGhvF5vsuOQhzyuyXPiwAltnLox5kwp/hRd/czVOrTwkCItkZjHW1C1QMMLhvf5/v35OSPPP14eyX2Z3JYnFAopEAj0WJocf3luyZIl+uY3v6m7775bknTNNdfo2LFjWrlyZbelyefzyefzddnv9Xpd8UCez22ZyBMdeaJzIk9qSqojJaddpCXiyHipKamOPNb98TlzEnmic1seyX2Z3JLHNIPjHznQ3NyslJTOw6ampioSce7ECgAAkGiOX2maM2eOVqxYoWAwqAkTJujNN9/U6tWrtXDhQqenAgAASBjHS9MPfvADLVu2TF/5yld08uRJ5eXl6V//9V/18MMPOz0VAABAwjhemgYNGqQ1a9ZozZo1Tg8NAACQNHz3HAAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAHHv0YFiEVtba0aGhpiGiMSiUiSDhw4oJSU2H4vCAQCCgaDMY2BxHvrrbdUr/o+35819I/LbecgiTXkJpQmuEZtba3GjRun1tbWmMbx+/3atGmTpk6dqpaWlpjGysjIUE1NDSesC8gMZCotI01nW88mO0qHszqrz3zuM2pUY5/HYA39Y3LjOUhiDbkJpQmu0dDQEPPJymmtra1qaGjgZHUB2cFs3V9zv5obmmMapy3Spn11+7SgaoFSU1L7PM5bb70Vc2FyGmvo4uHGc5DEGnITShOAmGQHs5UdzI5pDMuypDppeMFweb3ePo9Tr3pXFSYA/QtvBAcAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGkaNWqUPB5Plz+LFi1yeioAAICEcfwLe/fs2aO2traO7UOHDqmwsFB33nmn01MBAAAkjOOlaejQoZ22H3vsMV1xxRX6xCc+4fRUAAAACeN4aTrfhx9+qJ/85CcqLS2Vx+Pp9phwOKxwONyxHQqFJEmWZcmyrHjGM9aegzzdcypPJBKR3++POU/7GE6MJZ3LFct/W399vpzEGorObc9Zf83j1vUjsYbizTSHx7ZtO14hfvazn6m4uFi1tbXKy8vr9piysjKVl5d32V9RUaHMzMx4RQMAAJAkNTc3q7i4WI2NjcrKyrrgcXEtTbNmzVJ6erp+9atfXfCY7q405efnq76+Xjk5OfGK1iuWZamyslKFhYXyer3JjtNv8xw4cEBTp06NOY/f79czzzyjhQsXqqWlJebxqqqqVFBQ0Of799fny0msoejc9pz11zxuXT8SayjeQqGQAoFAj6Upbi/PHTt2TC+//LJeeOGFqMf5fD75fL4u+71eryseyPO5LVN/y5OSkuLYCUaSWlpaHBkvJSXFkce5vz1f8cAais5tz1l/y+PW9SOxhhKRw0TcPqdp48aNGjZsmGbPnh2vKQAAABImLqUpEolo48aNKikpUVpaXN9rDgAAkBBxKU0vv/yyamtrtXDhwngMDwAAkHBxuQw0c+ZMxfH95QAAAAnHd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDTBNQKBgDIyMpIdo5OMjAwFAoFkx4Ah1hBi4cb1I7GG3CQuX9gL9EUwGFRNTY0aGhpiGicSiaiurk5VVVVKSYnt94JAIKBgMBjTGEgc1hBi4cb1I7GG3ITSBFcJBoMxnxwsy1JdXZ0KCgrk9XodSoaLBWsIsWD9IBpengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADAQl9JUV1enz33uc8rJyZHf79c111yjvXv3xmMqAACAhHD8C3s/+OADTZkyRdOnT9dLL72koUOH6vDhwxo8eLDTUwEAACSM46Vp1apVys/P18aNGzv2jR492ulpAAAAEsrx0vTiiy9q1qxZuvPOO7V9+3Zdeuml+spXvqIvfelL3R4fDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu2bScnzsjIkCSVlpbqzjvv1J49e/Tggw9q/fr1Kikp6XJ8WVmZysvLu+yvqKhQZmamk9EAAAC6aG5uVnFxsRobG5WVlXXB4xwvTenp6Zo0aZJef/31jn0PPPCA9uzZozfeeKPL8d1dacrPz1d9fb1ycnKcjNZnlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PJebm6urrrqq076Pfexj+sUvftHt8T6fTz6fr8t+r9frigfyfG7LRJ7oyBOd2/JI7stEnujIE53b8kjuy+SWPKYZHP/IgSlTpqimpqbTvrffflsjR450eioAAICEcbw0fe1rX9POnTv13e9+V0eOHFFFRYU2bNigRYsWOT0VAABAwjhemm688UZt3rxZmzZt0tVXX61HHnlEa9as0b333uv0VAAAAAnj+HuaJOlTn/qUPvWpT8VjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMOF6aysrK5PF4Ov0ZP36809MAAAAkVFo8Bp0wYYJefvnlv0+SFpdpAAAAEiYubSYtLU0jRoyIx9AAAABJEZfSdPjwYeXl5SkjI0OTJ0/WypUrFQwGuz02HA4rHA53bIdCIUmSZVmyLCse8XqtPQd5ukee6MjTM7dlIk905InObXkk92Vya56eeGzbtp2c+KWXXtKZM2c0btw41dfXq7y8XHV1dTp06JAGDRrU5fiysjKVl5d32V9RUaHMzEwnowEAAHTR3Nys4uJiNTY2Kisr64LHOV6aPurUqVMaOXKkVq9erS984Qtdbu/uSlN+fr7q6+uVk5MTz2jGLMtSZWWlCgsL5fV6kx2HPOTpV3kk92UiD3n6Ux7JfZnclicUCikQCPRYmuL+Du1LLrlEY8eO1ZEjR7q93efzyefzddnv9Xpd8UCez22ZyBMdeaJzWx7JfZnIEx15onNbHsl9mdySxzRD3D+n6cyZM/rTn/6k3NzceE8FAAAQN46Xpm984xvavn273nnnHb3++uv69Kc/rdTUVN1zzz1OTwUAAJAwjr889+c//1n33HOP/vrXv2ro0KG69dZbtXPnTg0dOtTpqQAAABLG8dL03HPPOT0kAABA0vHdcwAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYc/xoVAPFTWys1NMQ2RiRy7ueBA1KKA782BQJSMBj7OEgMt60h1g8uJpQm4CJRWyuNGye1tsY2jt8vbdokTZ0qtbTEnisjQ6qp4S++i4Eb1xDrBxcTXp4DLhINDbH/ZRcPra2xX7lAYrhxDbF+cDGhNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIe2l67LHH5PF4tHjx4nhPBQAAEDdxLU179uzRD3/4Q1177bXxnAYAACDu4laazpw5o3vvvVdPPfWUBg8eHK9pAAAAEiItXgMvWrRIs2fP1owZM/Too49e8LhwOKxwONyxHQqFJEmWZcmyrHjF65X2HOTpHnmicypPJCL5/bHn8futTj+dEIlIsfzn9dfnzCn9fQ2xfuLPbZncmqcnHtu2bacnf+6557RixQrt2bNHGRkZmjZtmq677jqtWbOmy7FlZWUqLy/vsr+iokKZmZlORwMAAOikublZxcXFamxsVFZW1gWPc7w0vfvuu5o0aZIqKys73ssUrTR1d6UpPz9f9fX1ysnJcTJan1mWpcrKShUWFsrr9SY7Dnn+QfMcOCBNnRp7Hr/f0jPPVGrhwkK1tDjz+FRVSQUFfb9/f33O3JbHrWuI9RN/bsvktjyhUEiBQKDH0uT4y3P79u3TyZMndf3113fsa2trU1VVlZ588kmFw2GlpqZ23Obz+eTz+bqM4/V6XfFAns9tmcgTXX/Lk5IitbQ4l6elxetYaUpJkZx4qPvbc+a0/rqGWD+J47ZMbsljmsHx0nTbbbfp4MGDnfYtWLBA48eP10MPPdSpMAEAAFwsHC9NgwYN0tVXX91p34ABA5STk9NlPwAAwMWCTwQHAAAwELePHDjfa6+9lohpAAAA4oYrTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYS8jUqABwyoFbKaIhtjIzIuZ9DDkitDvze1BqQFIx9HCSG29YQ6wcXEUoTcJEIe2uleeOk1NbYBkrzS9okzZkqnW2JPVhbhsLeGvEXn/u5cg2xfnAR4eU54CLhy2qI/S+7eEhtPZcNrufKNcT6wUWE0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGDA8dK0bt06XXvttcrKylJWVpYmT56sl156yelpAAAAEsrx0nTZZZfpscce0759+7R371598pOf1B133KE//OEPTk8FAACQMGlODzhnzpxO2ytWrNC6deu0c+dOTZgwocvx4XBY4XC4YzsUCkmSLMuSZVlOx+uT9hzk6R55onMqT6QtIn+aP+Y8/lR/p59OiLRFYvrv66/PmVP6+xpi/cSf2zK5NU9PPLZt2/EK0dbWpv/5n/9RSUmJ3nzzTV111VVdjikrK1N5eXmX/RUVFcrMzIxXNAAAAElSc3OziouL1djYqKysrAseF5fSdPDgQU2ePFmtra0aOHCgKioq9E//9E/dHtvdlab8/HzV19crJyfH6Wh9YlmWKisrVVhYKK/Xm+w45PkHzXPg3QOa+r2pMefxp/r1TOEzWli5UC1tLTGPJ0lVS6pUkF/Q5/v31+fMbXncuoZYP/HntkxuyxMKhRQIBHosTY6/PCdJ48aNU3V1tRobG/Xzn/9cJSUl2r59e7dXmnw+n3w+X5f9Xq/XFQ/k+dyWiTzR9bc8KakpajnrTMmRpJa2FsfGS0lNceSx7m/PmdP66xpi/SSO2zK5JY9phriUpvT0dI0ZM0aSdMMNN2jPnj164okn9MMf/jAe0wEAAMRdQj6nKRKJdHoJDgAA4GLj+JWmpUuXqqioSMFgUKdPn1ZFRYVee+01bdu2zempAAAAEsbx0nTy5Endd999qq+vV3Z2tq699lpt27ZNhYWFTk8FAACQMI6XpqefftrpIQEAAJKO754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCLhKBgQFlpGUkO0YXGWkZCgwMJDsGDLhxDbF+cDFx/LvnAMRHMCeomkdr1HCmIaZxIm0R1R2sU9WSKqWkxv57U2BgQMGcYMzjIP7cuIZYP7iYUJqAi0gwJxjzXzCWZanuYJ0K8gvk9XodSoaLBWsI6DtengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGlauXKlbrzxRg0aNEjDhg3T3LlzVVNT4/Q0AAAACeV4adq+fbsWLVqknTt3qrKyUpZlaebMmWpqanJ6KgAAgIRJc3rAX//61522n332WQ0bNkz79u3T1KlTuxwfDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu27XgGOXLkiK688kodPHhQV199dZfby8rKVF5e3mV/RUWFMjMz4xkNAABAzc3NKi4uVmNjo7Kysi54XFxLUyQS0e23365Tp05px44d3R7T3ZWm/Px81dfXKycnJ17ResWyLFVWVqqwsFBerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15QqGQAoFAj6XJ8Zfnzrdo0SIdOnTogoVJknw+n3w+X5f9Xq/XFQ/k+dyWiTzRkSc6t+WR3JeJPNGRJzq35ZHcl8kteUwzxK003X///dq6dauqqqp02WWXxWsaAACAhHC8NNm2ra9+9avavHmzXnvtNY0ePdrpKQAAABLO8dK0aNEiVVRU6Je//KUGDRqk9957T5KUnZ0tv9/v9HQAAAAJ4fjnNK1bt06NjY2aNm2acnNzO/48//zzTk8FAACQMHF5eQ4AAKC/4bvnAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADDhemqqqqjRnzhzl5eXJ4/Foy5YtTk8BAACQcI6XpqamJhUUFGjt2rVODw0AAJA0aU4PWFRUpKKiIuPjw+GwwuFwx3YoFJIkWZYly7Kcjtcn7TnI0z3yREeenrktE3miI090bssjuS+TW/P0xGPbth2vEB6PR5s3b9bcuXMveExZWZnKy8u77K+oqFBmZma8ogEAAEiSmpubVVxcrMbGRmVlZV3wuKSXpu6uNOXn56u+vl45OTnxitYrlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PNdbPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phn4yAEAAAADlCYAAAADjr88d+bMGR05cqRj++jRo6qurtaQIUMUDAadng4AACAhHC9Ne/fu1fTp0zu2S0tLJUklJSV69tlnnZ4OAAAgIRwvTdOmTVMc/0EeAABAUvCeJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAANxK01r167VqFGjlJGRoZtvvlm7d++O11QAAABxF5fS9Pzzz6u0tFTLly/X/v37VVBQoFmzZunkyZPxmA4AACDu4lKaVq9erS996UtasGCBrrrqKq1fv16ZmZl65pln4jEdAABA3KU5PeCHH36offv2aenSpR37UlJSNGPGDL3xxhtdjg+HwwqHwx3bjY2NkqT333/f6Wh9ZlmWmpub9de//lVerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15Tp8+LUmybTvqcY6XpoaGBrW1tWn48OGd9g8fPlx//OMfuxy/cuVKlZeXd9k/duxYp6MBAABc0OnTp5WdnX3B2x0vTb21dOlSlZaWdmyfOnVKI0eOVG1tbdTgiRQKhZSfn693331XWVlZyY5DHvL0qzyS+zKRhzz9KY/kvkxuy2Pbtk6fPq28vLyoxzlemgKBgFJTU3XixIlO+0+cOKERI0Z0Od7n88nn83XZn52d7YoH8nxZWVmuykSe6MgTndvySO7LRJ7oyBOd2/JI7svkpjwmF2ocfyN4enq6brjhBr3yyisd+yKRiF555RVNnjzZ6ekAAAASIi4vz5WWlqqkpESTJk3STTfdpDVr1qipqUkLFiyIx3QAAABxF5fSdNddd+kvf/mLHn74Yb333nu67rrr9Otf/7rLm8O74/P5tHz58m5fsksWt2UiT3Tkic5teST3ZSJPdOSJzm15JPdlclseUx67p39fBwAAAL57DgAAwASlCQAAwAClCQAAwAClCQAAwAClCQAAwIDrStPatWs1atQoZWRk6Oabb9bu3buTlqWqqkpz5sxRXl6ePB6PtmzZkrQsK1eu1I033qhBgwZp2LBhmjt3rmpqapKWR5LWrVuna6+9tuMTXSdPnqyXXnopqZnaPfbYY/J4PFq8eHHSMpSVlcnj8XT6M378+KTlkaS6ujp97nOfU05Ojvx+v6655hrt3bs3KVlGjRrV5fHxeDxatGhRUvK0tbVp2bJlGj16tPx+v6644go98sgjPX6BZzydPn1aixcv1siRI+X3+3XLLbdoz549CZu/p3Ogbdt6+OGHlZubK7/frxkzZujw4cNJy/PCCy9o5syZysnJkcfjUXV1ddyy9JTHsiw99NBDuuaaazRgwADl5eXpvvvu0/Hjx5OSRzp3Tho/frwGDBigwYMHa8aMGdq1a1fc8phkOt+Xv/xleTwerVmzJq6ZYuGq0vT888+rtLRUy5cv1/79+1VQUKBZs2bp5MmTScnT1NSkgoICrV27Ninzn2/79u1atGiRdu7cqcrKSlmWpZkzZ6qpqSlpmS677DI99thj2rdvn/bu3atPfvKTuuOOO/SHP/whaZkkac+ePfrhD3+oa6+9Nqk5JGnChAmqr6/v+LNjx46kZfnggw80ZcoUeb1evfTSS/rf//1f/cd//IcGDx6clDx79uzp9NhUVlZKku68886k5Fm1apXWrVunJ598Um+99ZZWrVqlxx9/XD/4wQ+SkkeSvvjFL6qyslI//vGPdfDgQc2cOVMzZsxQXV1dQubv6Rz4+OOP6/vf/77Wr1+vXbt2acCAAZo1a5ZaW1uTkqepqUm33nqrVq1aFZf5e5OnublZ+/fv17Jly7R//3698MILqqmp0e23356UPJI0duxYPfnkkzp48KB27NihUaNGaebMmfrLX/6StEztNm/erJ07d/b43W9JZ7vITTfdZC9atKhju62tzc7Ly7NXrlyZxFTnSLI3b96c7BgdTp48aUuyt2/fnuwonQwePNj+r//6r6TNf/r0afvKK6+0Kysr7U984hP2gw8+mLQsy5cvtwsKCpI2/0c99NBD9q233prsGBf04IMP2ldccYUdiUSSMv/s2bPthQsXdtr3mc98xr733nuTkqe5udlOTU21t27d2mn/9ddfb3/7299OeJ6PngMjkYg9YsQI+3vf+17HvlOnTtk+n8/etGlTwvOc7+jRo7Yk+80334x7DpM87Xbv3m1Lso8dO+aKPI2NjbYk++WXX457nmiZ/vznP9uXXnqpfejQIXvkyJH2f/7nfyYkT1+45krThx9+qH379mnGjBkd+1JSUjRjxgy98cYbSUzmTo2NjZKkIUOGJDnJOW1tbXruuefU1NSU1O8YXLRokWbPnt1pHSXT4cOHlZeXp8svv1z33nuvamtrk5blxRdf1KRJk3TnnXdq2LBhmjhxop566qmk5Tnfhx9+qJ/85CdauHChPB5PUjLccssteuWVV/T2229Lkg4cOKAdO3aoqKgoKXnOnj2rtrY2ZWRkdNrv9/uTesWy3dGjR/Xee+91+n8tOztbN998M+fsC2hsbJTH49Ell1yS7Cj68MMPtWHDBmVnZ6ugoCBpOSKRiObPn68lS5ZowoQJScthKi5fo9IXDQ0Namtr6/JVK8OHD9cf//jHJKVyp0gkosWLF2vKlCm6+uqrk5rl4MGDmjx5slpbWzVw4EBt3rxZV111VVKyPPfcc9q/f39C3/MRzc0336xnn31W48aNU319vcrLy/X//t//06FDhzRo0KCE5/m///s/rVu3TqWlpfrWt76lPXv26IEHHlB6erpKSkoSnud8W7Zs0alTp/T5z38+aRm++c1vKhQKafz48UpNTVVbW5tWrFihe++9Nyl5Bg0apMmTJ+uRRx7Rxz72MQ0fPlybNm3SG2+8oTFjxiQl0/nee+89Ser2nN1+G/6utbVVDz30kO655x5lZWUlLcfWrVt19913q7m5Wbm5uaqsrFQgEEhanlWrViktLU0PPPBA0jL0hmtKE8wtWrRIhw4dcsVvm+PGjVN1dbUaGxv185//XCUlJdq+fXvCi9O7776rBx98UJWVlV1+M0+W869QXHvttbr55ps1cuRI/exnP9MXvvCFhOeJRCKaNGmSvvvd70qSJk6cqEOHDmn9+vVJL01PP/20ioqKkvp+hp/97Gf66U9/qoqKCk2YMEHV1dVavHix8vLykvb4/PjHP9bChQt16aWXKjU1Vddff73uuece7du3Lyl50DeWZWnevHmybVvr1q1Lapbp06erurpaDQ0NeuqppzRv3jzt2rVLw4YNS3iWffv26YknntD+/fuTdoW5t1zz8lwgEFBqaqpOnDjRaf+JEyc0YsSIJKVyn/vvv19bt27Vq6++qssuuyzZcZSenq4xY8bohhtu0MqVK1VQUKAnnngi4Tn27dunkydP6vrrr1daWprS0tK0fft2ff/731daWpra2toSnumjLrnkEo0dO1ZHjhxJyvy5ubldyuzHPvaxpL5kKEnHjh3Tyy+/rC9+8YtJzbFkyRJ985vf1N13361rrrlG8+fP19e+9jWtXLkyaZmuuOIKbd++XWfOnNG7776r3bt3y7IsXX755UnL1K79vMw5O7r2wnTs2DFVVlYm9SqTJA0YMEBjxozRxz/+cT399NNKS0vT008/nZQsv/vd73Ty5EkFg8GO8/axY8f09a9/XaNGjUpKpp64pjSlp6frhhtu0CuvvNKxLxKJ6JVXXknqe2TcwrZt3X///dq8ebN++9vfavTo0cmO1K1IJKJwOJzweW+77TYdPHhQ1dXVHX8mTZqke++9V9XV1UpNTU14po86c+aM/vSnPyk3Nzcp80+ZMqXLx1S8/fbbGjlyZFLytNu4caOGDRum2bNnJzVHc3OzUlI6nxJTU1MViUSSlOjvBgwYoNzcXH3wwQfatm2b7rjjjmRH0ujRozVixIhO5+xQKKRdu3Zxzv6b9sJ0+PBhvfzyy8rJyUl2pC6Sdc6WpPnz5+v3v/99p/N2Xl6elixZom3btiUlU09c9fJcaWmpSkpKNGnSJN10001as2aNmpqatGDBgqTkOXPmTKerAkePHlV1dbWGDBmiYDCY0CyLFi1SRUWFfvnLX2rQoEEd7xnIzs6W3+9PaJZ2S5cuVVFRkYLBoE6fPq2Kigq99tprSVnsgwYN6vL+rgEDBignJydp7/v6xje+oTlz5mjkyJE6fvy4li9frtTUVN1zzz1JyfO1r31Nt9xyi7773e9q3rx52r17tzZs2KANGzYkJY907oS9ceNGlZSUKC0tuaejOXPmaMWKFQoGg5owYYLefPNNrV69WgsXLkxapm3btsm2bY0bN05HjhzRkiVLNH78+ISdE3s6By5evFiPPvqorrzySo0ePVrLli1TXl6e5s6dm5Q877//vmprazs+C6n9l4QRI0bE5epXtDy5ubn67Gc/q/3792vr1q1qa2vrOG8PGTJE6enpCc2Tk5OjFStW6Pbbb1dubq4aGhq0du1a1dXVxfVjPnp6zj5aJL1er0aMGKFx48bFLVNMkvyv97r4wQ9+YAeDQTs9Pd2+6aab7J07dyYty6uvvmpL6vKnpKQk4Vm6yyHJ3rhxY8KztFu4cKE9cuRIOz093R46dKh922232b/5zW+Sluejkv2RA3fddZedm5trp6en25deeql911132UeOHElaHtu27V/96lf21Vdfbft8Pnv8+PH2hg0bkppn27ZttiS7pqYmqTls27ZDoZD94IMP2sFg0M7IyLAvv/xy+9vf/rYdDoeTlun555+3L7/8cjs9Pd0eMWKEvWjRIvvUqVMJm7+nc2AkErGXLVtmDx8+3Pb5fPZtt90W1+eypzwbN27s9vbly5cnPE/7xx509+fVV19NeJ6Wlhb705/+tJ2Xl2enp6fbubm59u23327v3r07LllMMnXH7R854LHtJH7cLQAAwEXCNe9pAgAAcDNKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgIH/DxGoqVjdvWm8AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 700x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"env=RoverGridEnv()\n",
"print(\"Initial Setup\")\n",
"observation=env.reset()\n",
"env.render()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PPO"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"class ActorCritic(nn.Module):\n",
" def __init__(self,\n",
" input_dim,\n",
" n_actions):\n",
" super(ActorCritic,self).__init__()\n",
" self.fc1=nn.Linear(input_dim,128)\n",
" self.fc2=nn.Linear(128,64)\n",
" self.actor=nn.Linear(64,n_actions)\n",
" self.critic=nn.Linear(64,1)\n",
"\n",
" def forward(self,x):\n",
" x=torch.relu(self.fc1(x))\n",
" x=torch.relu(self.fc2(x))\n",
" policy_logits=self.actor(x)\n",
" value=self.critic(x)\n",
" return policy_logits,value\n",
"\n",
"def compute_advantages(rewards,\n",
" values,\n",
" next_values,\n",
" gamma=0.99,\n",
" lambda_=0.95):\n",
" deltas=rewards+gamma*next_values-values\n",
" advantages=[]\n",
" advantage=0\n",
" for delta in reversed(deltas):\n",
" advantage=delta+gamma*lambda_*advantage\n",
" advantages.insert(0,advantage)\n",
" return torch.tensor(advantages,dtype=torch.float32)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def train_ppo(env,\n",
" actor_critic,\n",
" optimizer,\n",
" total_timesteps=10000,\n",
" gamma=0.99,\n",
" lambda_=0.95,\n",
" epsilon=0.2,\n",
" epochs=3,\n",
" batch_size=64):\n",
" \n",
" episode_rwds_ppo=[]\n",
" for _ in range(total_timesteps // batch_size):\n",
" obs=env.reset()\n",
" obs_list,action_list,reward_list,value_list,logprob_list=[],[],[],[],[]\n",
" total_episode_reward=0\n",
" for _ in range(batch_size):\n",
" obs_tensor=torch.tensor(obs,\n",
" dtype=torch.float32).unsqueeze(0)\n",
" policy_logits,value=actor_critic(obs_tensor)\n",
" dist=Categorical(logits=policy_logits)\n",
" action=dist.sample()\n",
" obs_list.append(obs)\n",
" action_list.append(action.item())\n",
" reward_list.append(0)\n",
" value_list.append(value.item())\n",
" logprob_list.append(dist.log_prob(action).item())\n",
" obs,rewards,done,_=env.step([action.item(),\n",
" action.item()])\n",
" reward_list[-1]=rewards.sum()\n",
" total_episode_reward+=rewards.sum()\n",
" if done:\n",
" episode_rwds_ppo.append(total_episode_reward)\n",
" print(f\"Episode {len(episode_rwds_ppo)} ended with reward: {total_episode_reward}\")\n",
" obs=env.reset()\n",
" total_episode_reward=0\n",
" break\n",
" obs_tensor=torch.tensor(np.array(obs_list),\n",
" dtype=torch.float32)\n",
" action_tensor=torch.tensor(action_list)\n",
"\n",
" reward_tensor=torch.tensor(reward_list,\n",
" dtype=torch.float32)\n",
" value_tensor=torch.tensor(value_list,\n",
" dtype=torch.float32)\n",
" logprob_tensor=torch.tensor(logprob_list,\n",
" dtype=torch.float32)\n",
" advantages=compute_advantages(reward_tensor,\n",
" value_tensor,\n",
" torch.cat((value_tensor[1:],\n",
" torch.tensor([0])),\n",
" axis=0),\n",
" gamma,\n",
" lambda_)\n",
"\n",
" for _ in range(epochs):\n",
" new_policy_logits,new_values=actor_critic(obs_tensor)\n",
" new_dist=Categorical(logits=new_policy_logits)\n",
" new_logprobs=new_dist.log_prob(action_tensor)\n",
" ratio=torch.exp(new_logprobs-logprob_tensor)\n",
" surr1=ratio*advantages\n",
" surr2=torch.clamp(ratio,\n",
" 1-epsilon,\n",
" 1+epsilon)*advantages\n",
" policy_loss=-torch.min(surr1,surr2).mean()\n",
" value_loss=nn.MSELoss()(new_values.squeeze(),\n",
" reward_tensor)\n",
" loss=policy_loss+0.5*value_loss\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
" return episode_rwds_ppo"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Episode 1 ended with reward: -370.0\n",
"Episode 2 ended with reward: -30.0\n",
"Episode 3 ended with reward: -90.0\n",
"Episode 4 ended with reward: -285.0\n",
"Episode 5 ended with reward: 35.0\n",
"Episode 6 ended with reward: 355.0\n",
"Episode 7 ended with reward: 190.0\n",
"Episode 8 ended with reward: 425.0\n",
"Episode 9 ended with reward: 710.0\n",
"Episode 10 ended with reward: 455.0\n",
"Episode 11 ended with reward: 110.0\n",
"Episode 12 ended with reward: 150.0\n",
"Episode 13 ended with reward: 140.0\n",
"Episode 14 ended with reward: 50.0\n",
"Episode 15 ended with reward: 150.0\n",
"Episode 16 ended with reward: 60.0\n",
"Episode 17 ended with reward: 60.0\n",
"Episode 18 ended with reward: 220.0\n",
"Episode 19 ended with reward: 160.0\n",
"Episode 20 ended with reward: 120.0\n",
"Episode 21 ended with reward: 345.0\n",
"Episode 22 ended with reward: 50.0\n",
"Episode 23 ended with reward: 170.0\n",
"Episode 24 ended with reward: 130.0\n",
"Episode 25 ended with reward: 115.0\n",
"Episode 26 ended with reward: 375.0\n",
"Episode 27 ended with reward: 150.0\n",
"Episode 28 ended with reward: 110.0\n",
"Episode 29 ended with reward: 120.0\n",
"Episode 30 ended with reward: 90.0\n",
"Episode 31 ended with reward: 120.0\n",
"Episode 32 ended with reward: 405.0\n",
"Episode 33 ended with reward: 710.0\n",
"Episode 34 ended with reward: 85.0\n",
"Episode 35 ended with reward: 380.0\n",
"Episode 36 ended with reward: 170.0\n",
"Episode 37 ended with reward: 105.0\n",
"Episode 38 ended with reward: 80.0\n",
"Episode 39 ended with reward: -115.0\n",
"Episode 40 ended with reward: 380.0\n",
"Episode 41 ended with reward: 675.0\n",
"Episode 42 ended with reward: 475.0\n",
"Episode 43 ended with reward: 220.0\n",
"Episode 44 ended with reward: 70.0\n",
"Episode 45 ended with reward: 580.0\n",
"Episode 46 ended with reward: 400.0\n",
"Episode 47 ended with reward: 355.0\n",
"Episode 48 ended with reward: 460.0\n",
"Episode 49 ended with reward: 420.0\n",
"Episode 50 ended with reward: 535.0\n",
"Episode 51 ended with reward: 470.0\n",
"Episode 52 ended with reward: 745.0\n",
"Episode 53 ended with reward: 460.0\n",
"Episode 54 ended with reward: 600.0\n",
"Episode 55 ended with reward: 750.0\n",
"Episode 56 ended with reward: 290.0\n",
"Episode 57 ended with reward: 745.0\n",
"Episode 58 ended with reward: 500.0\n",
"Episode 59 ended with reward: 550.0\n",
"Episode 60 ended with reward: 610.0\n",
"Episode 61 ended with reward: 465.0\n",
"Episode 62 ended with reward: 610.0\n",
"Episode 63 ended with reward: 785.0\n",
"Episode 64 ended with reward: 710.0\n",
"Episode 65 ended with reward: 275.0\n",
"Episode 66 ended with reward: 145.0\n",
"Episode 67 ended with reward: 300.0\n",
"Episode 68 ended with reward: 685.0\n",
"Episode 69 ended with reward: 660.0\n",
"Episode 70 ended with reward: 665.0\n",
"Episode 71 ended with reward: 585.0\n",
"Episode 72 ended with reward: 625.0\n",
"Episode 73 ended with reward: 615.0\n",
"Episode 74 ended with reward: 565.0\n",
"Episode 75 ended with reward: 690.0\n",
"Episode 76 ended with reward: 700.0\n",
"Episode 77 ended with reward: 465.0\n",
"Episode 78 ended with reward: 380.0\n",
"Episode 79 ended with reward: 395.0\n",
"Episode 80 ended with reward: 560.0\n",
"Episode 81 ended with reward: 480.0\n",
"Episode 82 ended with reward: 515.0\n",
"Episode 83 ended with reward: 470.0\n",
"Episode 84 ended with reward: 495.0\n",
"Episode 85 ended with reward: 510.0\n",
"Episode 86 ended with reward: 365.0\n",
"Episode 87 ended with reward: 460.0\n",
"Episode 88 ended with reward: 480.0\n",
"Episode 89 ended with reward: 515.0\n",
"Episode 90 ended with reward: 785.0\n",
"Episode 91 ended with reward: 715.0\n",
"Episode 92 ended with reward: 635.0\n",
"Episode 93 ended with reward: 540.0\n",
"Episode 94 ended with reward: 745.0\n",
"Episode 95 ended with reward: 690.0\n",
"Episode 96 ended with reward: 750.0\n",
"Episode 97 ended with reward: 530.0\n",
"Episode 98 ended with reward: 555.0\n",
"Episode 99 ended with reward: 665.0\n",
"Episode 100 ended with reward: 445.0\n",
"Episode 101 ended with reward: 370.0\n",
"Episode 102 ended with reward: 410.0\n",
"Episode 103 ended with reward: 120.0\n",
"Episode 104 ended with reward: -95.0\n",
"Episode 105 ended with reward: -250.0\n",
"Episode 106 ended with reward: -170.0\n",
"Episode 107 ended with reward: 380.0\n",
"Episode 108 ended with reward: 75.0\n",
"Episode 109 ended with reward: 265.0\n",
"Episode 110 ended with reward: 260.0\n",
"Episode 111 ended with reward: 265.0\n",
"Episode 112 ended with reward: 325.0\n",
"Episode 113 ended with reward: 335.0\n",
"Episode 114 ended with reward: 250.0\n",
"Episode 115 ended with reward: 400.0\n",
"Episode 116 ended with reward: 375.0\n",
"Episode 117 ended with reward: 320.0\n",
"Episode 118 ended with reward: 370.0\n",
"Episode 119 ended with reward: 405.0\n",
"Episode 120 ended with reward: 410.0\n",
"Episode 121 ended with reward: 510.0\n",
"Episode 122 ended with reward: 465.0\n",
"Episode 123 ended with reward: 530.0\n",
"Episode 124 ended with reward: 465.0\n",
"Episode 125 ended with reward: 520.0\n",
"Episode 126 ended with reward: 500.0\n",
"Episode 127 ended with reward: 490.0\n",
"Episode 128 ended with reward: 465.0\n",
"Episode 129 ended with reward: 380.0\n",
"Episode 130 ended with reward: 515.0\n",
"Episode 131 ended with reward: 500.0\n",
"Episode 132 ended with reward: 500.0\n",
"Episode 133 ended with reward: 430.0\n",
"Episode 134 ended with reward: 480.0\n",
"Episode 135 ended with reward: 295.0\n",
"Episode 136 ended with reward: 465.0\n",
"Episode 137 ended with reward: 350.0\n",
"Episode 138 ended with reward: 420.0\n",
"Episode 139 ended with reward: 420.0\n",
"Episode 140 ended with reward: 465.0\n",
"Episode 141 ended with reward: 430.0\n",
"Episode 142 ended with reward: 385.0\n",
"Episode 143 ended with reward: 420.0\n",
"Episode 144 ended with reward: 310.0\n",
"Episode 145 ended with reward: 445.0\n",
"Episode 146 ended with reward: 360.0\n",
"Episode 147 ended with reward: 400.0\n",
"Episode 148 ended with reward: 470.0\n",
"Episode 149 ended with reward: 420.0\n",
"Episode 150 ended with reward: 445.0\n",
"Episode 151 ended with reward: 455.0\n",
"Episode 152 ended with reward: 405.0\n",
"Episode 153 ended with reward: 395.0\n",
"Episode 154 ended with reward: 445.0\n",
"Episode 155 ended with reward: 445.0\n",
"Episode 156 ended with reward: 515.0\n",
"Episode 157 ended with reward: 435.0\n",
"Episode 158 ended with reward: 485.0\n",
"Episode 159 ended with reward: 500.0\n",
"Episode 160 ended with reward: 420.0\n",
"Episode 161 ended with reward: 500.0\n",
"Episode 162 ended with reward: 440.0\n",
"Episode 163 ended with reward: 405.0\n",
"Episode 164 ended with reward: 500.0\n",
"Episode 165 ended with reward: 420.0\n",
"Episode 166 ended with reward: 450.0\n",
"Episode 167 ended with reward: 485.0\n",
"Episode 168 ended with reward: 455.0\n",
"Episode 169 ended with reward: 465.0\n",
"Episode 170 ended with reward: 490.0\n",
"Episode 171 ended with reward: 655.0\n",
"Episode 172 ended with reward: 565.0\n",
"Episode 173 ended with reward: 575.0\n",
"Episode 174 ended with reward: 510.0\n",
"Episode 175 ended with reward: 680.0\n",
"Episode 176 ended with reward: 300.0\n",
"Episode 177 ended with reward: 730.0\n",
"Episode 178 ended with reward: 375.0\n",
"Episode 179 ended with reward: 540.0\n",
"Episode 180 ended with reward: 695.0\n",
"Episode 181 ended with reward: 350.0\n",
"Episode 182 ended with reward: 590.0\n",
"Episode 183 ended with reward: 705.0\n",
"Episode 184 ended with reward: 210.0\n",
"Episode 185 ended with reward: 785.0\n",
"Episode 186 ended with reward: 730.0\n",
"Episode 187 ended with reward: 610.0\n",
"Episode 188 ended with reward: 510.0\n",
"Episode 189 ended with reward: 140.0\n",
"Episode 190 ended with reward: 565.0\n",
"Episode 191 ended with reward: 775.0\n",
"Episode 192 ended with reward: 625.0\n",
"Episode 193 ended with reward: 620.0\n",
"Episode 194 ended with reward: 450.0\n",
"Episode 195 ended with reward: 555.0\n",
"Episode 196 ended with reward: 570.0\n",
"Episode 197 ended with reward: 510.0\n",
"Episode 198 ended with reward: 450.0\n",
"Episode 199 ended with reward: 450.0\n",
"Episode 200 ended with reward: 505.0\n",
"Episode 201 ended with reward: 645.0\n",
"Episode 202 ended with reward: 740.0\n",
"Episode 203 ended with reward: 515.0\n",
"Episode 204 ended with reward: 710.0\n",
"Episode 205 ended with reward: 290.0\n",
"Episode 206 ended with reward: 560.0\n",
"Episode 207 ended with reward: 380.0\n",
"Episode 208 ended with reward: 200.0\n",
"Episode 209 ended with reward: 500.0\n",
"Episode 210 ended with reward: 110.0\n",
"Episode 211 ended with reward: 320.0\n",
"Episode 212 ended with reward: -175.0\n",
"Episode 213 ended with reward: 160.0\n",
"Episode 214 ended with reward: 490.0\n",
"Episode 215 ended with reward: 445.0\n",
"Episode 216 ended with reward: 685.0\n",
"Episode 217 ended with reward: 470.0\n",
"Episode 218 ended with reward: 475.0\n",
"Episode 219 ended with reward: 745.0\n",
"Episode 220 ended with reward: 800.0\n",
"Episode 221 ended with reward: 560.0\n",
"Episode 222 ended with reward: 500.0\n",
"Episode 223 ended with reward: 570.0\n",
"Episode 224 ended with reward: 260.0\n",
"Episode 225 ended with reward: 645.0\n",
"Episode 226 ended with reward: 110.0\n",
"Episode 227 ended with reward: 665.0\n",
"Episode 228 ended with reward: 500.0\n",
"Episode 229 ended with reward: 515.0\n",
"Episode 230 ended with reward: 470.0\n",
"Episode 231 ended with reward: 420.0\n",
"Episode 232 ended with reward: 470.0\n",
"Episode 233 ended with reward: 420.0\n",
"Episode 234 ended with reward: 505.0\n",
"Episode 235 ended with reward: 415.0\n",
"Episode 236 ended with reward: 455.0\n",
"Episode 237 ended with reward: 755.0\n",
"Episode 238 ended with reward: 525.0\n",
"Episode 239 ended with reward: 465.0\n",
"Episode 240 ended with reward: 485.0\n",
"Episode 241 ended with reward: 610.0\n",
"Episode 242 ended with reward: 480.0\n",
"Episode 243 ended with reward: 675.0\n",
"Episode 244 ended with reward: 335.0\n",
"Episode 245 ended with reward: 195.0\n",
"Episode 246 ended with reward: 440.0\n",
"Episode 247 ended with reward: 370.0\n",
"Episode 248 ended with reward: 355.0\n",
"Episode 249 ended with reward: 405.0\n",
"Episode 250 ended with reward: 365.0\n",
"Episode 251 ended with reward: 750.0\n",
"Episode 252 ended with reward: 390.0\n",
"Episode 253 ended with reward: 585.0\n",
"Episode 254 ended with reward: 660.0\n",
"Episode 255 ended with reward: 445.0\n",
"Episode 256 ended with reward: 685.0\n",
"Episode 257 ended with reward: 395.0\n",
"Episode 258 ended with reward: 550.0\n",
"Episode 259 ended with reward: 725.0\n",
"Episode 260 ended with reward: 455.0\n",
"Episode 261 ended with reward: 520.0\n",
"Episode 262 ended with reward: 535.0\n",
"Episode 263 ended with reward: 530.0\n",
"Episode 264 ended with reward: 550.0\n",
"Episode 265 ended with reward: 620.0\n",
"Episode 266 ended with reward: 515.0\n",
"Episode 267 ended with reward: 465.0\n",
"Episode 268 ended with reward: 425.0\n",
"Episode 269 ended with reward: 535.0\n",
"Episode 270 ended with reward: 565.0\n",
"Episode 271 ended with reward: 725.0\n",
"Episode 272 ended with reward: 505.0\n",
"Episode 273 ended with reward: 560.0\n",
"Episode 274 ended with reward: 270.0\n",
"Episode 275 ended with reward: 175.0\n",
"Episode 276 ended with reward: 490.0\n",
"Episode 277 ended with reward: 355.0\n",
"Episode 278 ended with reward: 505.0\n",
"Episode 279 ended with reward: 480.0\n",
"Episode 280 ended with reward: 500.0\n",
"Episode 281 ended with reward: 520.0\n",
"Episode 282 ended with reward: 465.0\n",
"Episode 283 ended with reward: 465.0\n",
"Episode 284 ended with reward: 485.0\n",
"Episode 285 ended with reward: 530.0\n",
"Episode 286 ended with reward: 465.0\n",
"Episode 287 ended with reward: 275.0\n",
"Episode 288 ended with reward: 410.0\n",
"Episode 289 ended with reward: 355.0\n",
"Episode 290 ended with reward: 455.0\n",
"Episode 291 ended with reward: 345.0\n",
"Episode 292 ended with reward: 265.0\n",
"Episode 293 ended with reward: 500.0\n",
"Episode 294 ended with reward: 530.0\n",
"Episode 295 ended with reward: 500.0\n",
"Episode 296 ended with reward: 515.0\n",
"Episode 297 ended with reward: 500.0\n",
"Episode 298 ended with reward: 500.0\n",
"Episode 299 ended with reward: 480.0\n",
"Episode 300 ended with reward: 500.0\n",
"Episode 301 ended with reward: 460.0\n",
"Episode 302 ended with reward: 390.0\n",
"Episode 303 ended with reward: 485.0\n",
"Episode 304 ended with reward: 440.0\n",
"Episode 305 ended with reward: 330.0\n",
"Episode 306 ended with reward: 365.0\n",
"Episode 307 ended with reward: 440.0\n",
"Episode 308 ended with reward: 360.0\n",
"Episode 309 ended with reward: 500.0\n",
"Episode 310 ended with reward: 450.0\n",
"Episode 311 ended with reward: 315.0\n",
"Episode 312 ended with reward: 420.0\n",
"Episode 313 ended with reward: 500.0\n",
"Episode 314 ended with reward: 340.0\n",
"Episode 315 ended with reward: 565.0\n",
"Episode 316 ended with reward: 560.0\n",
"Episode 317 ended with reward: 515.0\n",
"Episode 318 ended with reward: 520.0\n",
"Episode 319 ended with reward: 500.0\n",
"Episode 320 ended with reward: 595.0\n",
"Episode 321 ended with reward: 780.0\n",
"Episode 322 ended with reward: 500.0\n",
"Episode 323 ended with reward: 530.0\n",
"Episode 324 ended with reward: 470.0\n",
"Episode 325 ended with reward: 320.0\n",
"Episode 326 ended with reward: 460.0\n",
"Episode 327 ended with reward: 475.0\n",
"Episode 328 ended with reward: 555.0\n",
"Episode 329 ended with reward: 695.0\n",
"Episode 330 ended with reward: 515.0\n",
"Episode 331 ended with reward: 615.0\n",
"Episode 332 ended with reward: 500.0\n",
"Episode 333 ended with reward: 510.0\n",
"Episode 334 ended with reward: 575.0\n",
"Episode 335 ended with reward: 300.0\n",
"Episode 336 ended with reward: 445.0\n",
"Episode 337 ended with reward: 535.0\n",
"Episode 338 ended with reward: 400.0\n",
"Episode 339 ended with reward: 455.0\n",
"Episode 340 ended with reward: 565.0\n",
"Episode 341 ended with reward: 570.0\n",
"Episode 342 ended with reward: 260.0\n",
"Episode 343 ended with reward: 260.0\n",
"Episode 344 ended with reward: 570.0\n",
"Episode 345 ended with reward: 510.0\n",
"Episode 346 ended with reward: 555.0\n",
"Episode 347 ended with reward: 515.0\n",
"Episode 348 ended with reward: 230.0\n",
"Episode 349 ended with reward: 525.0\n",
"Episode 350 ended with reward: 360.0\n",
"Episode 351 ended with reward: 130.0\n",
"Episode 352 ended with reward: 505.0\n",
"Episode 353 ended with reward: 520.0\n",
"Episode 354 ended with reward: 290.0\n",
"Episode 355 ended with reward: 760.0\n",
"Episode 356 ended with reward: 470.0\n",
"Episode 357 ended with reward: 615.0\n",
"Episode 358 ended with reward: 150.0\n",
"Episode 359 ended with reward: 505.0\n",
"Episode 360 ended with reward: 140.0\n",
"Episode 361 ended with reward: 770.0\n",
"Episode 362 ended with reward: 760.0\n",
"Episode 363 ended with reward: 570.0\n",
"Episode 364 ended with reward: 270.0\n",
"Episode 365 ended with reward: 575.0\n",
"Episode 366 ended with reward: 365.0\n",
"Episode 367 ended with reward: 500.0\n",
"Episode 368 ended with reward: 555.0\n",
"Episode 369 ended with reward: 140.0\n",
"Episode 370 ended with reward: 725.0\n",
"Episode 371 ended with reward: 585.0\n",
"Episode 372 ended with reward: 310.0\n",
"Episode 373 ended with reward: 500.0\n",
"Episode 374 ended with reward: 515.0\n",
"Episode 375 ended with reward: 535.0\n",
"Episode 376 ended with reward: 415.0\n",
"Episode 377 ended with reward: 150.0\n",
"Episode 378 ended with reward: 735.0\n",
"Episode 379 ended with reward: 480.0\n",
"Episode 380 ended with reward: 505.0\n",
"Episode 381 ended with reward: 595.0\n",
"Episode 382 ended with reward: 495.0\n",
"Episode 383 ended with reward: 150.0\n",
"Episode 384 ended with reward: 475.0\n",
"Episode 385 ended with reward: 200.0\n",
"Episode 386 ended with reward: 295.0\n",
"Episode 387 ended with reward: 305.0\n",
"Episode 388 ended with reward: 695.0\n",
"Episode 389 ended with reward: 610.0\n",
"Episode 390 ended with reward: 220.0\n",
"Episode 391 ended with reward: 595.0\n",
"Episode 392 ended with reward: 565.0\n",
"Episode 393 ended with reward: 110.0\n",
"Episode 394 ended with reward: 730.0\n",
"Episode 395 ended with reward: 355.0\n",
"Episode 396 ended with reward: 760.0\n",
"Episode 397 ended with reward: 790.0\n",
"Episode 398 ended with reward: 680.0\n",
"Episode 399 ended with reward: 575.0\n",
"Episode 400 ended with reward: 760.0\n",
"Episode 401 ended with reward: 450.0\n",
"Episode 402 ended with reward: 625.0\n",
"Episode 403 ended with reward: 345.0\n",
"Episode 404 ended with reward: 485.0\n",
"Episode 405 ended with reward: 525.0\n",
"Episode 406 ended with reward: 670.0\n",
"Episode 407 ended with reward: 565.0\n",
"Episode 408 ended with reward: 405.0\n",
"Episode 409 ended with reward: 50.0\n",
"Episode 410 ended with reward: 410.0\n",
"Episode 411 ended with reward: 300.0\n",
"Episode 412 ended with reward: 415.0\n",
"Episode 413 ended with reward: 485.0\n",
"Episode 414 ended with reward: 735.0\n",
"Episode 415 ended with reward: 630.0\n",
"Episode 416 ended with reward: 530.0\n",
"Episode 417 ended with reward: 500.0\n",
"Episode 418 ended with reward: 595.0\n",
"Episode 419 ended with reward: 500.0\n",
"Episode 420 ended with reward: 315.0\n",
"Episode 421 ended with reward: 515.0\n",
"Episode 422 ended with reward: 445.0\n",
"Episode 423 ended with reward: 395.0\n",
"Episode 424 ended with reward: 500.0\n",
"Episode 425 ended with reward: 430.0\n",
"Episode 426 ended with reward: 365.0\n",
"Episode 427 ended with reward: 560.0\n",
"Episode 428 ended with reward: 435.0\n",
"Episode 429 ended with reward: 465.0\n",
"Episode 430 ended with reward: 500.0\n",
"Episode 431 ended with reward: 485.0\n",
"Episode 432 ended with reward: 500.0\n",
"Episode 433 ended with reward: 520.0\n",
"Episode 434 ended with reward: 485.0\n",
"Episode 435 ended with reward: 455.0\n",
"Episode 436 ended with reward: 460.0\n",
"Episode 437 ended with reward: 330.0\n",
"Episode 438 ended with reward: 360.0\n",
"Episode 439 ended with reward: 455.0\n",
"Episode 440 ended with reward: 485.0\n",
"Episode 441 ended with reward: 340.0\n",
"Episode 442 ended with reward: 460.0\n",
"Episode 443 ended with reward: 500.0\n",
"Episode 444 ended with reward: 320.0\n",
"Episode 445 ended with reward: 490.0\n",
"Episode 446 ended with reward: 455.0\n",
"Episode 447 ended with reward: 480.0\n",
"Episode 448 ended with reward: 455.0\n",
"Episode 449 ended with reward: 500.0\n",
"Episode 450 ended with reward: 415.0\n",
"Episode 451 ended with reward: 515.0\n",
"Episode 452 ended with reward: 550.0\n",
"Episode 453 ended with reward: 720.0\n",
"Episode 454 ended with reward: 570.0\n",
"Episode 455 ended with reward: 500.0\n",
"Episode 456 ended with reward: 535.0\n",
"Episode 457 ended with reward: 725.0\n",
"Episode 458 ended with reward: 530.0\n",
"Episode 459 ended with reward: 760.0\n",
"Episode 460 ended with reward: 130.0\n",
"Episode 461 ended with reward: 595.0\n",
"Episode 462 ended with reward: 735.0\n",
"Episode 463 ended with reward: 730.0\n",
"Episode 464 ended with reward: 615.0\n",
"Episode 465 ended with reward: 500.0\n",
"Episode 466 ended with reward: 725.0\n",
"Episode 467 ended with reward: 720.0\n",
"Episode 468 ended with reward: 465.0\n",
"Episode 469 ended with reward: 465.0\n",
"Episode 470 ended with reward: 760.0\n",
"Episode 471 ended with reward: 255.0\n",
"Episode 472 ended with reward: 125.0\n",
"Episode 473 ended with reward: 500.0\n",
"Episode 474 ended with reward: 705.0\n",
"Episode 475 ended with reward: 500.0\n",
"Episode 476 ended with reward: 485.0\n",
"Episode 477 ended with reward: 500.0\n",
"Episode 478 ended with reward: 500.0\n",
"Episode 479 ended with reward: 470.0\n",
"Episode 480 ended with reward: 635.0\n",
"Episode 481 ended with reward: 440.0\n",
"Episode 482 ended with reward: 275.0\n",
"Episode 483 ended with reward: 305.0\n",
"Episode 484 ended with reward: 600.0\n",
"Episode 485 ended with reward: 465.0\n",
"Episode 486 ended with reward: 370.0\n",
"Episode 487 ended with reward: 775.0\n",
"Episode 488 ended with reward: 300.0\n",
"Episode 489 ended with reward: 415.0\n",
"Episode 490 ended with reward: 460.0\n",
"Episode 491 ended with reward: 620.0\n",
"Episode 492 ended with reward: 355.0\n",
"Episode 493 ended with reward: 455.0\n",
"Episode 494 ended with reward: 365.0\n",
"Episode 495 ended with reward: 720.0\n",
"Episode 496 ended with reward: 500.0\n",
"Episode 497 ended with reward: 120.0\n",
"Episode 498 ended with reward: 500.0\n",
"Episode 499 ended with reward: 355.0\n",
"Episode 500 ended with reward: 605.0\n",
"Episode 501 ended with reward: 475.0\n",
"Episode 502 ended with reward: 415.0\n",
"Episode 503 ended with reward: 700.0\n",
"Episode 504 ended with reward: 715.0\n",
"Episode 505 ended with reward: 720.0\n",
"Episode 506 ended with reward: 335.0\n",
"Episode 507 ended with reward: 240.0\n",
"Episode 508 ended with reward: 425.0\n",
"Episode 509 ended with reward: 705.0\n",
"Episode 510 ended with reward: 435.0\n",
"Episode 511 ended with reward: 205.0\n",
"Episode 512 ended with reward: 485.0\n",
"Episode 513 ended with reward: 730.0\n",
"Episode 514 ended with reward: 380.0\n",
"Episode 515 ended with reward: 470.0\n",
"Episode 516 ended with reward: 490.0\n",
"Episode 517 ended with reward: 480.0\n",
"Episode 518 ended with reward: 440.0\n",
"Episode 519 ended with reward: 570.0\n",
"Episode 520 ended with reward: 405.0\n",
"Episode 521 ended with reward: 430.0\n",
"Episode 522 ended with reward: 370.0\n",
"Episode 523 ended with reward: 710.0\n",
"Episode 524 ended with reward: 420.0\n",
"Episode 525 ended with reward: 465.0\n",
"Episode 526 ended with reward: 510.0\n",
"Episode 527 ended with reward: 685.0\n",
"Episode 528 ended with reward: 360.0\n",
"Episode 529 ended with reward: 490.0\n",
"Episode 530 ended with reward: 465.0\n",
"Episode 531 ended with reward: 365.0\n",
"Episode 532 ended with reward: 640.0\n",
"Episode 533 ended with reward: 575.0\n",
"Episode 534 ended with reward: 520.0\n",
"Episode 535 ended with reward: 340.0\n",
"Episode 536 ended with reward: 440.0\n",
"Episode 537 ended with reward: 230.0\n",
"Episode 538 ended with reward: 455.0\n",
"Episode 539 ended with reward: 530.0\n",
"Episode 540 ended with reward: 475.0\n",
"Episode 541 ended with reward: 435.0\n",
"Episode 542 ended with reward: 385.0\n",
"Episode 543 ended with reward: 405.0\n",
"Episode 544 ended with reward: 745.0\n",
"Episode 545 ended with reward: 500.0\n",
"Episode 546 ended with reward: 395.0\n",
"Episode 547 ended with reward: 230.0\n",
"Episode 548 ended with reward: 400.0\n",
"Episode 549 ended with reward: 490.0\n",
"Episode 550 ended with reward: 465.0\n",
"Episode 551 ended with reward: 725.0\n",
"Episode 552 ended with reward: 630.0\n",
"Episode 553 ended with reward: 150.0\n",
"Episode 554 ended with reward: 470.0\n",
"Episode 555 ended with reward: 535.0\n",
"Episode 556 ended with reward: 640.0\n",
"Episode 557 ended with reward: 280.0\n",
"Episode 558 ended with reward: 405.0\n",
"Episode 559 ended with reward: 215.0\n",
"Episode 560 ended with reward: 140.0\n",
"Episode 561 ended with reward: 410.0\n",
"Episode 562 ended with reward: 550.0\n",
"Episode 563 ended with reward: 780.0\n",
"Episode 564 ended with reward: 465.0\n",
"Episode 565 ended with reward: 500.0\n",
"Episode 566 ended with reward: 315.0\n",
"Episode 567 ended with reward: 650.0\n",
"Episode 568 ended with reward: 735.0\n",
"Episode 569 ended with reward: 470.0\n",
"Episode 570 ended with reward: 500.0\n",
"Episode 571 ended with reward: 500.0\n",
"Episode 572 ended with reward: 745.0\n",
"Episode 573 ended with reward: 605.0\n",
"Episode 574 ended with reward: 515.0\n",
"Episode 575 ended with reward: 220.0\n",
"Episode 576 ended with reward: 710.0\n",
"Episode 577 ended with reward: 780.0\n",
"Episode 578 ended with reward: 320.0\n",
"Episode 579 ended with reward: 500.0\n",
"Episode 580 ended with reward: 380.0\n",
"Episode 581 ended with reward: 330.0\n",
"Episode 582 ended with reward: 675.0\n",
"Episode 583 ended with reward: 465.0\n",
"Episode 584 ended with reward: 275.0\n",
"Episode 585 ended with reward: 630.0\n",
"Episode 586 ended with reward: 515.0\n",
"Episode 587 ended with reward: 285.0\n",
"Episode 588 ended with reward: 575.0\n",
"Episode 589 ended with reward: 690.0\n",
"Episode 590 ended with reward: 685.0\n",
"Episode 591 ended with reward: 575.0\n",
"Episode 592 ended with reward: 720.0\n",
"Episode 593 ended with reward: 610.0\n",
"Episode 594 ended with reward: 285.0\n",
"Episode 595 ended with reward: 405.0\n",
"Episode 596 ended with reward: 680.0\n",
"Episode 597 ended with reward: 310.0\n",
"Episode 598 ended with reward: 340.0\n",
"Episode 599 ended with reward: 195.0\n",
"Episode 600 ended with reward: -145.0\n",
"Episode 601 ended with reward: 285.0\n",
"Episode 602 ended with reward: 695.0\n",
"Episode 603 ended with reward: 775.0\n",
"Episode 604 ended with reward: 430.0\n",
"Episode 605 ended with reward: 560.0\n",
"Episode 606 ended with reward: 555.0\n",
"Episode 607 ended with reward: 655.0\n",
"Episode 608 ended with reward: 775.0\n",
"Episode 609 ended with reward: 725.0\n",
"Episode 610 ended with reward: 500.0\n",
"Episode 611 ended with reward: 235.0\n",
"Episode 612 ended with reward: 735.0\n",
"Episode 613 ended with reward: 440.0\n",
"Episode 614 ended with reward: 650.0\n",
"Episode 615 ended with reward: 310.0\n",
"Episode 616 ended with reward: 330.0\n",
"Episode 617 ended with reward: 430.0\n",
"Episode 618 ended with reward: 540.0\n",
"Episode 619 ended with reward: 460.0\n",
"Episode 620 ended with reward: 405.0\n",
"Episode 621 ended with reward: 500.0\n",
"Episode 622 ended with reward: 500.0\n",
"Episode 623 ended with reward: 580.0\n",
"Episode 624 ended with reward: 725.0\n",
"Episode 625 ended with reward: 525.0\n",
"Episode 626 ended with reward: 140.0\n",
"Episode 627 ended with reward: 605.0\n",
"Episode 628 ended with reward: 480.0\n",
"Episode 629 ended with reward: 450.0\n",
"Episode 630 ended with reward: 715.0\n",
"Episode 631 ended with reward: 500.0\n",
"Episode 632 ended with reward: 500.0\n",
"Episode 633 ended with reward: 550.0\n",
"Episode 634 ended with reward: 325.0\n",
"Episode 635 ended with reward: 465.0\n",
"Episode 636 ended with reward: 310.0\n",
"Episode 637 ended with reward: 720.0\n",
"Episode 638 ended with reward: 675.0\n",
"Episode 639 ended with reward: 435.0\n",
"Episode 640 ended with reward: 575.0\n",
"Episode 641 ended with reward: 340.0\n",
"Episode 642 ended with reward: 620.0\n",
"Episode 643 ended with reward: 685.0\n",
"Episode 644 ended with reward: 485.0\n",
"Episode 645 ended with reward: 285.0\n",
"Episode 646 ended with reward: 100.0\n",
"Episode 647 ended with reward: 565.0\n",
"Episode 648 ended with reward: 220.0\n",
"Episode 649 ended with reward: 535.0\n",
"Episode 650 ended with reward: 555.0\n",
"Episode 651 ended with reward: 500.0\n",
"Episode 652 ended with reward: 525.0\n",
"Episode 653 ended with reward: 435.0\n",
"Episode 654 ended with reward: 500.0\n",
"Episode 655 ended with reward: 355.0\n",
"Episode 656 ended with reward: 545.0\n",
"Episode 657 ended with reward: 750.0\n",
"Episode 658 ended with reward: 745.0\n",
"Episode 659 ended with reward: 220.0\n",
"Episode 660 ended with reward: 500.0\n",
"Episode 661 ended with reward: 480.0\n",
"Episode 662 ended with reward: 470.0\n",
"Episode 663 ended with reward: 100.0\n",
"Episode 664 ended with reward: 370.0\n",
"Episode 665 ended with reward: 390.0\n",
"Episode 666 ended with reward: 500.0\n",
"Episode 667 ended with reward: 365.0\n",
"Episode 668 ended with reward: 465.0\n",
"Episode 669 ended with reward: 495.0\n",
"Episode 670 ended with reward: 745.0\n",
"Episode 671 ended with reward: 515.0\n",
"Episode 672 ended with reward: 745.0\n",
"Episode 673 ended with reward: 510.0\n",
"Episode 674 ended with reward: 745.0\n",
"Episode 675 ended with reward: 760.0\n",
"Episode 676 ended with reward: 705.0\n",
"Episode 677 ended with reward: 605.0\n",
"Episode 678 ended with reward: 715.0\n",
"Episode 679 ended with reward: 735.0\n",
"Episode 680 ended with reward: 700.0\n",
"Episode 681 ended with reward: 390.0\n",
"Episode 682 ended with reward: 630.0\n",
"Episode 683 ended with reward: 690.0\n",
"Episode 684 ended with reward: 735.0\n",
"Episode 685 ended with reward: 255.0\n",
"Episode 686 ended with reward: 425.0\n",
"Episode 687 ended with reward: 185.0\n",
"Episode 688 ended with reward: 500.0\n",
"Episode 689 ended with reward: 370.0\n",
"Episode 690 ended with reward: 465.0\n",
"Episode 691 ended with reward: 515.0\n",
"Episode 692 ended with reward: 750.0\n",
"Episode 693 ended with reward: 500.0\n",
"Episode 694 ended with reward: 425.0\n",
"Episode 695 ended with reward: 500.0\n",
"Episode 696 ended with reward: 470.0\n",
"Episode 697 ended with reward: 465.0\n",
"Episode 698 ended with reward: 610.0\n",
"Episode 699 ended with reward: 470.0\n",
"Episode 700 ended with reward: 650.0\n",
"Episode 701 ended with reward: 440.0\n",
"Episode 702 ended with reward: 465.0\n",
"Episode 703 ended with reward: 520.0\n",
"Episode 704 ended with reward: 675.0\n",
"Episode 705 ended with reward: 690.0\n",
"Episode 706 ended with reward: 450.0\n",
"Episode 707 ended with reward: 550.0\n",
"Episode 708 ended with reward: 410.0\n",
"Episode 709 ended with reward: 640.0\n",
"Episode 710 ended with reward: 780.0\n",
"Episode 711 ended with reward: 630.0\n",
"Episode 712 ended with reward: 140.0\n",
"Episode 713 ended with reward: 640.0\n",
"Episode 714 ended with reward: 730.0\n",
"Episode 715 ended with reward: 430.0\n",
"Episode 716 ended with reward: 425.0\n",
"Episode 717 ended with reward: 500.0\n",
"Episode 718 ended with reward: 710.0\n",
"Episode 719 ended with reward: 370.0\n",
"Episode 720 ended with reward: 470.0\n",
"Episode 721 ended with reward: 395.0\n",
"Episode 722 ended with reward: 480.0\n",
"Episode 723 ended with reward: 445.0\n",
"Episode 724 ended with reward: 640.0\n",
"Episode 725 ended with reward: 515.0\n",
"Episode 726 ended with reward: 280.0\n",
"Episode 727 ended with reward: 560.0\n",
"Episode 728 ended with reward: 515.0\n",
"Episode 729 ended with reward: 730.0\n",
"Episode 730 ended with reward: 685.0\n",
"Episode 731 ended with reward: 480.0\n",
"Episode 732 ended with reward: 505.0\n",
"Episode 733 ended with reward: 185.0\n",
"Episode 734 ended with reward: 675.0\n",
"Episode 735 ended with reward: 330.0\n",
"Episode 736 ended with reward: 400.0\n",
"Episode 737 ended with reward: 405.0\n",
"Episode 738 ended with reward: 490.0\n",
"Episode 739 ended with reward: 60.0\n",
"Episode 740 ended with reward: 465.0\n",
"Episode 741 ended with reward: 670.0\n",
"Episode 742 ended with reward: 550.0\n",
"Episode 743 ended with reward: 710.0\n",
"Episode 744 ended with reward: 220.0\n",
"Episode 745 ended with reward: 560.0\n",
"Episode 746 ended with reward: 520.0\n",
"Episode 747 ended with reward: 320.0\n",
"Episode 748 ended with reward: 540.0\n",
"Episode 749 ended with reward: 485.0\n",
"Episode 750 ended with reward: 230.0\n",
"Episode 751 ended with reward: 585.0\n",
"Episode 752 ended with reward: 655.0\n",
"Episode 753 ended with reward: 740.0\n",
"Episode 754 ended with reward: 395.0\n",
"Episode 755 ended with reward: 440.0\n",
"Episode 756 ended with reward: 730.0\n",
"Episode 757 ended with reward: 790.0\n",
"Episode 758 ended with reward: 715.0\n",
"Episode 759 ended with reward: 390.0\n",
"Episode 760 ended with reward: 735.0\n",
"Episode 761 ended with reward: 485.0\n",
"Episode 762 ended with reward: 290.0\n",
"Episode 763 ended with reward: 445.0\n",
"Episode 764 ended with reward: 555.0\n",
"Episode 765 ended with reward: 445.0\n",
"Episode 766 ended with reward: 345.0\n",
"Episode 767 ended with reward: 440.0\n",
"Episode 768 ended with reward: 515.0\n",
"Episode 769 ended with reward: 500.0\n",
"Episode 770 ended with reward: 515.0\n",
"Episode 771 ended with reward: 500.0\n",
"Episode 772 ended with reward: 595.0\n",
"Episode 773 ended with reward: 485.0\n",
"Episode 774 ended with reward: 680.0\n",
"Episode 775 ended with reward: 455.0\n",
"Episode 776 ended with reward: 505.0\n",
"Episode 777 ended with reward: 490.0\n",
"Episode 778 ended with reward: 500.0\n",
"Episode 779 ended with reward: 475.0\n",
"Episode 780 ended with reward: 470.0\n",
"Episode 781 ended with reward: 470.0\n"
]
}
],
"source": [
"env=RoverGridEnv()\n",
"input_dim=env.observation_space.shape[0]\n",
"n_actions=env.action_space.n\n",
"actor_critic=ActorCritic(input_dim,\n",
" n_actions)\n",
"optimizer=optim.Adam(actor_critic.parameters(),\n",
" lr=1e-3)\n",
"episode_rwds_ppo=train_ppo(env,\n",
" actor_critic,\n",
" optimizer,\n",
" total_timesteps=50000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHHCAYAAACr0swBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/F0lEQVR4nOydd3gU1frHv7Mlm0ISQgmh996LYOhICQT1YsEfigJexCuiUqxYwcZVEbGj1yuWa+8NgdAUJFTpvfeETkJCks3u/P7Y7O6ZmTNts5vdJO/neXjIzpw5c86ZM+e8877veY8giqIIgiAIgiAIQoIl3AUgCIIgCIKIREhIIgiCIAiC4EBCEkEQBEEQBAcSkgiCIAiCIDiQkEQQBEEQBMGBhCSCIAiCIAgOJCQRBEEQBEFwICGJIAiCIAiCAwlJBEEQBEEQHEhIIohKxIoVKyAIAlasWBHuokQEgiBgxowZ4S5GRDJu3Dg0atSoTO9J/ZOINEhIIogQIwiCoX9GJoYXX3wRP/74Y8jL/NFHH0nKZrPZULduXYwbNw4nTpwI+f3LG/L2io6ORosWLXDfffchOzs75PefMWOGZt/KysoKeRkIoiJiC3cBCKKi8+mnn0p+f/LJJ8jIyFAcb926tW5eL774Im6++WaMGDEimEVU5dlnn0Xjxo1RUFCANWvW4KOPPsKqVauwfft2REdHl0kZyhNse61atQrvvvsuFixYgO3btyM2Njbk93/33XdRpUoVxfGqVauazus///kP3G53EEpFEOUXEpIIIsTcfvvtkt9r1qxBRkaG4ngkMmzYMHTr1g0AcNddd6FGjRp46aWX8PPPP+OWW24Jc+n0ycvLQ1xcXJndT95e1atXx5w5c/DTTz/h1ltvLVXe+fn5uoLWzTffjBo1apTqPl7sdntQ8iGI8gyZ2wgiAsjLy8ODDz6I+vXrw+FwoGXLlpg9ezZEUfSlEQQBeXl5+Pjjj31mlHHjxgEAjhw5gnvvvRctW7ZETEwMqlevjpEjR+Lw4cNBLWefPn0AAAcOHJAc3717N26++WZUq1YN0dHR6NatG37++Wff+YsXL8JqteKNN97wHTt79iwsFguqV68uqefEiRORkpLi+71y5UqMHDkSDRo0gMPhQP369TF16lRcuXJFUoZx48ahSpUqOHDgANLT0xEfH4/Ro0cDAAoLCzF16lTUrFkT8fHxuP7663H8+HFF/XJzczFlyhQ0atQIDocDycnJGDx4MP7++++A2uuaa64BABw6dMh37H//+x+6du2KmJgYVKtWDaNGjcKxY8ck1/Xv3x/t2rXDxo0b0bdvX8TGxuLxxx8PqAwsXp+fr776Co8//jhSUlIQFxeH66+/XlEGnk/Sl19+ia5duyI+Ph4JCQlo3749Xn/9dUmagwcPYuTIkahWrRpiY2Nx9dVX47ffflOU5fjx4xgxYgTi4uKQnJyMqVOnorCwkFvutWvXYujQoUhMTERsbCz69euHv/76q3SNQRAGIE0SQYQZURRx/fXXY/ny5Rg/fjw6deqERYsW4eGHH8aJEyfw2muvAfCY7e666y50794dd999NwCgadOmAID169dj9erVGDVqFOrVq4fDhw/j3XffRf/+/bFz586gmXq8QldSUpLv2I4dO9CrVy/UrVsXjz32GOLi4vD1119jxIgR+O6773DDDTegatWqaNeuHf7880888MADAIBVq1ZBEAScP38eO3fuRNu2bQF4hCKvMAYA33zzDfLz8zFx4kRUr14d69atw5tvvonjx4/jm2++kZSvuLgYaWlp6N27N2bPnu2r91133YX//e9/uO2229CzZ08sW7YMw4cPV9Tvnnvuwbfffov77rsPbdq0wblz57Bq1Srs2rULXbp0Md1eXmGyevXqAIAXXngBTz31FG655RbcddddOHPmDN5880307dsXmzZtkpjFzp07h2HDhmHUqFG4/fbbUatWLd37nT9/XnHMZrMpzG0vvPACBEHAo48+itOnT2Pu3LkYNGgQNm/ejJiYGG7eGRkZuPXWWzFw4EC89NJLAIBdu3bhr7/+wuTJkwEA2dnZ6NmzJ/Lz8/HAAw+gevXq+Pjjj3H99dfj22+/xQ033AAAuHLlCgYOHIijR4/igQceQJ06dfDpp59i2bJlivsuW7YMw4YNQ9euXfHMM8/AYrFg/vz5uOaaa7By5Up0795dt10IImBEgiDKlEmTJonsq/fjjz+KAMTnn39eku7mm28WBUEQ9+/f7zsWFxcnjh07VpFnfn6+4lhmZqYIQPzkk098x5YvXy4CEJcvX65Zxvnz54sAxCVLlohnzpwRjx07Jn777bdizZo1RYfDIR47dsyXduDAgWL79u3FgoIC3zG32y327NlTbN68uaTetWrV8v2eNm2a2LdvXzE5OVl89913RVEUxXPnzomCIIivv/66Zt1mzZolCoIgHjlyxHds7NixIgDxsccek6TdvHmzCEC89957Jcdvu+02EYD4zDPP+I4lJiaKkyZN0mwbHrz2+vLLL8Xq1auLMTEx4vHjx8XDhw+LVqtVfOGFFyTXbtu2TbTZbJLj/fr1EwGI8+bNM3T/Z555RgTA/deyZUtfOu/zr1u3rpiTk+M7/vXXX4sAJO0+duxYsWHDhr7fkydPFhMSEsTi4mLVckyZMkUEIK5cudJ3LDc3V2zcuLHYqFEj0eVyiaIoinPnzhUBiF9//bUvXV5entisWTNJ/3S73WLz5s3FtLQ00e12+9Lm5+eLjRs3FgcPHmyofQgiUMjcRhBhZsGCBbBarT4Ni5cHH3wQoiji999/182D/fp3Op04d+4cmjVrhqpVqwZsKgKAQYMGoWbNmqhfvz5uvvlmxMXF4eeff0a9evUAeDQXy5Ytwy233ILc3FycPXsWZ8+exblz55CWloZ9+/b5VsP16dMH2dnZ2LNnDwCPxqhv377o06cPVq5cCcCjXRJFUaJJYuuWl5eHs2fPomfPnhBFEZs2bVKUeeLEiZLfCxYsAABF+06ZMkVxbdWqVbF27VqcPHnSbFMBkLbXqFGjUKVKFfzwww+oW7cuvv/+e7jdbtxyyy2+djp79ixSUlLQvHlzLF++XJKXw+HAnXfeaer+3333HTIyMiT/5s+fr0g3ZswYxMfH+37ffPPNqF27tq+teFStWhV5eXnIyMhQTbNgwQJ0794dvXv39h2rUqUK7r77bhw+fBg7d+70patduzZuvvlmX7rY2FifhtTL5s2bsW/fPtx22204d+6cr83y8vIwcOBA/Pnnn+RcToQUMrcRRJg5cuQI6tSpI5m0AP9qtyNHjujmceXKFcyaNQvz58/HiRMnJD4+ly5dCrhsb7/9Nlq0aIFLly7hww8/xJ9//gmHw+E7v3//foiiiKeeegpPPfUUN4/Tp0+jbt26PsFn5cqVqFevHjZt2oTnn38eNWvWxOzZs33nEhIS0LFjR9/1R48exdNPP42ff/4ZFy5ckOQtr5vNZvMJcF6OHDkCi8XiM016admypaKsL7/8MsaOHYv69euja9euSE9Px5gxY9CkSRO9pgLgby+bzYZatWqhZcuWsFg836L79u2DKIpo3rw591q5o3TdunURFRVl6L5e+vbta8hxW14GQRDQrFkzTR+2e++9F19//TWGDRuGunXrYsiQIbjlllswdOhQX5ojR46gR48eimvZvtyuXTscOXIEzZo1gyAIknTyZ7Jv3z4AwNixY1XLdenSJYn5lyCCCQlJBFEBuP/++zF//nxMmTIFqampSExMhCAIGDVqVKm+tLt37+5brTVixAj07t0bt912G/bs2YMqVar48n7ooYeQlpbGzaNZs2YAgDp16qBx48b4888/0ahRI4iiiNTUVNSsWROTJ0/GkSNHsHLlSvTs2dMnWLhcLgwePBjnz5/Ho48+ilatWiEuLg4nTpzAuHHjFHVzOBy+awPhlltuQZ8+ffDDDz9g8eLFeOWVV/DSSy/h+++/x7Bhw0y1lxy32w1BEPD777/DarUqzsuX7qv5BoWL5ORkbN68GYsWLcLvv/+O33//HfPnz8eYMWPw8ccfh+Se3uf7yiuvoFOnTtw0vJAHBBEsSEgiiDDTsGFDLFmyBLm5uRJt0u7du33nvci/vL18++23GDt2LF599VXfsYKCAly8eDFo5bRarZg1axYGDBiAt956C4899phPw2K32zFo0CDdPPr06YM///wTjRs3RqdOnRAfH4+OHTsiMTERCxcuxN9//42ZM2f60m/btg179+7Fxx9/jDFjxviOa5l85DRs2BButxsHDhyQaCq8Zj85tWvXxr333ot7770Xp0+fRpcuXfDCCy8YEpK0aNq0KURRROPGjdGiRYtS5VVavBoaL6IoYv/+/ejQoYPmdVFRUbjuuutw3XXXwe12495778V7772Hp556Cs2aNUPDhg257Srvyw0bNsT27dshiqKkT8uv9Wr/EhISDPUvggg25JNEEGEmPT0dLpcLb731luT4a6+9BkEQJJNzXFwcV/CxWq0SExsAvPnmm3C5XEEta//+/dG9e3fMnTsXBQUFSE5ORv/+/fHee+/h1KlTivRnzpyR/O7Tpw8OHz6Mr776ymd+s1gs6NmzJ+bMmQOn0ynxR/JqXNi6iaKoWHauhbf92PADADB37lzJb5fLpTDfJScno06dOqpL081w4403wmq1YubMmYpnJYoizp07V+p7GOWTTz5Bbm6u7/e3336LU6dOaQqC8vJZLBafUOVtn/T0dKxbtw6ZmZm+dHl5eXj//ffRqFEjtGnTxpfu5MmT+Pbbb33p8vPz8f7770vu0bVrVzRt2hSzZ8/G5cuXFWWS9y+CCDakSSKIMHPddddhwIABeOKJJ3D48GF07NgRixcvxk8//YQpU6ZIfGm6du2KJUuWYM6cOT7zVY8ePXDttdfi008/RWJiItq0aYPMzEwsWbLEt/Q8mDz88MMYOXIkPvroI9xzzz14++230bt3b7Rv3x4TJkxAkyZNkJ2djczMTBw/fhxbtmzxXesVgPbs2YMXX3zRd7xv3774/fff4XA4cNVVV/mOt2rVCk2bNsVDDz2EEydOICEhAd99953CN0mLTp064dZbb8U777yDS5cuoWfPnli6dCn2798vSZebm4t69erh5ptvRseOHVGlShUsWbIE69evl2joAqVp06Z4/vnnMX36dBw+fBgjRoxAfHw8Dh06hB9++AF33303HnrooVLd49tvv+WanwYPHiwJIVCtWjX07t0bd955J7KzszF37lw0a9YMEyZMUM37rrvuwvnz53HNNdegXr16OHLkCN5880106tTJ53P02GOP4YsvvsCwYcPwwAMPoFq1avj4449x6NAhfPfddz5T6IQJE/DWW29hzJgx2LhxI2rXro1PP/1UEarCYrHggw8+wLBhw9C2bVvceeedqFu3Lk6cOIHly5cjISEBv/zyS6najCA0CcOKOoKo1MhDAIiiZ5n01KlTxTp16oh2u11s3ry5+Morr0iWPYuiKO7evVvs27evGBMTIwLwhQO4cOGCeOedd4o1atQQq1SpIqalpYm7d+8WGzZsKAkZYDYEwPr16xXnXC6X2LRpU7Fp06a+5eAHDhwQx4wZI6akpIh2u12sW7eueO2114rffvut4vrk5GQRgJidne07tmrVKhGA2KdPH0X6nTt3ioMGDRKrVKki1qhRQ5wwYYK4ZcsWEYA4f/58X7qxY8eKcXFx3PpcuXJFfOCBB8Tq1auLcXFx4nXXXSceO3ZMEgKgsLBQfPjhh8WOHTuK8fHxYlxcnNixY0fxnXfe0WwrvfaS891334m9e/cW4+LixLi4OLFVq1bipEmTxD179vjS9OvXT2zbtq1uXl60QgCwz9v7/L/44gtx+vTpYnJyshgTEyMOHz5cEk5BFJUhAL799ltxyJAhYnJyshgVFSU2aNBA/Ne//iWeOnVKct2BAwfEm2++WaxataoYHR0tdu/eXfz1118VZT5y5Ih4/fXXi7GxsWKNGjXEyZMniwsXLuT2z02bNok33nijWL16ddHhcIgNGzYUb7nlFnHp0qWG24ggAkEQRZnelyAIgqiQrFixAgMGDMA333wjWX5PEAQf8kkiCIIgCILgQEISQRAEQRAEBxKSCIIgCIIgOJBPEkEQBEEQBAfSJBEEQRAEQXAgIYkgCIIgCIIDBZM0idvtxsmTJxEfH6+6RQRBEARBEJGFKIrIzc1FnTp1DO/xSEKSSU6ePIn69euHuxgEQRAEQQTAsWPHUK9ePUNpSUgyiXcD0mPHjiEhISGoeTudTixevBhDhgyB3W4Pat6RRGWoZ2WoI0D1rGhQPSsOlaGOgLl65uTkoH79+pKNxPUgIckkXhNbQkJCSISk2NhYJCQkVPhOXdHrWRnqCFA9KxpUz4pDZagjEFg9zbjKkOM2QRAEQRAEBxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIgCIIgCA4kJBEEQRAEQXAgIYkgCIIgCIJDuRGSXC4XnnrqKTRu3BgxMTFo2rQpnnvuObD784qiiKeffhq1a9dGTEwMBg0ahH379knyOX/+PEaPHo2EhARUrVoV48ePx+XLl8u6OgRBEARBRDjlRkh66aWX8O677+Ktt97Crl278NJLL+Hll1/Gm2++6Uvz8ssv44033sC8efOwdu1axMXFIS0tDQUFBb40o0ePxo4dO5CRkYFff/0Vf/75J+6+++5wVIkgCIIgiAim3ASTXL16Nf7xj39g+PDhAIBGjRrhiy++wLp16wB4tEhz587Fk08+iX/84x8AgE8++QS1atXCjz/+iFGjRmHXrl1YuHAh1q9fj27dugEA3nzzTaSnp2P27NmoU6dOeCpHEARBEETEUW6EpJ49e+L999/H3r170aJFC2zZsgWrVq3CnDlzAACHDh1CVlYWBg0a5LsmMTERPXr0QGZmJkaNGoXMzExUrVrVJyABwKBBg2CxWLB27VrccMMNivsWFhaisLDQ9zsnJweAJ8qn0+kMah29+QU730ijMtSzMtQRoHpWNKieFYfKUEfAXD0DaYtyIyQ99thjyMnJQatWrWC1WuFyufDCCy9g9OjRAICsrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI2NLXW9eGRkZIQk30ijMtSzMtQRoHpWNKieFYfKUEfAWD3z8/NN51tuhKSvv/4an332GT7//HO0bdsWmzdvxpQpU1CnTh2MHTs2ZPedPn06pk2b5vvt3SBvyJAhIdm7LSMjA4MHD67we+1U9HpWhjoCVM+KBtWz4lAZ6giYq6fXEmSGciMkPfzww3jssccwatQoAED79u1x5MgRzJo1C2PHjkVKSgoAIDs7G7Vr1/Zdl52djU6dOgEAUlJScPr0aUm+xcXFOH/+vO96OQ6HAw6HQ3HcbreHrOOFMu9IojLUk62jyy2i2O2Gw2YNc6mCT2V4lgDVs6JRGepZGeoIGKtnIO1Qbla35efnw2KRFtdqtcLtdgMAGjdujJSUFCxdutR3PicnB2vXrkVqaioAIDU1FRcvXsTGjRt9aZYtWwa3240ePXqUQS2Iyszg1/5Al2czUOB0hbsoBEEQhAHKjSbpuuuuwwsvvIAGDRqgbdu22LRpE+bMmYN//vOfAABBEDBlyhQ8//zzaN68ORo3boynnnoKderUwYgRIwAArVu3xtChQzFhwgTMmzcPTqcT9913H0aNGkUr24iQc/BMHgBgT1YuOtavGt7CEARBELqUGyHpzTffxFNPPYV7770Xp0+fRp06dfCvf/0LTz/9tC/NI488gry8PNx99924ePEievfujYULFyI6OtqX5rPPPsN9992HgQMHwmKx4KabbsIbb7wRjioRYeaPvWfwzYZjeH5EO1SNjSqz+1oEoczuRRAEQQROuRGS4uPjMXfuXMydO1c1jSAIePbZZ/Hss8+qpqlWrRo+//zzEJSQKG+M/dATY6uKw4Z/39QhpPdiI8OTjEQQBFE+KDc+SQQRKk5dKtBPVEpcbhKSCIIgyhskJBGVnrIQWhgZCQJISiIIgigPkJBEECGg2OUGY2GDm8xtBEEQ5Q4SkggiyFwuLEaf2X9i/l7/68UKSeS4TRAEUT4gIYkoV3ySeRg3v7sal65E7n5EC7dn4ezlImw5zwpJ/vMkIxFEZPL4D9tw/xebJAstiMoNCUlEueLpn3Zgw5EL+M+fB4OWZ7BlFrdbOcCyjtsWEpIIIuIodrnx+dqj+GXLSRw+Z36PL6JiQkISUS7JL4rcqNUuzleo9MuUpCSCiDTYb5tilzt8BSEiChKSCCLIFOtokgiCiDxYv0F6XQkvJCQR5ZJg+vUIQXYSkpvbzl4u5ApORMXgcmEx8gqLw10MIkCKit24kFekuhqVqNyUm4jbROVCFEXDwouZtDyCbfxitUY7TuZgxLtr0LhGHJOCBuCKgtPlRrtnFgEA9r8wDDYrfXeWN655dQWOX7iCZQ/28x0jzS/hhd5oIuKY98cBXPXCUhw5l6eaxivYvL18P7q/uBTHzkeOoyX7Ffr1xuMAgENn/XWhj9SKw/m8It/fuQWkTSqPHL9wBQDw594zvmP0jhJeSEgiIo5//74bZy8X4sUFu3TTvrJoD87kFuKVRXvKoGTGYL9CeR+kNP6WDfuyczHq/UysPXgu3EUhygFuMrcRHEhIIiIWM+NUaYa0YMctYle38eKt0PhbNkz4ZAPWHDyP/3t/TbiLQpQDpI7b9JISHkhIIioEkRT8zeXS0yRFTlkrMlk56hsXZ+zMxsYj50t9jwjqdkQpodVtBA8SkoiIZdOxi+UyXolL54uUJtayQW0j4WPn8zHhkw246d1MLNmZHbSVaZGifShwuvD30QvcoKaEOmRuI3iQkERELGdyC/HKYr6vkdxEFklDGjs58cZaGn/Dy4mLV3x/3/XJBjz14/aA82K1gpJJ1i3icpjCAtz3+Sbc+M5qvPvHgbDcv7zCvpfOcvhxRoQGEpKIiOa9P4K3/Yg6wXVK0vVJiiiRruJi1Ndsya7sgO8hddL3/33Hh2vR7plFOH6h7Fddeusz/6/DZX7v8gz7/CgEAOGFhCSiXKKIi2RwTBNFEXd9vB7//Gh98AtVAvsRyvVJKsPxd8Ph8+j172XI2Bm4IKDG4bN5uGbOSvyVHZnbrBgtVU5BccCaA7fkWfsf7F/7PSvqft5yMqB8ibKH1QDrBX8VRRETPtmAMR+uiyh/SJaV+85i5t9WrDlYet87PaZ+tRk3v7u6QmrgSEgiKhUX851Ysus0lu0+zT3/zE/b8dayfaW6h4uZOc36JC3dlY27P9kgib9TGm77z1qcuHgFEz7ZEJT8WJ76aTuOXbiCrw9ag553WaMVk0sLl46zr9wv6oXfdmL2oj1YuD0L//p0Ay7lOzXzv5BXhH99uiEgIZc2UjaHdO82bcHncmExMnZm48+9ZzQXCISTf37yN84XCrhjfvDffTk/bDqBDUcuYPWBihdug4QkokJg1ITF23zWy77sXHyceQSzF++VHC8sdmFOxl5sOnrB2D2YjymuT5JGWcd/vAGLd2bj37/rx4gyQhFTmCPn8vDKIk8MKh6ncwrw8sLdhgNzFjhDs8lwboETsxftwZ6sXMW583lFeGXRbklwTjXk2saL+UWYvWgPDp5RXnvyYmATnWRFFEdKYgWVrEsF+M/KQ3hr+X7c87+NWLQjG68t2au4hmX24j1YtCM7ICE32KEtyiMfrjqExTuyDKVln+UbS/dpOr6z5jhLkBpaFEW8s2I/Vu47o5+4hDO5habeWR7bT1zCnMV7cCUIm4afZPz9KgokJBERTbAHep5mx3uPAqdfoGBV6B+vPow3lu7DDe+sNn2PQB23s3P4gkxpuPGd1Xh7+QFM+3oL9/y9n/2Nd1YcwG0fGIsrFCq3jRcX7MZby/cjbe6finOPfLsFby8/gH+8tUo3H3nXeeqnHXhr+X48/sM2RdpAq+JW8Uny4p1Aj53Pxw+bTijOqwmsXs7kBt4PgjV5l1e2Hb+EZ3/dibs/3cg9f9kJ/LzllO83+85vO3EJCzWEq6W7/JroYLXz0l2n8fLCPbjjv+sMX/PAF5vwzooDuOW9zIDve+2bq/DGsv14M0ANOttupy5FplatNNDebUREoyZQBDosGXUfcLlF2Kyeu/A0D3rXeuGa20zlFjzOlZjwNhzm+yhsOOLRlB07b+xrMFTOrVuOXVQ9t+6Qp+w5RrYAkXWSv4+oawID9SvRNbeVlKHPy8u51+vtOViaCbhyi0hAto4Z7P3dVhzZ4BeY5c9Pzel+58kcPPiN/0ND3ncOn81DzXgH4hzmptdAnPzXHPKYt4IhnOw6lRPQdew4kHWJNEkEUa4xGv+Enfyi7eZ8bthriziOjEYm5GCLHw6b/1UP1pdvpMeSkddSq90DrQk7QfCERj0hyHu2sNjFLZ+VHIsCRu+ZHrksbVt5f/a+J0XF0nd432mpGZh97LtO5aD/7BXo98oKU2UF9PsKj0h4BdnxLisEGvBwQ0ISUT4JcO7gTmScdOyqJVbAMAJrglm6W+lfYGRcC/aKGfarNljTbqiEJK25ojR31Lw2wIzZJuA9Mz0ZRxA8pri2Ty/imgFLI88GMulWJMz2T3lqq0XApqMX0OLJ3zGHiddms0jHA1ZI8C4I0TOjcu8fZokn0P7CjqnOYlrdRhARidHxhZeONzYUM1KSw6QmSX/5sKnsgkKcw1+HYM2dkb7aVz7oa02agcaukmiSeP5uOtdbBAH/WXkQxW4RX6w7xj0fKLxLC5wujP9oPWb+skNy/N+/78b/vZep0JqUZ8wKHXJHbYsg4NlfdwIA3li233dcrt1jr7NVQs1fRY8pRT5JRERTFo7b3HTMXBFt939LFLvcsFm1vy30t4MwYG4L8rgTF8VoklQaVRBMbiocCbp+DRShtDSKG2hVJD5JHPnCojNpCtAWqktjbuM95neW78fSEm3HM9e19R2fVxKde9ke4yurIh2zc7d8srdYBG4eckGIHVPsOmODFuVV88e2WzmtgiakSSIqBEYnOaMDJ6tJirb5tTB5BpbJaoUZAIyVNdhRuWOj9DVJZrUWkf4FqfBJ0kgbqJDEW93mNrM8XJBuiKw4XYpJh3fvVfvPal7z2dqj2HupYsx0Zp+pwtwmCNwPHqtV2j7se2C3Voy2MwNb/wj/bgoIEpKIcona5qV68H2SPHlJtiUQ2YnOn9bIZqh6woMxnyQDiXRgNwdmfZLUJm4jLSqKIlbtO4uTF68otHJHzuX5Vp9FAuyXud5SepFJ98feM4a1ZLxNUdm+oy8jCXDyVFDM+UDhXcnKYzwBYM2hC3h7Z/kPDgqY90mSp7dZBG4edplPEptGT8vsZW92ruYqTpZdp3Kw9bixtKUh0J6mZ3Iu75C5jYhotN45NviZ4WCSGgIMa/Zg5y12YjEiJOkNzkZ2Zw+GU3Reob99JJoklfQe4Un7vusPX8Dt/10LAGhcI05yzruiZ9GUvmiZEm+6vL7yaY3WJpqFzWbgqysQZVOf/L1C0YDZK3C5sBivj+qEf3Sqq3sPabgH5TE9TZIgaEd3Lo2Li575ptgtIqoC+9BI45WJivawCiJcosCkkV4vQsRRTpBGeZOxrzNriuPd03t8yGueGGBbnh6CxFg7AH6/d7tFDHt9JQDg76cGo1pclDJRmJGanCuekESaJKLccvWspaav0RKS2EGVNbex24wYMrcFQZMUDApd/rKyvi2qk6eB+XLbiUu+v9UEue1MmnDCVjOnoNhQCIDLJULwCoO+OZKI2yV/s/tX6TWplk+S2y2WzidJ57y3vJHuW6aGmQmZV8Uo2ewnf2/nLtmHXE48Lrm2RGpu82daqOIEf5n50Lp0RXtbGlbLuC9bGYE+EmCF/IqoSSIhiSi36A0wPLQ0NC4VTRI7iQXF3GbEJykIYw27UonNT90nST/P2onRvr8vquw7Vtqil8bEpIUZnySjgoO0z4iKYxZB0OwPgopP0qdrjqDjzMXYcrwUAqdOM3r7td5qzEhkx8lL6PjsYny46pBqGp4Ay6IQkmRp1AI0yptLzXGbFyMNkL43NhUfJm//YwWQUO8RF6j/m97WPOUdEpKIiMboi2smkrbaPdhzEk0SM1BdDopPkoHVbbop9HEy5ZYISSrpjQgnMUw4hECE1LJFWh9twUfU+KWOdCL2/C8ROgRo7owuQOAKKU/9uB25hcUBR0EG9E193n6tt5lrJPL4D9uRW1DsW6LPg/3Q4b2SUTLrq5YDvTRfUfbb/zcr9KiFU2CFJMnKMLYsHAFWL4J4uGDLSJokgogQAv3q0fpqVttOhH3xjWzqqjvWGvLcNpBGB3ZyZuujNnka0SQZ8ZUKqfmGKeOTP25DboG6oKYIAaCRbcCr29h+wtEkiaKoLSQJUoG8NHy38bgk6CH3cXJMyjzH8VA8ww9WHtTU/JjBSF9la8DrtzZZHloO9ADw3h8H8EnmYcVHEDs+sLdRFZKuFGmWi82TXXyRdalso1l/s+EY5mRob8AMSIXGSI+dFgjkuE1UKjTNbSL/Zdfbi01xj2CsbguClMQO0hLlRilCABjRpof0W5LJ/H9rjiI2yobH01tzkyq3JTGUrSLtr1tPoloMf6hk+4nPRCKbNJw6S/yDFUqB3U9MDRdHqONpkoyWKa+wGF9vOIZh7WojhTHFyrmQV4Tnf9sFABjVvT5io0o39ehqydwi/rfmiO8399nLstCr86zfdwMA3r6ti+S43EHci1lNkiTPkkvZvnQmgCje5pA2yMPfbgUADGqdjA71qqpeJV3wQpokgogIgrFc1ZdXSWZuFXObfNIL5B4sZeaTJCmsvibJiHYu0mIjHTlnfPNhzYjbKqf2n87FfZ9vwm3/Xc89z1vdVizT4GlrkoSQmbt4z5nnZFvMKZ/R5/z4D9sw85edmPjZRs10rBOzltCoR26BE+sOndd9/7/ecAybmSX2Rj5ujPpmFbmk2mQ3pw8A6o7bFxkztVq5vOMPW6ZwbfmhZ1bnhQA4demK7gKO7Scu4XxekWaaSIA0SUSFwLAPSQAhANwmv5SC6ZMkiiIu5DsDWvrrVNEkqWEk4q8hM0wp53wzplStuDSKfDQ1SfyTvCXgkuuY9vCaUST9SBQ1t/oQEDrB01v/3AInYuxW2KwWqd9dibDi5Nyfd4zHT5tPAgA2Hb2InAInom1WROnsdVgaU97IeZnYnaW/yuvvIxckv3nCiLx78IRFHoVOaTperCxAXZN0Kd8vGEj91/wl8mmSXPyPtVBx6tIVRNussDPPUM9Xkbd4IXXWMgDAHw/3R8PqcYprDp3Nw7VvrgIAHHgxPaI3ci5XmqQTJ07g9ttvR/Xq1RETE4P27dtjw4YNvvOiKOLpp59G7dq1ERMTg0GDBmHfvn2SPM6fP4/Ro0cjISEBVatWxfjx43H58uWyrgoRJrQcCw1pkgwM8EGJuF2S6KmftqPLcxlYXrKVhBnYL3aJT5LKW2/MJ8l0MUKKXaPQ8sE9EJ8kdt7k1Z191vd9vgmncwoUk4YZn6RgmisEQcCRc3no/dJyX2wryVe/z9wWuCaJpcOMxRgwewX3HNv/SqNJMiIgAcp3kFcd+TM3qtGT+yWqmePlGicvFwyY27zlZ9sqWL5raqzafwaps5ah83MZaPfMIsPXSUy4skbdpqJNOsxogJfuyjZZ0rKl3AhJFy5cQK9evWC32/H7779j586dePXVV5GUlORL8/LLL+ONN97AvHnzsHbtWsTFxSEtLQ0FBf5VAaNHj8aOHTuQkZGBX3/9FX/++SfuvvvucFSJCCJGP041HbdVlgzzJhYtghJxu+T//605CgCYzTjkGoUdpNn2UTe3GfFJMqIFC95Er6d1MBrhWC8vhU9Syf9sjKycIuCaOSvx7xLfFM956ZXLdp+WmbR0fJJkq9smfrYR/3j7L41aGEcA8MzPO3DpihNrDnoioRdLPgSUE7HvnAGtCk+gO3HxCjet2srRUCEvG+/Zy0thVFMjN6NJfZLU03k5cs6vnWSbgi2jt414mr9QUeAM7LlojY9qYyE70pxU6TORQrkRkl566SXUr18f8+fPR/fu3dG4cWMMGTIETZs2BeDpYHPnzsWTTz6Jf/zjH+jQoQM++eQTnDx5Ej/++CMAYNeuXVi4cCE++OAD9OjRA71798abb76JL7/8EidPngxj7QizBBzTg/PSLtiWhd1ZObKXHczf5oSkKzoBJ42tENP+rcXcJXvx8DdbZI7b/gzUI27r561W9lCtaJNP4PK78PbK+v7v4xj/0XrkF0nDNWhrkviTKtsPlp+y4NiFK77NYD3pZPkggNVtTB0X7cg2vF2FEQ6dlfpscTVJHKHFiMBwhdGosM+hsFjZ/4tDONnvzsrBHf9di7+P+k1s8uI/9t02xTOWpzGqPdMSkvTMbUt2ZmMJozlxiSJ2nvSUf9PRi/58Si5l+45WPwqU//x5UDeN3ljLM7d5UXvWLo6wDgAzft6BZ39RD+sQDsqNT9LPP/+MtLQ0jBw5En/88Qfq1q2Le++9FxMmTAAAHDp0CFlZWRg0aJDvmsTERPTo0QOZmZkYNWoUMjMzUbVqVXTr1s2XZtCgQbBYLFi7di1uuOEGxX0LCwtRWOhfVZCT44lb4nQ64XQGN06MN79g5xtpmK2nNx07yLlkA4Youg3lV+Tkxzm6/YO1eDSthe93YZH/+RYxg/6ZnCt47pftuLFzHbSopdx6Y9GObOzRiYxbXFysW1a3rD5utxur9mZj1f5zuH9AU02/j7lLPCbmKGbicskmQr37e88XFrvxxrL96N+iJq5qlASnSvsVMfkVF7sU+ecXFeOt5QdxXYfaaF1be8sS9jkXFBZBEP0BbeRaKgunLtO+5q/y0hJO5WUW3SKcTifyClj/EX96X9+QtYfL5cKVIv81RcXFyC9Ud04V3W7DvjBFRUUSbd9Pm0/i4hUnxqY25AqpgiCClSGX7Twl0fQUFBXB6XSioFDZF64U6o9v+Uz4BYfNCqfL0xYXLhegusyH7grTBlcKi+B02jXzNsOY/67D6dxCrDl4DjtnDAYAFMtMXQt3ZGHXyYtonlwFgOf5yWUip4p5TM4VWXsVOf3vs7PY3x/yC5RtKHdwLypy4p+fb8L5PGm6wqIiOJ1WFBT5jztd2mOc1rltx87jx80nMbFfEyTGeNq+sNiNFxbsUr3Gi954VVgkNR+yaQud/GvZev28+QQKiopxe4/6+Gj1YQDA7T3qon5SrG7ZAHPzSSBza7kRkg4ePIh3330X06ZNw+OPP47169fjgQceQFRUFMaOHYusrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI019hDNkpGREZJ8Iw31ejLdUhSxYMECAN4vP8+5ffsPgFWEZmdn+9JpseWcAEC5h9fZy0XYtHmL71zmmrU4v9szih4+YvHd660Vni+v//51BK+nKgWGyZn6r9T69RuQv19twvZcf/HCpZL6eH7n5Obi9g89/nerth3AgDpuNEtQu4Pnmg17jvjKffbsWd/f+Xl53LYqKrTCq2fynl9xSsAPh614f+VhvJ5ajE1n+O23OGOJ775bt21DldNbJef/yhbw9UEr/rPqMOZcXQytzdIvXWTKsXAR2NX3xcX+cwBw/OgRLFhwiFt/Oa5iF9T0aJs3b4btxCbftSdPncSCBcexPstfX3ZSfe/rBbjkFHDZCbDtsXbTNvxyRYC3rXft2o0rx0XVMh08fASXcgXVcrH8tuB3ibbvoZK+tnn7TrRLUt4j51IOPBYUz0X//ORvyfmVK1fhcBXgcC4U1/65ciV2qq/o9+Rf5L/OIyR77vPboiWoIbv2RJ4/7bIVf6B2wEOnsh1Pl2xe7HT5x4oTJ/3vrJeM5X9iHyOfi7J+fPrseRh5Drv2SceetevW4/I+T+fYfNrfX9Zu2AjnYel77nRJy79q9Wqcz1PWaemy5ageDRxins3ZcxewYMECFLuBv88JaJEgfebKd9p/7rq3MwEAW/ccwu3NPUL5gRxpGjXWrVuHi3vUPzB2X/TXOb+gQDJubdm6FXHZyo+WTcw4vPVEDraeyMHl47t9x75e8AdaJ5nTOBqZN/PztRdi8Cg3QpLb7Ua3bt3w4osvAgA6d+6M7du3Y968eRg7dmzI7jt9+nRMmzbN9zsnJwf169fHkCFDkJCgOksFhNPpREZGBgYPHgy7PXhfWpGGXj0nZy72/S0IAtLT0wF4vlKmrvG8CI0aNwZO+uOgJCfXQnp6Z/2bb8sC9m7lnmrbrj1wwKPq7XrVVejbvAYAYMX324EzSnOst1xqZVcjoX4rpPdtzD3nvT6xaiLS06/2/Y6PjwfyPQsMtl+wYPsFC3Y8M4irUfJeUxwVD8BjbkmqVh245DFHVKlSBenpvRTXvbj9D+Q4CyV12/jbbuDwUd+xK3+fAPbvUFx7zTUDgTV/AADat2+P9G71JOdPrjoMHPQEpktuczV6NK7GrT8A/PfoGhzN82hsBwwchKRYO3Zl5aJx9TjY/l4h2ZOuWdPGSB/aklt/OYLVKlUHMXTs2BHpner4rq1duzbS0zvixKpDwCGPZo69cvY2z9A5vldD4IC/H/5yVDrxNm/REh3qJQI7+Evk69VvgGMHzwFX9P0yBqcNhYN53t6y/nrUil+PKtNXrZqIYpeIrCt8zWaP1J7oVL8qNhy5AGxfrzjXsnZV7nWiKGJXVi4cNiuw0eM/5WQ2iu16dW+0rSMdG7efyAG2rgEApPbqjTa1Axs79d4vb7/99eJm4Lx0scNVPVJxVSOPD6vT6cQzG5dJzscnJgK5+hHO69RvAJw67vvdpWtXDGzl+fjO23gcX5SMIW3bd0R65zooKnZjb/ZltKkdj07H12HzMb8zc/ceVwM7NkBOn3790Kh6HNYeOg9s95yvkpCA9PRUvLPiID5bux9JsXYAfs3I4LSh2JPluY/FInDbKseagPT0ngCA+auPADv0fR27dLsK1WKjULtqNC7lO9GkpnS1WuzeM8CuTQAAmz0K6ekDfPdu3aYt0ns0UORZvOUUsHeb5FiDlu2BXZ62q96kDdJTG+qWDTA3b3otQWYoN0JS7dq10aZNG8mx1q1b47vvvgMApKSkAPBoFGrXru1Lk52djU6dOvnSnD4tfXGKi4tx/vx53/VyHA4HHA6H4rjdbg+ZIBPKvCMJo/X0phHYjUMFqXBgsQjG2kxtaZfsnGCx+PJTs9IE+oxmZ+xDarOa6NowSSOVtD68IghWK+x29Vc4i9l7ipUNrCptZWHUFN7zCTF+s4nVaoPFotQiAYDV5i+HxWJV5B/NBA88m1cMu90OURRxxelSBBZkhRHBYsXi3Wdx3+eb0LFeomLFmoV5TrpofJharNIye58/uwsNz2Xl6AXtrSIEwQJR0/VTMByl2Gq1wW7ntz8Pi8UCu6DhNF7ynERBWT6B8wy9LNqRhX99uhHx0f7nxr4jBS7OuyF5t9Tz1sKIT47vneVphARpX1HuwWa0HPJs/fURmPfDVfIOT/t2E37ZchIPp7VU+HoJKu+TYLF58hSY/Nye+v2x7ywA6So5AHj8x534cfNJPDi4Be4f2Jybr5V5XwqKjVV46tdbkcNs9LvykQGoX82vChQkZRSl45ag8n5y+hzbD4+cv2K6jxiZTwLpd+XGcbtXr17Ys0cq9e7duxcNG3qkzcaNGyMlJQVLl/p3hs/JycHatWuRmpoKAEhNTcXFixexcaP/q27ZsmVwu93o0aNHGdSCMAv7GrPjS6B7BGn5pby80N+/2PE4FPFJFu/km3e9GIqlxEnCOk7mMQ7krBOpmiMm73C03T9EnM8vUt9GQaeN2PPnSgLIPf3TDrR5epFifzLW2dPpFvHlumMAgC3HLyl8b8wsJ9dqU0W1Sn6zzt9GlpHLcYvqG50Cnr5l1GFYuv2F/jUCoBl/xrfBLacNtdr1h79PAAByC/j+aZc5xyVBEQN03M7XWRDBatl47SN/DvJmN+pQLnfcFnUct3/Z4tFCv7vigOIeqhG3fdHbGcftkr/VSvljScwqdmGBHLY/aMXvYsmRPU/5sn5pXDDptWr14y4WYPfIVOlb4aDcCElTp07FmjVr8OKLL2L//v34/PPP8f7772PSpEkAPGaZKVOm4Pnnn8fPP/+Mbdu2YcyYMahTpw5GjBgBwKN5Gjp0KCZMmIB169bhr7/+wn333YdRo0ahTp06YawdYQR2kgt09ZfWxygbWZZ1dDayGs0segOykfrxyqVWVomQpOJ3wQsBwE4I2TkFqsIpOxbyhBF2Yjyf5zHpfVqybcTrS6SxzKQrodyaGgQzK360ZBG1U+zEzBeSdIRDndVtblE0LIS7XOqTEQ9B0N6+Q2t1m5bgxgrOPLybQK87dB4DZq/An3vPSPq7UUd1OXqrRmOZHWt5/VQunAUeAkAeJ4nJU1RPV+RyKwQ1tfep2CVi/l+HMG7+eskxI1gEQTXe1rYTl3Dzu6s9TuABPodY2c7AauFSeL+98NqaLU+g4QhCQbkRkq666ir88MMP+OKLL9CuXTs899xzmDt3LkaPHu1L88gjj+D+++/H3XffjauuugqXL1/GwoULER3t9yL87LPP0KpVKwwcOBDp6eno3bs33n///XBUiTAJO54EuuRcvspLPZ3/71DEJ+ENHqJEUyA9xxWIOFVRG3SdLgOaJM7xy4y96XRuoerkrBYrxgs7Mcq3IsiRbVJbLFn2rK1pCdazUYQAKBGbWCGJdyc9AVovBIDLLRrvkwFokrTSeduVGydJU0jSNvnllvSZO/67FofO5mHMh+tUg7Pq4XaLeOy7rfh0zRFFSAc5rNmW12fkwpm8aQINAaD2XOSammKXW9Ff1YQZtyhipmwpvLf8eo/eE6BUPdGGIxewat9Z1ThOesQ5pOZxrWC73nP5RcW4/4tNWLDtlOe4Tp/jhZEIF+XGJwkArr32Wlx77bWq5wVBwLPPPotnn31WNU21atXw+eefh6J4RIhh3z/5GGB02DX68cQO6kYGz4NnLvu2aDCbvxeJECg/x8mDJxCpzbfsF6zaxM4TkvIL/YPV8QtXVCddiZDEOc8OgOcu6whJslg+WltkfLXhGB5Ka4ma8Uq/QTlmgkl6YSdmnjym1zNcbhHOEt+Pq5tUQ9s6ifjvqkNMniY0SRpmDTW0kmltcKsW8PFMbiG+XH9M855eUwk7Cb/3hz8ejxkNxrLdpz33W38Mv97fWzMtq+Hg9fFdp3KwJzsXd/VpAoeFY24zKKzKtyWRmNuYTOVCklv01z3KakGRy606tvCEBO97oPforRZBd8wqLFZqtYwiHya0tm3yluODlYfwy5aT+GXLSRz+93Bun5+7ZK/v70jSJJUrIYmofLAvpFrQNjMY9WVauD0LqU2r48SFK5KNMtUY+vpKwzZ+QGXndS1NQRDNbWoDqEWyd5QIi0XAZUZI+HnzCaQkxnCvlWTJKQM7ASk0SVekGgKJT5JLP47QlK824bO7rtZMA+hMLiJfk3fFyQqXnMt0upNb9D/X+Gg77LII4W4zPklskEoDnwVuUbvOPp8kHf8Qlvu/+Jt7nOVySRwhm8UfTXzV/rO6efM4l+ePUafrk8SYAXnyzhvL9nvKsu8spgxsGrBPUoHC3CZizcFzSIqNkrR3IafferV2DptHSFJ7XzN2KrchMtpPLILg819Swy2KAW+YKy+HPIo7u+m0N+3Zy4XSazhtwwpGpEkiiABgX0354GLU/GZ0b6zft2fhz71nJM7PWpgRkAC+iUNrEOSaemTpj53PVzWFOF3akz0gFZJcoggLBOQx5rb1hy8AuMC9Vm0ndC/sBHQhn69JOnouH8kJDsmkvf/0Zd3J66/95wB4+sBBWYRpFq0uIoIvrEjMJ5xHrCessz5HNougiBDucpvQJOmYNHn31or6490Owkxf9G5vooX3XYiyWVDMeX/UNDYX84tQ4HQjJdHvHsGWTc/cJvF70hASNhy5UBJzTNo6Rh3K5Zqko+fzfQFMn7rWvwKbNyZ430OH3YrcwmLVZ89zvva9wzoP32IRJP5rPIrdYsCaJJcoQhRFHDqbh4bV4xTjUL9XVvjTlpyT+8bp9flATYGhgIQkotwg0SQF+A6Z2bjTqIAUWDl0zG1yRRJXa+T/e9PRC7jhndVoWJ0fpY8dsNUmEHYcc7lF2K1Sc5sWWs6bHudrVjskPZ9zxYltxy/hurdWoXXtBMkAOuWrzZK0vKdnK1mx81rGXp+2wAjxDhvqVYvFrlM5EEW+lpE9VORSihx6ApzbLfqiw1stAmyyEBRu0bgmyfsM3W7RsJCk5bj9zM87cH3HOtyvermJs9jlNrxPnrecHq2Z9hYlXkRRRO+XlqOo2I21jw9EUknEbla412vrolI6/hr1DZNrOQ4zgjn7nvImem9be53fzYxH3vrrXWHR8UkCPM/I7IedF7cb+HL9MUz/fhtu7FwX3RqpxzzzlkPeDfWepXwT4XBSbhy3icqJmhUnYHNbCJbzB+JEzvOzkWgKZEMh7w5seu8yeXbzTBaJT5LK2MiOY97BjXXc1sKt8mwKi13o98oKfPjXIX+5ZXV3i57YO4DHb0RrAOU9d++yZjMCEgA8O6It6lb1mA9FyDcbLfmfaXnevKvnX+OSaZIcspVhLhPmtgGzV+CDlQfR+bkMzPxFGdBTcW+3vsZp3+nL/L7IPINtxy+h3YxFeHu5sfb19jW1rXN4z3f/6cu4XFiMIpcbnZ/L8Gm5pJsF60/8XgIx13ifE28/QBYtLQd7jq9J8pvbAHPjmFGfKYsg6KbNLyoOeHWbSxR9/kPfbzqh+VyKXW7c9O5qzP/rsDQPnfJFkiaJhCSi3CCNRyI7V/L/j5tO4Pq3VuH4BY+wsGDbKQx7fSX2n/ZEHQ40vpIWRgUJFvbrfcnObKS/vhI7mPgjhkIAMI1wXmbCkuOUmSJ+2HQc17+1SrKXF6t1GDkvE3OX7NU1cfjKoqJJ2nT0omJneN4AXjfJ7+uk9RXJEyjkfj5Gcdisvi9cI5qkwgCEJFH0l9lqsSBGZg41a/J4/rdduHTFqes8DXgETnlMGzlRNgtXk8Q+oxm/7ECB041XFulHZwb8E1yUynPhtdmaQ1Iz3vy/DuF0boFkbzE97YPT5caKPadx7ZsrsTf7sqGysnjjPumt3pNrqdjQGez78u3G41h94KwkrddXyHsPl9vYxtKA5x0WRX0tokUQ8N3G45ppnv5pB5bsUvo9GcHldkuEGPk+miwX8p3YeERpotdajAFEluM2CUlERMOOH0ZCAEz5ajO2Hr+EWQt2AwDu/exv7DqVg7s/8QQQDYUmybt3lBnYAf+uTzZg56kcvPj7bt8xeSl5jrqsYHJRR0hicbmBqV9twdbjl/D0j9t9x1mV+K5TOZi7ZB8uGzS3SXaXZ8rFG/95Y2o1ZkNULVMB75xWwEQtHDaLr3xynyRve0vNbco89L54WZ8jm0VQxBgK1OQRLOxWQXc5tl5cJDneOjnUNEmcZ3jsvFQDahEEvLlUqrnS0w4VFbsxbv56zxYopSDeoe2FIi8H+x7myd6X2/6zVvLbm9SnSXKL3Phkarjcoq7TvsUCz3YmIcLllvplacmuauOS/uo7MrcRhGnMrG6TayO8Dr1GHbfNwBsIbDoT99Ldp5FXWCwL8uhHEbeHU2x2oJFvUaAF23ZnmFUnvKYxqkmSmEJLMtp09AI+X6fcVEzPH8vofbzomUfUiLJZJJokXt9gJ6QCzritpwlifY6sVkGhpQi3kKS2EsorOP2w6ThXE6AF67jNg6u5ks20dqtFoXHU0y4Eqy2rROsJSfJy+TuGXsBLLz5Nko5zvRwjTv5WQQhJAFwvLrcoEWK0TGfn8vhCkp4GNpLMbeS4TZQb2Ndeb7CIslnw594zkmPFLndIthgp4uyBZGWWP6vxyqI9uKVbfd/vZCbWj1s2afPGvL/2n0VijB3VqzhwQWUw4sVMYSepK0UunM4pwMGzeVwhQW/Ztb+8rLnN8/8N76zmpvW2i0VgBbPAn0vgmiSrL/q4CKkGbF/2ZezOypFqktzK++gN9vLVbUpzW+gmMyO43KJqnKRDZ/Mw9SvlDu566Pkk8VfTSdvRIgBxsj399LQLgW53IqeKjiZJLoyxwlse56OC9w56NUkut9e53ljZiw047VsE/ThJpcEtitItojRegUA1SUXFbl8YknBDmiSi3KC1gko+cPy+PQtjPlwnOXbxijMkX1i8F15PkwR4VOJXmK9Q1rfJyNLwp37agcGv/QlAuazeC88vhM32itOFnv9ehlHvr9FcPq+HmrmNh1cYY4Wb0jwW+YoxozgYTRJkq8wOns3D0LkrJc+Hh572wu32CwBWC0+TpJ6/CStMwGTnFHCFj2K3iDMBmJEB+eo2JdxtUGQdILewWCFw6GkXAl3SLicmyvgmwoBUk8T7qOCNBX6fJJFvk1bByJYughAatwIvyq1HtH2S5Hii0OuXL1jPs7SQJokoP0i+XswPAufzikIyePDMFUb8DDz+IP5rpXvHiZLJRM0HyxuYUa1aUTaLYqJn8y1wunSFMb0IvnZBVJjbtFb8FTNCktPgsmYtbAGa2xx2xtwGfp/S22hTb7CXr26TT8BaE0FijB0XTZhRA2H8xxvQs2l1xfFil4gA/eH9oQpU+oC8v4mcMAjy1VCAMj5RqDC7EIAV3vI4iziirBZJGqtF8IVTcLnNmds8ztvaaYxE3C4N8udqdD9Mf3pjW/EUOF26TvRlAQlJRETDChvsq6nQJBnI69zlopCsbpObK6wWwZAWwG61SCZZdnsOuSYp0DGP5zzLjk9GzGlxUVbFTuAsgiDVBLhEUVMD4/PRYRrJrBnUYfNPPEExt4l8IUlP3a+rSRJF33J63uo2rYm/ahkISQCw+sA5xbFitxiwX4hX8FMzRbLvy+mcAlz75ipDix/KypnXIgimBA2JTxKn38uFeJtFgPeQXiwrOcVut4E4SaEVksxokng4XXwTr5xI8UsicxsR0UiX/WubdNgJS75TNVCiSQrJZrXSl9kqCIa+Du1WQTKR5DKCSLHMV8TINhQ8eH4hrCZJz5wEKDe0lCNCHuhTVGw1wuJ9dqxwY8bpNspqwQdju/l+GzFt8nDYLD5Tx65TObjlvUxFGj1Hf13Hbb3VbTqapHDx31WHFSuzjOJ9lk6Orx4gNRm9tmSf4dWhZTVpOl1u7vihBisk8TRJcs1UlNXiE75dbtGUWbXYJer2SU+cpNAJSfK8zX54Fhn0DS0rzaEeJCQR5Qb2XeR9KbEDFE9lfj6vMCSaJLnJxWIx5k/i0ST5B4IciblNumeZ1lz8FLOMXw5PSGKbzkhz6AlJnn3P/D9dblGxaa0keYlTeqBCkly4DPSrmQ0B8OX6Yzh1qUCRxkjkYi3cjIbKwvFJ0tIUJYRRSMoO0B8JAHZn5eLFBbsUe5x5eWPZfox6PxM/bznpCxrppU/zGqr5lpUmyeUWTQlJrPDG08zKxyKbVfBpUQNZ3aYnmFss/j7Xr3bwBQ25kPb2cuUWKlo4XW5DgTHV+k9ZQ+Y2otzAaivk6lpRFCWOz7yvrXN5RSEJASB/4S2CYEiFLje3sUUrdknNbVqrqD5dc0T1nFpAPzPE6UwYbigdt3M4vggsn2QelvgrmIn+a7dZ0LRmFd/vQB08HXarru9Yac0WeqvbtEiIDp+QVFre//Og5vk1B89jzcHzaFGriuR44xpxWLnvLPeasgowWOwSS1bWGRMU9Ry35SEq7FaL7wPB7TZpbnMptxOpGis1y3rMbSWm6BA4/5f2Q7PYqLmNNEkEYQ49TRI7QPF24L6Y7ywbnySDg57NIqgKB4XFbkm+gcaACTQaNYuuJglKc1uujsPzjF92SoRCc5okCxpWj8Mz17UxfS1LlNWi+xVvdCsINTxxktRXt2kRqEN6eUKuvWtRKx4pCdHctGbNbfWrxegn4uB0u02tcLsiEZKU/V6+5x0rJBWbXN3mdCk1Sbd1b4Bh7VJ8vy2C4BvnbAbyHpva0Pd3dSaoqxql/dBctf+sITN/kSsyNEkkJBHlBomQxBF2WE0SO3F6VfhFLrem2cos+UWeYJByk4zFqOO2zaKqBSlyuSXmhUBVz8EIMxIbpeOTJEq1YC5R9G0LYxQz2iB7SaV6NSt5rgELkPrPqbSapLxCl08DYjMpJBkVtsszcmHaZhHQv2VNbtpCk5ue1k/ib/ash1+TpKReklLwYjVcctO7zSIoPlTsVkGiSTLTx3ILnMiX+T3F2K0Y0CrZ9zuvsJhZHKGfdxojYLWoFa+bnhfb66Yu9XSv8/LQN1tUtYWS+6j4tJU1JCQREY10dZt6nCSA/xV3Z69GuLqJZ4mzy2Vs6alROj2bgWGv/6mIXWK1CDDkui1q70fFCn2BKsCCEYwtzqE9scsdt/+35iie+kl/A1YWM1oCb5/wmhKNCknt6iYo8tHXJJVuoP5j7xn8vOUkAE+/UFuJxzOLRkIgvbLGYhFUNWhmNUlm/IpYnC51TdLwDrVN5WW1CIiSr26zWnwmNjZEhBbejZj/7/01yJOZ9KLtVkk/3nf6sm+jayOKZPb9aZZcRSOlB7kfmdHrzBIpcZJISCIihr+PXkCvfy9TPe/WMbfxJkubRfCtfvpqwzF8vUF740czFBW7ceBMntJxWzDmuF1Y7Nb0xZHvAxUIZvwd1HDYLPjf+B6SY1c3qYakWI/PjIjSLzk245PkXfHodUo3OpgG0hbBXA2ptQrPwdkfLVSapEGtawUln/4ta6J5chXUSnDoJzYIT/PixazjdoyGBlSrzMUqjtt2q4CuDZJMlcHlFhUCF2tuc7m1A0R2b1wN/+zVGA2rq2vF+rWsqepbp2exHd6hNno3q4Grm1TDuJ6NDO3T5xXAWGpU4ZvpEmPsaFozTjdPHk4KAUAQUu75dKNix3g2BAD7N29S5m9+agk4jo5R5Mt+XQadMYtc2kLS5cLSx8gJRtWtFgG9m9dAx/pVfce6N66OjGn9fL9LG8n83RXGV8h47+QVkpwGlkUD/ACfeo7buZwl3Xoc/vdwvHxzB8Vxa8nkP5AxjXjhmeGsIfJJ+mBsN/Rqpgwg+fldPfDiiDaG8xnWLgUZ0/rhh3t7Ba1sVk0hydykqbbB7l+PXYOhbdUFRZdb5G5NEm23So5r7Rk4ukcDAMpQHt7rfD5JLrdqDLQXb2iPr/+Viqeva4MejZXPC/B8rGiZyLTe/+s61sHbt3WBzWrBl3enYsb1bQ1pL4+eV0bmV9P+bXlmCJ68Vr9PybW8QORokmh1GxEx6KmdtTRJasEAtb5Mg4U8qqxRX8yiYpfmQKDn/GyEYGiSvHmw46BFkOYdjvGMDW9gZEDljeOhEp95WiCvJumDsd2waEc27vnfRt853hd8KH2SeP3CYbeY85kq2Q6mloqjdSDYLBZVjZvWaicbZ69ENSHGZhE0Y1A5XW7Ec1YWOmxWxEqEJAucKs7FrCZK7k9otfhXv/L67Ru3dkZa21pw2Px59GhSjXufKYNaAFDvx1pytp3TzkbGi6PnlZok3nXeQ0bimLWtnYjtJ3Ikx8K9+bMX0iQREYP+bu7+QXBPdq7iLE/IslnV/UCChTwmkFs0JiUVyVawyeEFpjNLMIQkb/ux7WiR+fME09dLD6/SivXjMSIkcdsiRF2Dt52ct/0EQVCYIKJtHE1SCPstb+Jy2KymQhTYOP1Ci8Y19M0u7JYdcrQWL/B8iNT29LNaBPRorG42K3aJqBKt1B84bBZUYfzztD6+WGHzisyHyCoIPl8hr78aS4zdKhGQAKATo8X1kjG1r8/fslVtvjZJa3Ub77kZEcx5oRh4be3NyUiebSNYk0RCEhExcF805gXTs6jwJmrWJylUyKNLG5SRdM1tWluBGCXAvV+leZQ8A1bIkGuSQhnhV47XgZ/doPb8ZekGv7xnzo7VXoHcWGx08/AEMrZMzWvF4/qOdZjycBy3Q6hJ4k2QDpvF1NJ3s0Jcvxb8VWssNo6jsxctTRJPuFMrn80ioHujapjQki90FbvdSOAJSXaLJByG1kedzWLxnZcLFZ5tTzzPmxdMlCd78TR8zRkzW9s6ibinX1NlXhqPiCeMBrpYgFdm79htJM+2dThCEmmSCEIKLzo0i5bbSxEnyBrgMQmofZkGC7kmybPVgAGfpGK35tdSVo4yArRZAplo5ct5vZMN63dgsQgSSTCUe0WpIQiCb5n3bf9ZIznHEzrYZ1KziqPkWHDL9P29PQHw210+aae19S+95vl0hDZOkjLvKJtybzktWKHvl/t6474BzfDyTUpfLC9GVptpaZK0fJL4miQVZ+aS4+2qiVxBx+ni+yRFWS2ScBha45FF8GsHC2ShCwRBW7uipgHLmNpX/YYABrdR+rppySe89gn0e9LKKbPXh5QnrH4wphumDmqBmde3xeujOqFtnURFmkgRksgniYgY9MxtWs7B6w6dx7pD5xXHy0STJBeSDG41oGdu4y21NUsgQtLj6a1QvUqUL2qyd5CTapIEyYBalkIS2w2aJ1fB0fP5OCkLShhlsygC1rHlrV2ypNpo61Rx2CQhGdToUrL6iTcxyCc/9qOAlz6UmiTeltA8c9voHg3w2dqj3BzYMrevl4j29TwT3fGLV/DG0n2K9DaLgAcHt8CrGXtVS2XVeF+1VrfxhDs1YcvzHDwTsEdwlm/YKvJ9kuxWSfR5rUmcDWUg/xCyMOY2HmpmvOY6MYz4grlWeuUxo35wnq2B/O3Gu4/oO6fMc2DrZAxqo73K0syK11BCmiQiYtBzsA5kAZVWbJpgoTS3iYa+yIp0QgAER0gyfw3rWOrJg+eTJNXMhNLc5o0Rw6NZLX58Fp5Wkq1TSqLH2dioHMLGimpuICYMdwKSHWRXX/EEg1AqQHnvksfcpowOrYaaEKe2jNxqsWBC3yaa5dIOARBcTRLAf05Ol1vVJ4kVvHhR/b0Igv8+8g8hi0XbBKXvm8mHp4EyEnGbxai5Tb5ljtViwbTBLSTHvH2MJ3jxNO2vj+qEOonRaF3bY3qLFE0SCUlExKArJHG+fvWwWYWABx2j8Fa3GZl99XySTl4MvrlNbx82wDOAsY/C+7c1CJoknhlDj7dHd5H8Zu+kFlWZG5yRKX8dr5BkUJfElrtn0+p4aIh/QqgZ7zHdTRnUnHsvL/JJW0+TxDNhBAve03LYlea2QN4dtp7/YoQim1XQ3UtQKwSA1qTJ1ySp+yR5eXFEW8X5YreIbg2TYLMIkiCJ8pACmpokZv9G3t6OWhqbQFfj8rqLlszD6wNGPyjlmy9bBQEPDGyOnc+m6eb5yT+7c/P8R6e6WD19ILo38mhjyXGbIGToDaCBa5L0u7nWkmA9uD5JBq4rLHZrht43Yt7RQ/7FphVgz4vVIh3EvX9bLFIhiRUwjGqSAmlneVuy/UDNz4WnSRIEf9C7azvU8R0zAiskCYK0T916VX1snTHEtxwbUDF9WNWFJJ4WoDQhAG7qUs90kEeeuU3Ln0/tibNdoWqsP8ig1SLoaipsVvWI21rwnreaJoktw3UdauPRoa0k5+/u2wRxDhu2zUjDggf6+I6rxV0CgJdv7iApg0Xw318ebNbTfzR8koKoSdLKijeeGtU8K4Qkjknen6f/2MT+TdFXx4HfKySSkEQQMuw6uuFAhCSjPkkJMYG75/HKZSjittONxTuzAr6vEeRV19tixHuNRCDyOm4rzG3+a4xokq5qlBTQBKDVlmqOxjyB22oRsHhqP/x6f29fYMxAzG0WQdqnEmLsHPODvibJoatJMlY2HnEO5TJyFlHWaWdc14a7AS8vlo5aHl7YvhDPmK2MvIcWQan51RJOvPAESqOauFzmI+e7ial4sMRsFBNllQg+Wu2ZkhCt1LSqCWmCtr+Z1sfigJJ97Xj723H7nMbebTzNvFq5aiU4MKKTfzWmfPWfP7yF8lq2XEY0yb5I+mRuIwgpaqs6vAQS1dmzuk1/cNbTYpnFiBmnyOX2BYx8bFgrnwkomDSSxaZR27iTRW4O4GqSZH5LepqklIRofDDmKsPq/Gi7BXNu6YiFU/pw2tJ/L7Ul61xNEoBqcVFoVzdRdlRJqxSpkyzbbhZBOvDLBSSALzTKJ3J9n6TA+6THr0z9vLx0LUrqKy9HIKYfNvo5K3QZefaeYJLSexoJS8DzcTFqKqwW59d2dW1YTVV7JhfWxqQ29P0dH22TtLcgqH+c8QRBFi3t3Wv/1wnPj2iHuf/XSXEuGIK22jNqVD0ODar7xxIzmiQ2TyN9wNvnyHGbIGTo+ySZx2bQcZv9SrytZEsBLxYBeIWzzYQWZi0liTF2LHuoP8b3bhy0zSIn9GmM23s0lBwzugybp0liJ3lBEExpksb1aoTEWLvhlYaiCNzYpR5apSQo2pKVldU0SbxJSCsqMMs396QqjklMKRapSSie4+QrN8ECPMdtbQGiNHI76xPDQ/694W1HufYjEHObi8k8waQmieeTxGtfOXoaDC1G92iI8b0b48u7r9ZM591f76u7r8b43o0xfVhr/GdMN0we2Byd6ldVxhHT0CR5/dh4aLVT1dgo3H51Q4kZU+s6TUGZ8wDV2kxuglfTnOoKSQYGRtIkEYQKUTrmtsA0Sca2JWEnwRs710Wf5jV8v2f+ox1apmgvv5VjdlWZrcTU8dS1bXCtbKdxXmA7PXo1q44nhrdRaFRiDai75RMsP+K2fFsS7Wdj0xhEebDPWuuSWBXNGG9y5+7dJvv92LBWuKpRNcUEwpqd2JVLAFA3Sbn6bkjbFIXvhVyjKfFJMijUGUUUoRnfQP601NqxtIse2MncSLwy3kKLKg59Pzbe+2ZUII+J8rx33ujVaniF2h5NquOpa9sgJsqKwW1qYergFhBk5jUt52xBEFBPZcEBoB8vTg2eUKY1pPLeWLX4bhZB+mEgd0/wv9/Ka6UfV+rl8eIgIYkg+HADADJ/B+qTZOSLUr7SSJB9FZpf4W5ucmGja7MDaM14h+oEpoU/Srb0uJHVbR5zkv+3d5CTfxGyWctX8Mjxtq9RnyS2veXmNvZRyJesezH6VS0ftL1p5P4arNO1RRAk++o1ranU/FVx2PDJP7tLBFy5+czISq/SYEbIUtPIaZVB7X0ck9oItROjcVfvxqga6xdwjNSHF0zSyEcCdzVhkEzo9/ZviloJDtw7QBnRWloG/99yQVqeTiusRaBx3YKiSVIV7KRtLNckec/xhCy225szt5V9gFoeFEySiBj04yQFpkkyMujInWjZKwQIimX+XmLsVkXQQsC8ue00E12bHUDrJcXgdE6huczgHwCVq9uM+XdITAccc5tFbm7TGdC8fiZG/WxYzZRWW6ptyGo0OKNcAPP+lnc11k/GIgCHzvh3Qo/T0M6x5VA4bjPxhJI45pPSCEkitGN1yd8ltX4RSBmqxUVh9WPXQBAESb82IrTZLILCWZwX2NEIwYqP9sjQVng4raVuFH2LRGOi/nFmEQSJ8CjHHqAmiXc/sy2gpq33rBL2/5avUtX6+GHfHTMfrFpxscoS0iQREQNPtS+q/G0Um1XQdQj33JudBKVOrxYBaMLZnDMuyooa8crJDTA/OF3d1K/qr8eYbxpXjwtosPdqdthx3WoRNFfosEi1Rp7/WXW+IJgLJukd+Hhj6V29G2teK59cb+vu9xlTNbcxZY0vEWKGtktRpJPPe2rzoF2mSerTwmOOrccxtbFoOa06bFaf0/BdfZRBFstUk6QiJGnl0VplU1XA3zdYB1/exwTvfnIhQe6TNIQTqZk3uQcz0r6RbYbk2mctx22t/OwBOuzzgzZqXaFsMzUhSW6Clztua/UTtjpG+mRUhIUAIE0SETHorm4LIKqz0dVt7IBmsyojTtevFovHhrXCv3/f7TueEGNH1ZgoHIMyMrYZTVLD6rHoz/ivpDCr3EZ1b4DNxy4az6wEb5RfuW+RkeXU3rTyv62cwc5ritTzSaoW5xlUec+4jobpAVC25WQmaKOamYg1tSya2heHz+YhtanS50T+mLz1ktfGJhEQBaS3q43/jY/ibszJoqVJsloEfDexJ1xuNxpzhHA100f1uCicyyvinvOip3RVc9yWw5vUPhjTDTXiHWhYXVlmOaym77KBDZs9HzXSe8rNbTU4Ts+87hfqPRvlyN8PNcdtb5Muf6g/BsxeoTgfqB+YPA4XoP2xxusjau+xRaYZS5JpwrQEUrkGWg+vkOyMEE0SCUlExKAXUTuUq9tYQcoqMyV5R5pUmWNnfLRNVW1u5iu+T/Maki9Lu9WC/43vgcuFTnRvXC2gnbm9y2fZSz1bPmjn5V39xjO3SUxOJX8KggCIogEhyTOx8VdxaZeJPZvapLpE66e2BQZbz2pxUaqCmPyL3ueTJJtBbFapuc1iEdCbce5XwyoTUuXwhCPffZj0TWvG4clr2+DA6csY1LoW+nMmV8X1JvzqtPxn5DSsHqu7jxiPy4V8k7W8HMrVbdJ3jBe7iTfhh3rPRjny9tbSJAHqfkmBahC5miSN9Lw2U+sjHj9Ff26JMXZJn9IqM3vOyLAYaZqkcmtu+/e//w1BEDBlyhTfsYKCAkyaNAnVq1dHlSpVcNNNNyE7O1ty3dGjRzF8+HDExsYiOTkZDz/8MIqLSx/ZmCg9el+/gaxu8/g4GAhGJxEA5I7bnr/lJgmHzapQO3sxM8zxtCu9m9fA0Ha1S84HIiSJJeWQTtJ6K2e84Qd4y3Z5+7l5k+mZ26qXmJXkWj1BUF8qzabh/e35zdeOsWZFM91GUNEksROzGQGYrZvZyY+d9EZd1QADWibjrj5NdE18QMn+gUyzeIVU33mDnxx6S7rN4M3rs7t64P+61feZQVlsHM0vG8cI4GuIeM7dod6zUY7cJ0mtn3jLpfZeGzHt6d3fn5e5PNS09fL9HOOj7YbjH5n9yKsZ70CvZtXRoV6ifuIyoFwKSevXr8d7772HDh2ksWumTp2KX375Bd988w3++OMPnDx5EjfeeKPvvMvlwvDhw1FUVITVq1fj448/xkcffYSnn366rKtAcOC9n5LXK5DVbVaBq4ZWpNNYueU9JTdJWC0Cqqpts2FidNITXAJZCu7zSZKtLImy8s0qbWonoF3dBF+QOomKXMPc5h3Q9TVJUZLr2Hz0xlCewMrCc/ivWzUG/+hUB//Xrb6ms7ra6jZ5X5N8DWsXV/U6s4EZWWGBLafR/sD24tf+ryM61EvEvNu7AjAuOPImOLPCx3P/aIvODapifInvWa9mNfDSzR24HxiehRb+dmqVEo8RnetK0vDM54/IthYBlGarbg2T8OTw1qbKbga5741aO3kfXyAaYi1ioqwY2bWe9F4a6XmCskvDJ4ntdgnRNsNCEju2Gul3XRsm4bO7rsYz1yn31QsH5U5Iunz5MkaPHo3//Oc/SEpK8h2/dOkS/vvf/2LOnDm45ppr0LVrV8yfPx+rV6/GmjVrAACLFy/Gzp078b///Q+dOnXCsGHD8Nxzz+Htt99GUZG2jZ8ILjsuCBj30UackOx0H3xzm9Vi0dXE9G1RU/HCS78KPf/LJ1ubRVBdeaM3/Gn5qsgJZCsPJ88nSRBUt365vlMd/Hp/HzQpWc5ukQmN8mM+Iankt54myWvGk9fVIkgn8xi7ZyuI9+/o6jvGXsGTD7gr2SwCXh/VGS/pBAFVrG5T80mySjWNRmGFTbPPUU0YMiIjiZCayprUrIKf7+vNdV6/sUtdxTF/GZTHzApJd6Q2wg/39uIGQJQjN49/effVSIq1S8yqPM1wSmI0HhnaUlZOabpvJ/bkOsgHC7m5TWt1W6h4ZWRHDG3rf8a8W/VuVgNxUVbcN6C54pzax44gAFeK/I738dF2XVOyF7a+gWxSHm7KnU/SpEmTMHz4cAwaNAjPP/+87/jGjRvhdDoxaNAg37FWrVqhQYMGyMzMxNVXX43MzEy0b98etWr5V0ekpaVh4sSJ2LFjBzp37qy4X2FhIQoL/Uuwc3JyAABOpxNOp76N3Qze/IKdb1mxOysXP2w6iXv6NeYuafbidDrx/m4rgHN49ufteOvWTgCAYhUbtLc9ipwBmEXdLohu/8s9+6Z2+PbvE1hz6AIAYPHkXmhUPRZP/rTTl8aTXmSycMPpdMIG+W7ewPHzeeCjPRhYBMBbKgtEzWceyJDqLHbB6XSimGkzq0WAiguPsgxMm4mip/4C8xnodnvy946NzmLtlUtekzZvLGWfz7UdUvDsda1hs1p85XG5/HUQRWVbRfGEj5Iy6yGK0mfqrZfcJ8nCPHvRbSxvb3m9CCau89zH3y5uk9e6ZXGrXMXFkuvZ8y/d0FZ17JHn4y1XMMYogbe6ylWM4mKmnC4XiosF/DQxFWlv/AXA01flOJ1OiPKyul2KNPK/gznWsr3Q7XarayA4fZiltGVi25U3dkwf2hxNasRJ3jEvxSrvsQAROVf8igRBdEkyd7uK4XQqa+x0OuFmxnWXKzh9R34P9n8jac1QroSkL7/8En///TfWr1+vOJeVlYWoqChUrVpVcrxWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNhY9aippSEjIyMk+YaayZme7rRpzyGMa6HndOdJe+hEFhYsWAAAOHrUArly0+12+87vvigAMLaE3cvqv1YhyeG/37atW3DunOC7z6o//8CuaODEcf+9Vyxfhqws/++tWzbDdmJTiTnQ/8pcOH8OzawiACuqO0ScK/SPGrm5udAUb9xu3/lDB/ZhQeFe1aQ5l6zaeXHIzbuCBQsWwPPx5ylzUWEBDu/ZCV4b7t29Ewsu7vD93nrW39bbtmyG/cQmHGKez6a//4b7iAiXy1O2zN3HNcvofYans6XPuNjlxvbt23z3On7sGBYvOiK59myBvw7nzp7x5eVFLFa2z4F9e7Hgyh7V8ng5dFhanh3bt2PBmW24nCfN8+D+fb4y7t2zGwsu79LNGwBymXyWLc1AtGb3lQ7HmzZt8t1z1y7p89Ebug8fPoJLeYLv3suXLUNVxi3p7Dl/veXtyea9dctmyPvLimXLkKCvFNLlyhXlc8tYtAjnC/1lWJqxGFFWSI4d2L9XUaYFCxZgzwnp+LBh/VpJXZT1DO5YeyXfX5+tWzbj3Fn/OMNy4vgxLFjg7ePK58grpxmymbGL90b+tWol9qu4te0+xh9jT508ibwzANtnipn3btmSJfAH4Za2OTtubi95v0KBkWeZn59vOt9yIyQdO3YMkydPRkZGBqKjg78RqBrTp0/HtGnTfL9zcnJQv359DBkyBAkJ2st/zeJ0OpGRkYHBgwfDbg8sgFo4mZy5GABw1h2H9PQ+qumcTieQuRwA0Kx+baSndwQA/PH9duDMSUlawWJBenoaAKDKvrPArr9Nlal/v76onRiN6euXAQC6dO6MfRuPY1/OeQDAwGsGoE7VGKz/dRf+yj4GABgyaCDW/rYHm895BOfOnTsjvb1HhZ3U6hzGfbQRAJBcsyaeuqMzeu4+g64NqyL1pT98962amIDjebmq5bLbbXCWqK/btG6F9D6NVdP+79R6HMq9YKre1qgopKcPQKHThYfXLQUAVImNQe8erfDZgc2K9J06tEd6N8afYVsWPtm3FQDQtUtnDGuXggPLDmDRiQMAgO7dumJg62TfMz98mS8gjbm6Acb3auhbXbY4dyu2nPd/kIgQ0KFDB3xxwCMANGhQH+npUl+Eo+fz8dymVQCA5JrJSE/vIjk/71AmzmZJ27p1q1ZI76vepl62LtyDFaf8QlnHDu2R3rUeXt2zEijwm4LbtG6FH4/s8+TdujXSezfSzRsAZu/25zN82FDNEAzetvTSrWsXzN+7BQDQtk0bpDMbqsrTymnQsAHysy7j8OWLAICBA69BrQT/uPl51nrsz/H0qfT0dN9x9t0EgK6dO/v6gZchgwcpnKkD4Y+C7fh+k/R9H54+DBeuOPH85hUlv4fCbrXg3OVCzPzb8361bdMKvx3bJ7kuPT0dJ1cdxs9H/R8bvXv2xJs71knSeAnFWPvm/r+QfcWjWe7SuTNObcvC9gunFekaNGiA9PQ2APjPkS1nICzN24a/z50CwDe3XdO/PxpW53/g71u6Hzh+UHG8fv16nr576rivjI//vRSFLs8YNjRtiC+oKlsnb12mrvEca9u2HdK71w+wZnzMPEuvJcgM5UZI2rhxI06fPo0uXfwDpMvlwp9//om33noLixYtQlFRES5evCjRJmVnZyMlxTPBpaSkYN26dZJ8vavfvGnkOBwOOBzKuBx2uz1kgkwo8y4L3CIMl79qnMOfVmUJq/e8RcXpWIvoKDtiHMz+UTabxFchKsrT1jYmb0dUFCyMD4rdZvOVoXMDfxgAq9WCmGgHru0kdZb0VEVb88Pa6R12m2Z7BbITe7FLhN1uh5vx3LZZLagax//AiI6S9rkou03yt91uh51ZMWbXKbOXoe1ro2FN/8eEjSMk2G3M1h1WqyLfKOa31WpRnK/CWdlktynz4WGV9Smb71lLnx/bHkbzBqRG11hHlCl/JpuNvaex9vYiCBaJn0iUYkxhHMpl+QoQIZact9uVbRsdFRWU8WnGP9qhQfU4zF3iF3gcjiikOKLw6siOcNgtiI32jL1xjOZDEJTjgLx/AoAjyq5Iw70uSGMtO67YbTbVOE02Th+Wl6k0sO8Yr7c5ojTqLKiU2WJB9Sr+edBut0v8+aIdUbBzYm3J78N7v4OFkWcZyL3LjeP2wIEDsW3bNmzevNn3r1u3bhg9erTvb7vdjqVLl/qu2bNnD44ePYrUVM+u3qmpqdi2bRtOn/ZL9xkZGUhISECbNm3KvE4VFb2VTgVM5F3J6jDdAHiBhACwyAIBSs/znCgtFmXEbd/1Fv5xOXpFZa/VW90WyJ51XkdqeTBJ+caUXuQrgXhO2rxjckZ0qiP5LQ9vwN8ahP83D955XtRto87F8lRqV0k3uDUu6LBLqs2uZuItHjCDpJyy6zVX/EnKoDxvZLWoERKi7ZgyqAU31tVNXevh2g7+vsSGdGBDgdROjMZr/9eRm39Zx0kSZGNGOBy3Af0NZbUWEKh9kFktAv7Vrymu61gH/xnTjXu+olJuhKT4+Hi0a9dO8i8uLg7Vq1dHu3btkJiYiPHjx2PatGlYvnw5Nm7ciDvvvBOpqam4+uqrAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNImrLSICQ20ZqZcL+X7nOXZZvVYcpNUHzuKfH20wXRarVVAs3xY4gwg7mNgssr3bJIOfvqAASFdxPJHeGs2Sq6BJTX/gQOnqNu3X0BlAUDW1iNvyjSm9yAdH3soVLWET8AR27NVMGmBRPnjyrmOrzz+vLaDEOZQTvuGJSEVolq/CsUm2JTGWNWBuY+TP7+ohK4v/b71bfjium2TrHBFyYUeaw8zr26JZchW8fBNn9R97X047Blv4MLKRKSvEs4Lna//XCTd09mhy5WUNZFVoabDK+qmZAJ0hK4fOeTnjejVCq5R4PDSkBZ5I94dLEATP2PHmrZ0xmLMtjFp0eDnlb21bORKSjPDaa6/h2muvxU033YS+ffsiJSUF33//ve+81WrFr7/+CqvVitTUVNx+++0YM2YMnn322TCWuuKht33IeWZLBVag0rrqtv+sNV0ObxwjuVCkNXl4r5MHhvOnB/dvOexCm//rXh9LpvVD/SS/HwCbv95g7gxgOxZvtFo2Z5vFIolNwwbgUwhJrNbIFydJKTixOGxWDGkjNVsrtuLgae7YtuYM62oCq5cYjknI6EQkv59XYNPe4Nb4LKf3wcDSs1kNdGlQ1V82vYozXNWoGpY91N/3WxRlQThl6RtWj8OSaf1wy1VK/xA2rd7zCgZ6mmdA+g6ybaqlhQx3xG31OEmhLZdFR0jS+ihLjLFj4ZS+uO+a5grNmOI+7HmjbR2IWjzMlGshacWKFZg7d67vd3R0NN5++22cP38eeXl5+P777xW+Rg0bNsSCBQuQn5+PM2fOYPbs2RLbP1F69CaGS1f8miR2gAxAFtCkXZ0Ezg7tsknRF+9HqiFSC2CopUl6YKAn7sjNXetJtGK8uC7soBKl43OktYfRu6O7oEYVdS0oW8SYKCuqMO0h8THQMLdpRdxmsVoEJMbasWhKX8kxSb66vlradeCd52mSDJvbVDRJcuwBapICMRF7kQj3Omm95fY65F7bobakTwccxZnTNcta+JCjZsKUV9HIxtbBRPoBJahqV0JtbruuxExZLynGcFwxHnIttJwog5tll3fKtZBERCYuHfU5uxt4sURIUl5XmvGkS8Mk7nH2Lt53X2FuU/kK14p8PGVgc/xyX2/8+8b2krp4Bxj2vmaCDBZzYtV4qRJtg5aMxU6ODpvUmbc6s0LJiLmtCmcbCcm9Sv5nhRZ53XjzlprWzp+vtqapJ2fjWqNftmqptDRJZgQOI1oSNcz4JHnPL3igDxZO6aMwe5p5jdhHxKtrsCNFm4VtUi2TpNUi+PZbHMYJohls5AJbuMxtqU2rY+GUPvh1Uir3vFEhV6JN5vQDo5tll3cqRy2JMkVPk1Tg9E/63q/C4xfykVeoDBZZGu1scrxyJVdygkMa4E8WORrgOG5ztuOQH/de175eImxWC1g3Iu+gxN6XzV9v9ZqWz4ZV44tVTrRs9Um7uv69keRl4NV5SFu/L4LWAMkKFMoI2xwhSKf4komQkzatbQrevLUzPhzndyg12iZGNUlWq/aEoUZptKNSU5KeBs5zPs5hQ6sUZWgSM2XW+hCIBFIS/e+1oCFgWy0C5t3eFbNHdsQrI/nO3cFErmlVFZLKQMhsleLRovPeUuOaJPZvniapcogPZGcigo7eFhVyTdKhs3kYYGBXc7PEMz43747ugsPn8tGlgVS7xNMkAVA1VehpPbywmiTeoMgek5u65Gg5blssAuolxeLkpQLJ8XjOsnjvKqL5467C5mMXcU2rZHy0+jC3DDxNUtXYKHx2Vw/8feQCunK0dN5LpL5L+qvbdDUmOoO1IAi4rmMdHD3nDxRnXJPEF+LkZjLpBreGsgYQ2KbM8rIYuSev3aQ+TYGVwaiwWRbMv/MqbDl2EUPa1sKTP24HoN13LILH/HtzV2WIjlAgF+b19m5jaVg9FkPbpWB4+9pBLRN3dZthU7R2/9NzE6gokJBEBB09x202BIDLLWLlvjMhKQfrpDxMZfCRb9TqO86uuAL/b60JRM/MEqzVbVaLgFdv6YgnftyOP/f62/GLCVcr0kaX+BAMaJWMAa2Ssf+0PwCjluM2e6pXsxoKU44cm4ZAwd1nTU8Ikiy3Ur8ve2mgmiS1ywJdKWVWRuKZggED5jaew7uJ66V58csQavQ0EwNaJmNAy2TJwg/Juyl/h8tYvpN/TJkJARAXZcP0YaHbfJcleD5JAQhJESR0G6VyiIJEmWLG3FYanw09EjjaFEA6calvIqqmPfKn0RpseBoEtfvqmduKNcxtFkFA/Wqx+OSf3X3HUhKiJaY0Lw6ZuY2NL6Q0twViXvKk04qjw89K4PzFv0arLBJn8wB9kryXyVuczc9Mjy1V/5bIhnrmNsNZmbtvGU5qMZxghDzYurKtqyhpGc/HVrmQpOq4XVYlUjZBWttahp+pRacfmBGS7uzVCE1qxuHGzuqbKUcqpEkigo7e17Pc3BaqMSNeJSYQGwPH++7LyyD9muab2LTGGr25UeqTpN0CRRqaJJ7qXK1c8qB9sUxAQfk1Rnf45t1XS53PN7cp89C7hp8387fhGACC7Kfnt1zIZVcomjGhmTW3qfU7vZfETIR3PdheUpYTOi+oJA+1usoXX1TT2GQ7FEj9+MIXTFJ6L//ft/VogBdvaG/8Wh0Tsxlz2zPXtdVPFKGQJokoc6TmNremtFGa8SRRJbo0V6PD8WfQK4PWYKdncpSY20qhSTIzCTtkS3bZqMtyk57eyhYttNLzzW18IdR3zOB9JYKdUXObRlkkeTPlNqMcKs3CA2n8KL20ymNSv7rAylCWkZTlCwvUUCsSW99tM9J036tgI419ZtEQ5ox/2IQTvQ+lyuK4XTlqSUQUVxhzm56Td2lQiy4tFZL41xrx59CaP3gmR1aDJTW3aY+QWj5JyjhQ6hOq/Eud/RJMkn116/kj8PCmYjVJ8meg52Cse17r/pIyayTUKI/3pyIEAPOMzMQ+MhNMUo60XbSfgd7Eq2euk1ynk2+oMG5u09ckaW27Eirk74zaB0yZmtuMKyMV2Nk94Gh1G0GUHYWMJklP42J2jhnXs5FvxZYRcxsvmCR7XP63Who5er4opnySOHl9dlcPnM4tQIta8YpzahOb/EtdEAR8PqEHcq44UadqjOScXnRtLWxWCz4d3x2FTjeS4tSFL94xfsTtAMxthjVJsufujbgtSycxt5kQ7M2a21Qdt03losSUrCNpx1Le2ARt6ihDF/BQe7bJ8eHdWoptK5tFUNUA88rPe4+DQWkeXxTzYcDTzJKQRBAhQi2YZGlplRKPEZ3r+oQkNR8Hdt7yWds0RhO1U1p+L7y5kT0mXd1mfijr2jDJsHnCSzRnUOvZlL9SzSrxrzDnkwQAfZrX5OfLVRXx8/AdMzgWGw3PIMlbrklSE4jDYG6TLB4o5XwU+Oq20EtJ39/bE99tPI6H01oaSq9WpGtaJeNf/ZqgPWfRQlkQiCbpx0m98M2GY3hoiLG6m0WqFTR3LfvxxhuiHBQCgCBCg3x1W7CGYYsgoEPdRAxrl4JGNeJUJzzJihgDWiI1Yci0uU3FzKenSeIRiK+IfHWbFoGZ2/TT8feA0va9MVpTMz48aun8cZLU05Um9pEZJBNcKd+SQM1tZeGT1KVBkiJ+mRZaK1LLahm92v292KyCaqR8Nl2n+lXRqX7VEJaJ+dtkH2I1RbwxsLJokipHLYmIosCEJsnUF7DgeZnfvb0rHh3aylSZlJMl/29pGvXC6U2k0mCS2q/h/HFXId5hw6DW/ojXWo7JRle3aSExtwVRm8ANrKljJjO6opDVOBktsppPktzgxqYrqz06zWxLokeg5jb5dWNSG5auIEFAEgIggjZMZV9jqyComtwjMYo5D6kmiYQkgigzrpjwSTKD4cGHc0ul2UXyy/T9ePUK1HF7QKtkbHlmCNKYbUG0TH3yYnk3wO2lYlrjobX9ihoPGTCX6AWL1LHGaRKIMKcMQOj5LTf9SIQkU5GSAqe0k6mZDXIl16mUYf64q/DsP9qVqkzBIFKFDLn2VV1IKqsSSQm2ue2WbvUBAJ0bVC1FqSIfMrcRZU6BbHVbsMY8o4MPdyNdTcdttfup35Dns8neli2DkaXKFosQ8NS88pEByCsq9glLRjDruN22Tryh7R/45jb/37w7GY+TVPqO5C3L/13VAPP/OozdWbkl5QrMJ6k0mFndpoepvdtUrivLcABaRKiMJA0BYLGoasnDJeSZvSu7PyPv2berm4g10weiepWyjUdV1pAmiShzrsi2JSmtv4UXoxMJb+hqkSJbXaJjAvIcV7+HnoaMPa2nSfJi1LQgb8+YKKspAQkwb25rkBRrKF+uBkzHuzQQ01mg5ja2LPWSYrjHy8wnSUd41L1eJS8z1wXiwB9qyjIsgRkkEd+tguoYEKHFV8BqktTaPCUxOiCfyvIEaZLKOZfynUiM5S9110tr5lpeXgkxNuRcKUZirB1ncgsl5y8XFqMKE8PnQl4RXKKI+Ggbcq44fceDuS2J0Q9dnrBxbfvaOJNbiC4lqmMj/iBaX9b8OEl+2AHU6CBjdG4OxiDM5mEkenUg+0HxjpVGWaEXSoCHlgaRFRfYo+XTJ8l4BrViRVy6JCiuKy+Te7hQhACINE2SyfvaJSEAgl2a8gMJSeWYr9cfwyPfbcWjQ1thYv+mmmk/X3sUj/+wDU+kt8aEvk3w0+YTmPzlZkwe2BxTB7cwdd+F27Nwz/82+n4/OLgFXs3YK0nT69/LsOrRAYiPtuPgmcsY/NqfEEVRYaoIrpAUuCbJYhEwvndjJi/9fLUGHe5Eyhxj6200BEBZmXkAmZ+QgfRGtWH6q9u0NUlad7Hw5RtN5I9QTTBh/zbjR6flm6KHkVhdWgQ6F49u6sbG4rq4s3fjoApqoSBSTIBA5PskmUXik1ReCh0CKraerILzyHdbAQAvLdytm/bxH7YBAF5YsAsA8OQP2wEAry/dZ/q+M37eIfktF5AA4NIVJ05cvAIA2JudC5dbKSABUF0mGwiGhSQDc5aRLR1KM26wJhujX3hGzTzhGM6sBr27+avX+H9rXaOXt9E2kKdT848K1Cfpy7uvRquUeHx599XGL/Les5TmtkCp6gBeHdkenRskBRSgsyy4/eoGuKZVMtrVCU9MJD1sWkJSORE4HDoRtysLpEkiQoaz2DNIFGnsPeYKouN2KRa3KZBOlvyMS/MVG4hfi9ErwjGglc7c5v+bl4vR2gQy+WitalT728zqtqsaVcPCKX0Np1eLpRWuOaq02qxQ8fwI4xu1lhXsO62lSSovAofEDSCCQi2UNaRJqqAcO5+PWb/vQtalgqDnbfQd9+5e7yxW1xaVZm8rOcZDABhRJTGTg8pbYnawYyfXQEwwZRkTJjHG76umtr0LADStGQcA+EfH2oby5QlT0sjS2ueNYjjitkwEky6b52umym51WwD2w1JdoURvJ3jCD9svbBYLbu3egJuu3IQAYDRJodxjM9IhTVIF5fb/rsWRc/nIPHAOP9/XW3G+NF3e6Fzt3Zi1SGOD1mJXECNuB1HkN2JmKJ25zfw1hh23zWetIMpmwbonBvr+VuPHiVfjy58X4apGSYbylbdZXJQ1oB3u9TBsbjPsk+T/UVZxYSQiUiBtEMSQCMHKryIj1yQNalML/VvWxIo9ZyTpgrWa1yymI24zmqRg+o6WN0hIqqAcOZcPANh6/FLYylBUokHS2sU+mC+f0UHAyB2NOC6bNT+oxUkyimRJuhZBGoOT46N100TbrUg2WCxAOtHe2asR7u7bBKdzCpnz2tcYv4/pSwBom7ie6lyMOq27oX8L/r50wSYQH6tQloE0STpINEmexmpWs4pCSCovsIsxSEgiKh2lGe/0JiCHzYLCYrdfk6RlbtPxSTK151QQrW1GvqDNThrsbQMZdK5plYxHh7bS3cAzkucy1tw2vH1t1E6MkYSPCFrMLKMhAGTPVuqwL9Uq1YgGBrVOLjONSiAb9oayDJHkkxSJsB8+XjNlJDlpm318bJ8jcxtBBBGFkKSlSdKRWMw4yRoPAaCfJzu4qWVbmr2LAtmORRAE3VAPkQ5P+DSjrTAqLBg1vcpzU1tRFo6pThKrKoQmRy0iwXm8vMCP5B85lKYslVmTRI7bhGn0NDHe3eYLvea2YvULijVWvpnFeDBJs/lKM540oCla1orHbT3MbfbJOl6HcsyJZN8RgSMQBRIpW41butVDlwZV0b1RNYPlkf5W096Eo01L2y7BKDLbHpV4gZMheO0Tye+iGUiTRBBBxBtfw1kiAJWVT5JRjJnb1LUbD6e1wsNprczfl/k7mKv65ETysGzlCB5S/6/Slf7lmzuaSh/JmqRAIoiHsgyVd5o0Bm8oiyQZqTRlcQUxnl15gzRJhGn0XrboEk2SVzjSEpKycgrwxbpjQSmXUXnLkOO2ZLIM/kgXiLmtImCR7AWmPFbWk4r8S99IxO2yopQRAIJCMFeMVnR4IToiSEYqlVarMmuS6BWopIQyBIBfk+QRjgo1HLcBYPOxi6rnzAgoRleMGYk3FGpfjFBukhpJX69yeI7Aas7SPIJdNaW5jX+v8GuSAiEYIQAiuDNFGFyfpArSfJX1ow4gIYkIAV5NkpEQAMEkmIKHZDIP0goVtnihNDOGyzRjhEAibocSpblNpQRh90mKAHMbOSVpwt0TsoJISZVZk2TIJ2natGmGM5wzZ07AhSHKjlCGAIi2e2TvIgPmNj3MrG4Lldk8FMNcaB23Q5d3aeFqksK5iao8BICajFQGRVHes3SapGC0ZST3pUiD65NU9sVQpTRliXdUXvdlQzXftGmT5Pfff/+N4uJitGzZEgCwd+9eWK1WdO3aNfglJCIOfXNbiU+Sd+82HXNbae7FYtzcpp8mFPFh2NuG0twWybDbQXn9XcK1kSvvfmrPuqyEBbZXRMLy+9LsT1jZ4PokRZKUGUBRXrm5A37degoT+jYJfnnKCYaEpOXLl/v+njNnDuLj4/Hxxx8jKSkJAHDhwgXceeed6NOnT2hKSZQr5D5JzlIs8zcjTBhNakQ7VdoYNfwbl27vtooAb2+0UJg2jZdH+lvt9uEwYZZWOA9OnKQImuTLIeW9/UZ2q4+R3eqHuxhhxbRP0quvvopZs2b5BCQASEpKwvPPP49XX301qIUjgA9XHcI7K/aHuxgSjK5uKzIQTFIPM6KE0WX1ZjVJoZgfQ+u4HbkDMy+0Qnh9krRWt5W9GVDiLB4Bj5F9NpVTrDdOpDtuR7KvYiRjWkjKycnBmTPKvWjOnDmD3NzcoBSK8FBU7Mazv+7Eywv34HRuQbiLYxifT5KO4/YNnfR3jjcjSxjVzpgNAVCar0G1SSakPkmhy7rUWCXL/ZWr28p6VjF6u7D4JJUykGNwfJJKV4bKBM8nMpLexUgS2MoTpoWkG264AXfeeSe+//57HD9+HMePH8d3332H8ePH48YbbwxFGSst7JdJoTNygnkZ9knS2btt1g3tglyu4IUAYCmdkMS/lsxt/kHblNIuyAO9widJxd4WjgmGtDjli0jXJBGBYVpImjdvHoYNG4bbbrsNDRs2RMOGDXHbbbdh6NCheOedd0JRxkpLICaZ07kFpV6qK4oiTueo56Nn1vL6JOlpkqwWAd0b628fYbQ+wQwmyRLIOOfdBbx17Xj/fctopovkgdkqMbd5V7dBcSxcqLtElU252C4SaWbT+OjKu8LJCLzXO5KeYeSUpHxhSkhyuVzYsGEDXnjhBZw7dw6bNm3Cpk2bcP78ebzzzjuIi4sLVTkxa9YsXHXVVYiPj0dycjJGjBiBPXv2SNIUFBRg0qRJqF69OqpUqYKbbroJ2dnZkjRHjx7F8OHDERsbi+TkZDz88MMoLi4OWblLg1ltQ8bObHR/YSle+G1Xqe775fpj6P7iUvxv7VHueb0l/Q5ZxO0imeO23SpgajtPm0dZ9bugUeHCsFBZyr3bjPDDxKvRo6Ybb43yb5PBOoxXjbWbztMoETQuK+D7JIUvBID8fpHktyHRJAUgYQerLs+PaIcHBjZHi1rx+okrMfzVbWEoiAqxUdZwF6FcYkpIslqtGDJkCC5evIi4uDh06NABHTp0CKlw5OWPP/7ApEmTsGbNGmRkZMDpdGLIkCHIy8vzpZk6dSp++eUXfPPNN/jjjz9w8uRJiQnQ5XJh+PDhKCoqwurVq/Hxxx/jo48+wtNPPx3y8geC2bg/Ly/cDQD4YNWhUt13+vfbAABP/bide15vSb987zZ5+lduao9GJeOt3ao/ihidHkJlwRICCLnaKiUetzVzo07VGO75T/7ZHR3qJeKLCVeXsnTlC6mTtnJ1W7jnFNWI22Ext4W7NTzcfnVDTBvcItzFiHh4408kPMMn0luie6NqGNercbiLUi4xrT9t164dDh48iMaNy7bBFy5cKPn90UcfITk5GRs3bkTfvn1x6dIl/Pe//8Xnn3+Oa665BgAwf/58tG7dGmvWrMHVV1+NxYsXY+fOnViyZAlq1aqFTp064bnnnsOjjz6KGTNmICoqqkzrpIdZc1vD6nHYd/pyiErjR0+TJF/dJk8fZbXAWfK33ZAmyaC5LYiO2yzBGuZevKE9bp6XiQcHt0CHelXx8329g5SzlEjShshhfX64Pkk6RQ923eRdS808Eu4WJZ+kyCdS924bl9oQE/o2C3cxyi2mhaTnn38eDz30EJ577jl07dpVoUVKSEgIWuG0uHTpEgCgWjWPT8vGjRvhdDoxaNAgX5pWrVqhQYMGyMzMxNVXX43MzEy0b98etWrV8qVJS0vDxIkTsWPHDnTu3Flxn8LCQhQWFvp+5+TkAACcTiecTqcifWnw5uf9v7CoyHeuqOR+P20+iaycQuQVSk2Eu05cwJJdUtOilzH/XSP5Pemzjchlrh/9nzVIiLahS8OquL27NCbGre9nolpsFNyiiJyCYrSoVUU37pHd4jm/+egF3PXROuyXCW4WuH31tBnQ0hQWSdu5V9Pq+OvAOUU6l9tt6JmwwpRaepfL5f+7uBhmH7X8WQJA61px2PLkNbBZLUHvO1LEEOfvh1dPLdxMu7pdxXA6nXAx5m63zjN0i8aesVHY5+z5XQyn0+IrixevST7U7SqK/nuy7eLpg+r35p1j8zJabrPPs7wSinq6OOOKm2MOcLlcZdK+kfAsI62egZTHtJCUnp4OALj++utly0NFCIKgGHRCgdvtxpQpU9CrVy+0a+dZIZWVlYWoqChUrVpVkrZWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNjY2NJWhUtGRgYA4FIR4H1Ey5avQHIM8FAm/5H94+2/oPbd8uc+qUDx2zZpXb0Cx+87suE8vgNst8g8eJ6bVotje7cDsOLM5SIs2a0MF7Ftyya0SPTU83SWBXpWX48W0V+mS+fPcK/JvXwZCxYs0C1fXp4V3rZSS78jSwDg0YhlLF6MQM353mdZNnja6OLFS4baIZgYrefBHMBbzuXLlyPJAeQw/Xzb1q2IzdrCudJz/sTx41iwgO8rFwhbs/3PGQCWLlmCKiXuYidO+Pvm8mXLEGUN/fO8dNHfNxct8vf7des3IG8/+3EiHQd4zzubebfM9oey7bfhI5j1vHBBOa7sPintXwCwffs2LDizNWj31aPsn6W/b5blOGSknvn5+abzNS0ksdG3w8WkSZOwfft2rFq1KuT3mj59umTvupycHNSvXx9DhgwJutbM6XQiIyMDgwcPht1ux6lLBcDGPwEAffv2Q6PqsUAmvyMUuYOj2G3XtQewdaOhtI+mtcCAljWx7/Rl/LH3LL79+wQAYMr/paHjnjP4KPMINhy5qLgutXs3nNuzHoMHD8bKwr3YcPaE5n3S0tLw4Nqlvt+1U1Kw/cJpRbrY2Dikp+ubsGbvXgkUXgHgF/rlnF97FN8e8vh4DR2a5jMhGkX+LMuCyZmLAQBJVRORnl42vk5m67np2EW8vmMdAGDgwGuQkhCNc3lFeGrjCgBAx44dkN65ruI6b93q1quH9PTghY7I3XAcXx3c6fs9ZPBgn1P98m+3Yf3ZU76yrlyxLOTPc6O4G5+s8QiBw4cNw7Q1nve9W7duGNCypi+dtz288Prx7zlbgPPZqud5hKPfhoNQ1PODo2uAPI+lwdve2auP4Kcj0gVG7du3R3q3ekG5pxbhepZs3zTa70qDmXp6LUFmMC0k9evXz/RNgsl9992HX3/9FX/++Sfq1fN3tJSUFBQVFeHixYsSbVJ2djZSUlJ8adatWyfJz7v6zZtGjsPhgMPhUBy32+0h63jevC1Wv2rQYrVCtPAnakEI3vLyKyYW+o3t1RixUTa0qlMVG49e8h2PcUTh2k71sO7IRZ+QlJIQjawcT0DM2OgonIOnng4DwodN1s5RNv41YkmeujDypFp6q9V/j6goO+wq99QjlP1EDcFiKfN7Gq1nFJPGUXKNw+7vvBaLVTMfixDcullk71RUlL8eFsZfzlvuUD/PR4e1RnJCNIa2S0FUlP8+Npt2u/DOsf5fZsscjn4bDoJZz/rVYrHtRI4vX0A6jnixWrWfZbAJ57OMtHoGUp6AA1/k5+fj6NGjKGL8ZgCgQ4cOgWapiSiKuP/++/HDDz9gxYoVCsfxrl27wm63Y+nSpbjpppsAAHv27MHRo0eRmpoKAEhNTcULL7yA06dPIzk5GYBHRZeQkIA2bdqEpNylgRV8XKKIQpVVZRZBMLwlhx5yXycvyfEOnM4tlBxTW7rt/dtm8U8y3ijcgHTZvzHHbelvtU03g7ktCZsmElaomCGSS2uVdJSS/yKowKplKaNCxjlsuO+a5orjAUXcjuieUPGYeX07CIKA0T0a+I7R/sDlH9NC0pkzZ3DnnXfi999/554PlU/SpEmT8Pnnn+Onn35CfHy8z4coMTERMTExSExMxPjx4zFt2jRUq1YNCQkJuP/++5Gamoqrr/aYHoYMGYI2bdrgjjvuwMsvv4ysrCw8+eSTmDRpEldbFG5YR0CXW1Rdem8RgGC1em4BX0iqUUUpJLHCCjsge33V2OX9rLkqivHWjjLguS3fkNamMvIYDZlgdsKhcS548AJHhjPgnrxvqQnE5bIPlMtCl19qxjvw9m1dJMfoEZR/TEeAmTJlCi5evIi1a9ciJiYGCxcuxMcff4zmzZvj559/DkUZAQDvvvsuLl26hP79+6N27dq+f1999ZUvzWuvvYZrr70WN910E/r27YuUlBR8//33vvNWqxW//vorrFYrUlNTcfvtt2PMmDF49tlnQ1bu0sBqRkQRKCzmi0LB/GK8zNEktahVBXaOMGNV0SR5sRkQkgzFSZIJNWpbRxgNmVCW25KEg0guLk9IMrP9RqjrpvblH8ltSkQu7FjVq1l1CAKQ1pbv2kFEJqY1ScuWLcNPP/2Ebt26wWKxoGHDhhg8eDASEhIwa9YsDB8+PBTlNDSxRUdH4+2338bbb7+tmqZhw4ZlvvInUNwGNUnBHMB5mqT/jOmGh75RrjiSxLzh5MWa2xy2wM1tcuFHVZMUon0/ytsEGcnFlWgcvf+HU5MkF8AjVJNEm8uWT9i+/b/xPVBY7Da9CKS88cDA5nhj6T7cUgbO6WWBaSEpLy/P58+TlJSEM2fOoEWLFmjfvj3+/vvvoBewMsNqkrR8koIrJCnjSETZLAqzmNwviKfdYbVErFZJqkkyYm6TouaTFLK928qJlJQUa8eFfCcGtEwOd1FU0dMkRSrh7gPyPturWXX8tV87HEc5aNYKjzRqu1DhBSQAmDKwOYa0qYVWKRVjGxvT5raWLVv69kzr2LEj3nvvPZw4cQLz5s1D7dq1g17AygzrYyOK6poks9uXaMEzt9mtFoUwY5VNGrwB2cpoktgvdFaTFMjebeo+ScFz3C6PLJzSF3P/rxP+1a9puItiCO92L+F0MJZ3hUjVJMl5Z3TXcBeBMEA5+b4KKhaLgHZ1E2EzMLaXB0xrkiZPnoxTpzyxQ5555hkMHToUn332GaKiovDRRx8Fu3yVGtZ85HJ7og3zCNbKNgC4zDG3RdmUQpJF3v85gwGrSWK/xM36JMlnMqvi5h4M+yRV0E0eaiVEYwQnxlAkwVncJp1IdB5NqOecSPVJkrsbJMbY0bZOAnacVI/7Em7tFwEkRFf8MAoVHdNC0u233+77u2vXrjhy5Ah2796NBg0aoEaNGkEtXGVHvrrNpaIpUTseCLkcTVKU1aIQZpSaJOWAzGp82MtZcxnPIVyOYnWbimBl2NxWMWWkcgHbT/zmNiZyf1kLsAY7AwkcRCAMa5eC6zrWQbeGSeEuChEgpoWkgwcPokmTJr7fsbGx6NKli8YVRKCwGiK3KKKoDLZ84WmS7FaLQgiS+yDxV7dZmPP8SSaQOElqJhHjmiQiXPDiaUWK/DGkTS1pn404I5sUve4e2aWvHNisFrx5a+dwF4MoBaaNhs2aNUODBg1wxx134L///S/2798finIRkPrYuEURhc4gOh+pwPNJ4jlKy4/xBmRW+9SjsWcj4gbVYlXTqFEsUxGp+SQZ1RCRJiky4GmSyhq2K7w/plvYyqEHdVmCCA+mhaRjx45h1qxZiImJwcsvv4wWLVqgXr16GD16ND744INQlLHSwsoGLreIIld4hCQACilIPrHxJjo2BEBSXBS2z0zD0gf7qaaR4/VdktebFdB+uLen72/jZkeacsKFdLWP8lhZU14E5oAibpMqiSBKjWkhqW7duhg9ejTef/997NmzB3v27MGgQYPw9ddf41//+lcoylhpcck1SSqr24IJLwQAAIVcIReK9IJJ2q0CqjhsCvOamlYIABwlaeWr+thrkmKj0KJWFQDA4Da1VPNiKS8TY0VE6rgtKI7pmpAq6cQv18ASBFE2mPZJys/Px6pVq7BixQqsWLECmzZtQqtWrXDfffehf//+IShi5UW+uq0shCSny5gEIZdt9IJJqmmMeMtEH05riaHtUjByXiZQqBSSrIzwZREEfHbX1Vi4/VRQV3aZjcpNGIV9diVHJI7bZUukP+fv7+2JkxevoE2dBMW5yC45QVQMTAtJVatWRVJSEkaPHo3HHnsMffr0QVISee6HArkmSS1OUpkQwBe8XJOkl8bLbd0bICkuyhdDSUuTJAiePZPuSG1kuFw1qjhwLq9IPyERdKIMOPMTfro0SEKXBoGNr9S6BFF6TAtJ6enpWLVqFb788ktkZWUhKysL/fv3R4sWLUJRvkqNZHWbxrYkZYKo+ZM74bGCkVpsIzvnuDcrv0+SdFWfJEhlAOGa3x7dGdO/34YHBip3WydCS/1qMbipSz3ER9tUI6eXJaSNIQhCC9NC0o8//ggA2Lp1K/744w8sXrwYTz31FGw2G/r374/PPvss2GWstIiKbUlCHwIgULg+Say5zYQmyStweYUkuZmR1SQFMs82S47HN/f01E9IBB1BEPDqLR1Vz+svaw+/YBUpRLqpkCAqAqaFJC/t27dHcXExioqKUFBQgEWLFuGrr74iISmIsIu6tDa4lRMXZUVekTmBKspq0V49J5ub5OMzN5gka25T0yRxhSR/mQCluc0iEZJo0qxMBDvYZEWWM8icSRClx/Tqtjlz5uD6669H9erV0aNHD3zxxRdo0aIFvvvuO5w5cyYUZay0sD5JoghcuqKy8kxGTJR52bdvi5q+VWJcdCYTnkaHXcmmqkniCE8WmSZJLiTxlpETBCGFXg2CKD2mZ9MvvvgC/fr1w913340+ffogMTExFOUiIF/dJmL/6cuGrnMY2OpDTucGVVEvKQZ7s43dQy41Na+l3PFZsv2IipDE80uxKHySZJokgTRJlZVgm9u0ZP9I71o9GlfD7qxczTAaBEGUDtNC0vr160NRDoIDq0m6kF+Evdm5hq6Lc1hN3adJjTjc1acxPs08op5IZxxOa1sLM69vi/b1/EIza2JTddzmhADwToQOFU0SOyeQkFSxqKibD4eCR4e1Qp2qMUhrm8I9X6dqTBmXiCAqHuZVDgBWrlyJ22+/HampqThx4gQA4NNPP8WqVauCWrjKDqtJev63XbiQLzW31agSpbjmoSEtkBwfrZlvQrRUNr5/YDM4bFbUS1IfVKvITHgKnyRBwNiejSTLlVkTm9rXLt9x2/O/mk8SC31EVyzK2keoPDs/x0bZ8K9+TdGoRhz3/MT+TXFLt3qYf+dVZVwygqg4mBaSvvvuO6SlpSEmJgabNm1CYWEhAODSpUt48cUXg17Ayozehq1v3toFd/f1bDacFGvH/dc0w33XNJeYtm7r0QCd6ldFz6bVAQApCdF4+rq2uL5jHQAelX16+9oAgNQmNdC+biJa1KqCz+/qgXZ1EzD3/zoBAB5Ma4EO9cyZVu2SOEnGQwB4NUhq5jYWck4lCD5xDhtevrkjBrRMDndRCKLcYtrc9vzzz2PevHkYM2YMvvzyS9/xXr164fnnnw9q4So7elu1OewWPJ7eGo+nt5YcZwWSif2aoj5nS4Obu9bDG7LdqRNj7fjl/t6+37/e38f3d3J8NH6+rzcaPfab4fIHKwQAaZIILyQTEwRRlpjWJO3Zswd9+/ZVHE9MTMTFixeDUSaiBLfOhq1qDtpRNjaqcVCL5MOIkcJICAA14Qnwm9vkcZLYe4fKJ6lvi5oAgPjogKNkEEGkZcnCgH90Ct7WMwRBEHqYngFSUlKwf/9+NGrUSHJ81apVaNKkSbDKRUAacZuHw8Z30Ga3fgiVEGHEl8OQJklFeAL8wl6BUz3mU6jq16RmFax8ZACqxSn9vojQodarfrqvF7IuFaj63wR8v/LrkkQQRBlgWpM0YcIETJ48GWvXroUgCDh58iQ+++wzPPTQQ5g4cWIoylhp0fNJUtMksea2UG39YFaTpFYOufA0sJXff0JNSCqrOEn1q8UizkGapEgg2m4NuoBEEAShh+kZ4LHHHoPb7cbAgQORn5+Pvn37wuFw4KGHHsL9998fijJWWnTNbfbwmduMYGVurlYM1gwXG2WVbFmhti0JffwTwUIr5AC5PxEEYVpIEgQBTzzxBB5++GHs378fly9fRps2bVClShVcuXIFMTEUmyNYuPSEJCvf3GYvE3Obfhojt2Y1SVMHtUDVWL95y2Hla5JYpRQ58lYwIsj+RX2LIIiAbQlRUVFo06YNAKCwsBBz5szByy+/jKysrKAVrjLzaeZhzPhlp2YaNU0Su/Q+nMEWE2PsGNKmFlxuETXjHdw0bPwkuQ+W39wm1STVT4pFvxY1UcVhU/XLIsonZS0iRZBMRhBEBGJYSCosLMSMGTOQkZGBqKgoPPLIIxgxYgTmz5+PJ554AlarFVOnTg1lWSsVT/20QzdNlErsIdb/xxpGx21BEPD+mG66abzINWdeIennLSdlFwEf/7O7wZIShDokIxEEoYVhIenpp5/Ge++9h0GDBmH16tUYOXIk7rzzTqxZswZz5szByJEjYVUx/xChwaLmDM0cFwKKqR4e5D5YVWP4K8uCvX8XQRAEQfAwLCR98803+OSTT3D99ddj+/bt6NChA4qLi7FlyxaKehxhsPukhcwnKQR5ys1tXRomcdNRd6u4tORslBxKyNxGEIQWhoWk48ePo2vXrgCAdu3aweFwYOrUqSQgRSA2iU9SGAtiErkmqWlN/pLvqrH2sigOUYb8PrkPDp7JQ48m1cv0vnWqau9zSBBE5cawkORyuRAV5Td/2Gw2VKlSJSSFIkoH65MUMsftEHyByzVJgiDgk392x5gP1/mOPTK0JVqlJAT/5kRYaV07Aa1rl/1zva5DHezLvoyujfhaS4IgKjeGhSRRFDFu3Dg4HJ5VSgUFBbjnnnsQFyf92v/++++DW0LCNLayEJJCAG+vur4tauLmrvXw7cbjADx70RFEsLBYBDyU1jLcxSAIIkIxLCSNHTtW8vv2228PemGI4CDVJIXmHqFw5VCLMJ7EmNfIvEsQBEGUFYaFpPnz54eyHEQQsZVBMMlQoBY8kw0wSRAEQRBlRTlaIE4YRRICIFSapBAsC1ITkpJISCLCAIWaIAiChKQKiFUiJJWfEABq5rZqcbSajSAIgih7SEiqgNjKYN1/KOLLpCTyl2PXS4oN/s0IgiAIQodKKyS9/fbbaNSoEaKjo9GjRw+sW7dO/6IIoEWtKri1e318NzFVNY21PAVHAvDRnVfh9qsb4J+9GnPPt6ubiMkDm+OFG9qVcckIgiCIykzAG9yWZ7766itMmzYN8+bNQ48ePTB37lykpaVhz549SE5ODnfxNKkaG4VZN3bQTGOzhF72FYNocOvfMhn9W2q3+9TBLYJ2P4IgCIIwgiEh6eeffzac4fXXXx9wYcqKOXPmYMKECbjzzjsBAPPmzcNvv/2GDz/8EI899liYS6eDAdmkvGmSCIIgCCISMSQkjRgxwlBmgiDA5XKVpjwhp6ioCBs3bsT06dN9xywWCwYNGoTMzExF+sLCQhQWFvp+5+TkAACcTiecTmdQy+bNTytft+jWv6/ofwbBLqPvFmLgeRupZ3mnMtQRqNj1dIv+6KYVuZ4sVM+KQ2WoI2CunoG0hSCGYi13BHPy5EnUrVsXq1evRmqq36/nkUcewR9//IG1a9dK0s+YMQMzZ85U5PP5558jNjZ0DsWTM/nya9N4EQ+00xZEzxYAz23yXP96anFIymUXRMy+OrIFYoIoDV8csGDNaY/pOtjvEUEQZU9+fj5uu+02XLp0CQkJxrZBqpQ+SWaYPn06pk2b5vudk5OD+vXrY8iQIYYb2ShOpxMZGRkYPHgwkLmcmyapWhLS07vr5tWm6wUkxUapbhIbKJMzFwMABKsV6elpAeXB1tNur5jL+ytDHYGKXc9VP+7AmtMnAACDBw+usPVkqcjPk6Uy1LMy1BEwV0+vJcgMAQlJeXl5+OOPP3D06FEUFRVJzj3wwAOBZFlm1KhRA1arFdnZ2ZLj2dnZSElJUaR3OBy+/epY7HZ7yDqeVr4WwWLovqnNQu+AXtr6h7INI4XKUEegYtbTyiyA8NatItaTB9Wz4lAZ6ggYq2cg7WBaSNq0aRPS09ORn5+PvLw8VKtWDWfPnkVsbCySk5MjXkiKiopC165dsXTpUp+vldvtxtKlS3HfffeFt3BGiBCf7HgHKSEJgiCIio3pteJTp07FddddhwsXLiAmJgZr1qzBkSNH0LVrV8yePTsUZQw606ZNw3/+8x98/PHH2LVrFyZOnIi8vDzfajdCnfnjrkKz5Cr4cNxV4S4KQRAEQYQU0+qAzZs347333oPFYoHVakVhYSGaNGmCl19+GWPHjsWNN94YinIGlf/7v//DmTNn8PTTTyMrKwudOnXCwoULUatWrXAXLeIZ0CoZA1pFdiwpgiAIgggGpjVJdrsdlhJbfXJyMo4ePQoASExMxLFjx4JbuhBy33334ciRIygsLMTatWvRo0ePcBeJIAiCIIgIwrQmqXPnzli/fj2aN2+Ofv364emnn8bZs2fx6aefol072jaCIAiCIIiKgWlN0osvvojatWsDAF544QUkJSVh4sSJOHPmDN57772gF5CQUamiWhEEQRBE+DCtSerWrZvv7+TkZCxcuDCoBSIIgiAIgogETGuSrrnmGly8eFFxPCcnB9dcc00wykRoESEhAAiCIAiiomNaSFqxYoUigCQAFBQUYOXKlUEpFEEQBEEQRLgxbG7bunWr7++dO3ciKyvL99vlcmHhwoWoW7ducEtHEAQRJgTS2hJEpcewkNSpUycIggBBELhmtZiYGLz55ptBLVxlxe0m72yCIAiCCDeGhaRDhw5BFEU0adIE69atQ82aNX3noqKikJycDKvVGpJCVjbcIglJBBF+SJVEEJUdw0JSw4YNAXj2OSNCi6YiieQngiAIgigTAtql9MCBA5g7dy527doFAGjTpg0mT56Mpk2bBrVwlRUtTVJSXMXfzZkgCIIgIgHTq9sWLVqENm3aYN26dejQoQM6dOiAtWvXom3btsjIyAhFGSsdWkLSjOvblmFJCIIgCKLyYlqT9Nhjj2Hq1Kn497//rTj+6KOPYvDgwUErXGXjj71nMHe7FfU75nHPP/ePtqidGFPGpSIIgiCIyolpTdKuXbswfvx4xfF//vOf2LlzZ1AKVVm569NNOJQrYPJXW7nni2nVG0GUGaOuqg8A6NYwKcwlIQgiXJjWJNWsWRObN29G8+bNJcc3b96M5OTkoBWsMnM+TxmsEwC6NKDBmiDKio71q2LdEwNRLTYKotsV7uIQBBEGDAtJzz77LB566CFMmDABd999Nw4ePIiePXsCAP766y+89NJLmDZtWsgKWplwyXySMqdfg2Pnr6Bj/arhKRBBVFKS46MBAE4SkgiiUmJYSJo5cybuuecePPXUU4iPj8err76K6dOnAwDq1KmDGTNm4IEHHghZQSsTcqta7cQY8kUiCIIgiDLGsJAklmg3BEHA1KlTMXXqVOTm5gIA4uPjQ1O6SgpF3CYIgiCI8GPKJ0mQbWZEwlFoYM1tkwZQ7CmCIAiCCAemhKQWLVooBCU558+fL1WBCMArI0XZLHg4rVV4C0MQBEEQlRRTQtLMmTORmJgYqrIQMiy0dRRBEARBhA1TQtKoUaNomX8ZYtHR2hEEQRAEEToMB5PUM7MRwcdKbU4QBEEQYcOwkCRq7CdGhAaSkQiCIAgifBg2t7nd7lCWg+BgIackgiAIgggbpvduI8oOMrcRBEEQRPggISmCIT8wgiAIgggfJCRFMGRtIwiCIIjwQUJSBEMhAAiCIAgifJCQFMFYSZVEEARBEGGDhKQIhhRJBEEQBBE+SEiKYMjcRhAEQRDhg4SkCIbMbQRBEAQRPkhIimBIkUQQBEEQ4YOEpAiGzG0EQRAEET5ISIpgKOI2QRAEQYQPEpIiGJKRCIIgCCJ8lAsh6fDhwxg/fjwaN26MmJgYNG3aFM888wyKiook6bZu3Yo+ffogOjoa9evXx8svv6zI65tvvkGrVq0QHR2N9u3bY8GCBWVVDdOQuY0gCIIgwke5EJJ2794Nt9uN9957Dzt27MBrr72GefPm4fHHH/elycnJwZAhQ9CwYUNs3LgRr7zyCmbMmIH333/fl2b16tW49dZbMX78eGzatAkjRozAiBEjsH379nBUSxdLuXg6BEEQBFExsYW7AEYYOnQohg4d6vvdpEkT7NmzB++++y5mz54NAPjss89QVFSEDz/8EFFRUWjbti02b96MOXPm4O677wYAvP766xg6dCgefvhhAMBzzz2HjIwMvPXWW5g3b17ZV0wH8kkiCIIgiPBRLoQkHpcuXUK1atV8vzMzM9G3b19ERUX5jqWlpeGll17ChQsXkJSUhMzMTEybNk2ST1paGn788UfV+xQWFqKwsND3OycnBwDgdDrhdDqDVBt1yuIeZY23ThWxbl4qQx0BqmdFg+pZcagMdQTM1TOQtiiXQtL+/fvx5ptv+rRIAJCVlYXGjRtL0tWqVct3LikpCVlZWb5jbJqsrCzVe82aNQszZ85UHF+8eDFiY2NLUw0O0sdx6eLFiPaZKi0ZGRnhLkLIqQx1BKieFQ2qZ8WhMtQRMFbP/Px80/mGVUh67LHH8NJLL2mm2bVrF1q1auX7feLECQwdOhQjR47EhAkTQl1ETJ8+XaJ9ysnJQf369TFkyBAkJCQE9V6TMxdLfteonoT09O5BvUck4HQ6kZGRgcGDB8Nut4e7OCGhMtQRoHpWNKieFYfKUEfAXD29liAzhFVIevDBBzFu3DjNNE2aNPH9ffLkSQwYMAA9e/aUOGQDQEpKCrKzsyXHvL9TUlI003jP83A4HHA4HIrjdrs95B3PIlgqdOcuizYMN5WhjgDVs6JB9aw4VIY6AsbqGUg7hFVIqlmzJmrWrGko7YkTJzBgwAB07doV8+fPh0W29Cs1NRVPPPEEnE6nryEyMjLQsmVLJCUl+dIsXboUU6ZM8V2XkZGB1NTU4FQoyNDqNoIgCIIIH+ViGj5x4gT69++PBg0aYPbs2Thz5gyysrIkvkS33XYboqKiMH78eOzYsQNfffUVXn/9dYmpbPLkyVi4cCFeffVV7N69GzNmzMCGDRtw3333haNautAGtwRBEAQRPsqF43ZGRgb279+P/fv3o169epJzoigCABITE7F48WJMmjQJXbt2RY0aNfD000/7lv8DQM+ePfH555/jySefxOOPP47mzZvjxx9/RLt27cq0PkahYJIEQRAEET7KhZA0btw4Xd8lAOjQoQNWrlypmWbkyJEYOXJkkEoWWkiTRBAEQRDho1yY2yorpEkiCIIgiPBBQlIEQ0ISQRAEQYQPEpIiGCs9HYIgCIIIGzQNRzDkk0QQBEEQ4YOEpAiGzG0EQRAEET5ISIpgSEgiCIIgiPBBQlIEQ+Y2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOr2wiCIAgifNA0HMGQuY0gCIIgwgcJSRGMQOY2giAIgggbJCRFMFYSkgiCIAgibJCQFMGQuY0gCIIgwgcJSREMrW4jCIIgiPBBQlIEQ6vbCIIgCCJ80DQcwZAmiSAIgiDCBwlJEYyFfJIIgiAIImyQkBTB0Oo2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOaJIIgCIIIHyQkRTCkSCIIgiCI8EFCUgRD5jaCIAiCCB8kJEUwFHGbIAiCIMIHCUkRDPkkEQRBEET4ICEpgiFzG0EQBEGEDxKSIhiSkQiCIAgifJCQFMGQTxJBEARBhA8SkiIY2ruNIAiCIMIHCUkRDGmSCIIgCCJ8kJAUwdDqNoIgCIIIHyQkRTAkIxEEQRBE+CAhKYIhcxtBEARBhA8SkiIYctwmCIIgiPBBQhJBEARBEAQHEpIIgiAIgiA4kJBEEARBEATBodwJSYWFhejUqRMEQcDmzZsl57Zu3Yo+ffogOjoa9evXx8svv6y4/ptvvkGrVq0QHR2N9u3bY8GCBWVUcoIgCIIgyhPlTkh65JFHUKdOHcXxnJwcDBkyBA0bNsTGjRvxyiuvYMaMGXj//fd9aVavXo1bb70V48ePx6ZNmzBixAiMGDEC27dvL8sqGIb8tgmCIAgifJQrIen333/H4sWLMXv2bMW5zz77DEVFRfjwww/Rtm1bjBo1Cg888ADmzJnjS/P6669j6NChePjhh9G6dWs899xz6NKlC956662yrAZBEARBEOUAW7gLYJTs7GxMmDABP/74I2JjYxXnMzMz0bdvX0RFRfmOpaWl4aWXXsKFCxeQlJSEzMxMTJs2TXJdWloafvzxR9X7FhYWorCw0Pc7JycHAOB0OuF0OktZK22cxa6Q3yMceOtUEevmpTLUEaB6VjSonhWHylBHwFw9A2mLciEkiaKIcePG4Z577kG3bt1w+PBhRZqsrCw0btxYcqxWrVq+c0lJScjKyvIdY9NkZWWp3nvWrFmYOXOm4vjixYu5wlrpkD6OLZs3w35iU5DvETlkZGSEuwghpzLUEaB6VjSonhWHylBHwFg98/PzTecbViHpsccew0svvaSZZteuXVi8eDFyc3Mxffr0MiqZn+nTp0u0Tzk5Oahfvz6GDBmChISEoN5rcuZiye9OnTohvWPtoN4jEnA6ncjIyMDgwYNht9vDXZyQUBnqCFA9KxpUz4pDZagjYK6eXkuQGcIqJD344IMYN26cZpomTZpg2bJlyMzMhMPhkJzr1q0bRo8ejY8//hgpKSnIzs6WnPf+TklJ8f3PS+M9z8PhcCjuCwB2uz3kHc9ms1bozl0WbRhuKkMdAapnRYPqWXGoDHUEjNUzkHYIq5BUs2ZN1KxZUzfdG2+8geeff973++TJk0hLS8NXX32FHj16AABSU1PxxBNPwOl0+hoiIyMDLVu2RFJSki/N0qVLMWXKFF9eGRkZSE1NDWKtCIIgCIKoCJQLn6QGDRpIflepUgUA0LRpU9SrVw8AcNttt2HmzJkYP348Hn30UWzfvh2vv/46XnvtNd91kydPRr9+/fDqq69i+PDh+PLLL7FhwwZJmACCIAiCIAignIUA0CIxMRGLFy/GoUOH0LVrVzz44IN4+umncffdd/vS9OzZE59//jnef/99dOzYEd9++y1+/PFHtGvXLowlJwiCIAgiEikXmiQ5jRo1giiKiuMdOnTAypUrNa8dOXIkRo4cGaqiEQRBEARRQagwmqTyDk/oIwiCIAgifJCQFCHwZKSUhOiyLwhBEARBEABISIoY5DLSuJ6N0KNJ9bCUhSAIgiAIEpIiBrm57e6+TcJUEoIgCIIgABKSIga5JslqEcJSDoIgCIIgPJCQFCHIfZIEkpEIgiAIIqyQkBQhiDJdkoWkJIIgCIIIKyQkRQhyTRIJSQRBEAQRXkhIihCUQlJ4ykEQBEEQhAcSkiIEhbmNpCSCIAiCCCskJEUIZG4jCIIgiMiChKQIQR4CgEQkgiAIgggvJCRFCPJgkqRIIgiCIIjwQkJShKDUJJGURBAEQRDhhISkCEHuk0QRtwmCIAgivJCQFCkwQtK7t3VClI0eDUEQBEGEE5qJIwQ2BMCAljXDWBKCIAiCIAASkiIGN6NJIkMbQRAEQYQfEpIiBHZ1G61sIwiCIIjwQ0JShMD6bQskJREEQRBE2CEhKUKQr24jCIIgCCK8kJAUIXgdtwVFxCSCIAiCIMIBCUmRAslGBEEQBBFRkJAUIXhlJPJGIgiCIIjIgISkCEEkKYkgCIIgIgoSkiIEv08SQRAEQRCRAAlJEYI3mCQJSQRBEAQRGZCQFCF4g0mSkEQQBEEQkQEJSREC+SQRBEEQRGRBQlKEQTISQRAEQUQGJCRFCBRxmyAIgiAiCxKSIgRa3UYQBEEQkQUJSREC+SQRBEEQRGRBQlKEQDISQRAEQUQWJCRFCBQCgCAIgiAiCxKSIgQKJkkQBEEQkUW5EpJ+++039OjRAzExMUhKSsKIESMk548ePYrhw4cjNjYWycnJePjhh1FcXCxJs2LFCnTp0gUOhwPNmjXDRx99VHYV0ISkJIIgCIKIJGzhLoBRvvvuO0yYMAEvvvgirrnmGhQXF2P79u2+8y6XC8OHD0dKSgpWr16NU6dOYcyYMbDb7XjxxRcBAIcOHcLw4cNxzz334LPPPsPSpUtx1113oXbt2khLSwtX1QD4HbdJRiIIgiCIyKBcCEnFxcWYPHkyXnnlFYwfP953vE2bNr6/Fy9ejJ07d2LJkiWoVasWOnXqhOeeew6PPvooZsyYgaioKMybNw+NGzfGq6++CgBo3bo1Vq1ahddeey38QlJY704QBEEQhJxyIST9/fffOHHiBCwWCzp37oysrCx06tQJr7zyCtq1awcAyMzMRPv27VGrVi3fdWlpaZg4cSJ27NiBzp07IzMzE4MGDZLknZaWhilTpqjeu7CwEIWFhb7fOTk5AACn0wmn0xm0OnrzEpi/Kyre+lXkelaGOgJUz4oG1bPiUBnqCJirZyBtUS6EpIMHDwIAZsyYgTlz5qBRo0Z49dVX0b9/f+zduxfVqlVDVlaWREAC4PudlZXl+5+XJicnB1euXEFMTIzi3rNmzcLMmTMVxxcvXozY2Nig1A8ATuYBgA0QgIyMjKDlG8lUhnpWhjoCVM+KBtWz4lAZ6ggYq2d+fr7pfMMqJD322GN46aWXNNPs2rULbrcbAPDEE0/gpptuAgDMnz8f9erVwzfffIN//etfISvj9OnTMW3aNN/vnJwc1K9fH0OGDEFCQkLQ7rM7Kxcvbc2EAGDw4MGw2+1ByzvScDqdyMjIqND1rAx1BKieFQ2qZ8WhMtQRMFdPryXIDGEVkh588EGMGzdOM02TJk1w6tQpAFIfJIfDgSZNmuDo0aMAgJSUFKxbt05ybXZ2tu+c93/vMTZNQkICV4vkvY/D4VAct9vtQe14VqvnUQghyDtSqQz1rAx1BKieFQ2qZ8WhMtQRMFbPQNohrEJSzZo1UbNmTd10Xbt2hcPhwJ49e9C7d28AHunx8OHDaNiwIQAgNTUVL7zwAk6fPo3k5GQAHvVbQkKCT7hKTU3FggULJHlnZGQgNTU1mNUKCDcFkyQIgiCIiKJcxElKSEjAPffcg2eeeQaLFy/Gnj17MHHiRADAyJEjAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNMmnCbrnnntw8OBBPPLII9i9ezfeeecdfP3115g6dWrY6qaApCSCIAiCiAjKheM2ALzyyiuw2Wy44447cOXKFfTo0QPLli1DUlISAMBqteLXX3/FxIkTkZqairi4OIwdOxbPPvusL4/GjRvjt99+w9SpU/H666+jXr16+OCDD8K+/B+gOEkEQRAEEWmUGyHJbrdj9uzZmD17tmqahg0bKsxpcvr3749NmzYFu3ilRqRISQRBEAQRUZQLc1tlgDRJBEEQBBFZkJAUIXj1SAJJSQRBEAQREZCQFCGIIpnbCIIgCCKSICEpQvBpksJaCoIgCIIgvJCQFCEIABw2C2z0RAiCIAgiIqApOULo3CAJ258ZhMc7ucJdFIIgCIIgQEISQRAEQRAEFxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIg/r+9O4+J6mrDAP7MgDMMKgyyo6CoFFwJgtJRm6aVqtRYtaRRg2YUW6Nii0vd4xZjMV1MbdNgbF3SaCVqxFrX4karVUAEBRfUikssiK1lcwFl3u8P401Hrw32AwYvzy+5CXPOmTvnmYOX15l7Z4iISAWLJCIiIiIVLJKIiIiIVLBIIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFQ4O3oCLxsRAQBUVFTU+74fPnyIe/fuoaKiAi1atKj3/TcVzSFnc8gIMKfWMKd2NIeMwIvlfPJ3+8nf8bpgkfSCKisrAQCBgYEOngkRERG9qMrKSri7u9dprE5epKQi2Gw2/PHHH2jdujV0Ol297ruiogKBgYG4ceMG3Nzc6nXfTUlzyNkcMgLMqTXMqR3NISPwYjlFBJWVlQgICIBeX7ezjfhK0gvS6/Vo165dgz6Gm5ubpn+pn2gOOZtDRoA5tYY5taM5ZATqnrOuryA9wRO3iYiIiFSwSCIiIiJSwSKpCTEajVi8eDGMRqOjp9KgmkPO5pARYE6tYU7taA4ZgYbPyRO3iYiIiFTwlSQiIiIiFSySiIiIiFSwSCIiIiJSwSKJiIiISAWLpCbim2++QYcOHeDi4oLo6GhkZWU5ekov5JdffsHQoUMREBAAnU6HHTt22PWLCBYtWgR/f3+YTCbExMTg0qVLdmPu3LmD+Ph4uLm5wWw2Y8KECaiqqmrEFP8uOTkZvXv3RuvWreHj44Phw4ejsLDQbsyDBw+QmJgIT09PtGrVCnFxcbh165bdmOvXr2PIkCFwdXWFj48PZs2ahUePHjVmlH+VkpKCnj17Kh/OZrFYsHfvXqVfCxnVrFixAjqdDtOmTVPatJB1yZIl0Ol0dltYWJjSr4WMAHDz5k2MGTMGnp6eMJlM6NGjB06ePKn0a+EY1KFDh2fWUqfTITExEYB21rK2thYLFy5EcHAwTCYTOnXqhGXLltl951qjraeQw6WmporBYJB169bJ2bNn5YMPPhCz2Sy3bt1y9NTqbM+ePbJgwQLZvn27AJC0tDS7/hUrVoi7u7vs2LFDTp8+Le+8844EBwfL/fv3lTGDBw+W8PBwOXHihPz666/SuXNnGT16dCMneb5BgwbJ+vXrpaCgQPLy8uTtt9+WoKAgqaqqUsZMmjRJAgMD5eDBg3Ly5El59dVXpW/fvkr/o0ePpHv37hITEyO5ubmyZ88e8fLyknnz5jkikqqdO3fK7t275eLFi1JYWCjz58+XFi1aSEFBgYhoI+PTsrKypEOHDtKzZ09JSkpS2rWQdfHixdKtWzcpLi5Wttu3byv9Wsh4584dad++vYwbN04yMzPlypUrsn//frl8+bIyRgvHoNLSUrt1TE9PFwBy+PBhEdHGWoqILF++XDw9PWXXrl1SVFQkW7dulVatWsmqVauUMY21niySmoA+ffpIYmKicru2tlYCAgIkOTnZgbP6754ukmw2m/j5+clnn32mtJWVlYnRaJTNmzeLiMi5c+cEgGRnZytj9u7dKzqdTm7evNloc38RpaWlAkAyMjJE5HGmFi1ayNatW5Ux58+fFwBy/PhxEXlcTOr1eikpKVHGpKSkiJubm1RXVzdugBfg4eEh3333nSYzVlZWSkhIiKSnp8vrr7+uFElaybp48WIJDw9X7dNKxjlz5kj//v2f26/VY1BSUpJ06tRJbDabZtZSRGTIkCGSkJBg1/buu+9KfHy8iDTuevLtNgerqalBTk4OYmJilDa9Xo+YmBgcP37cgTOrP0VFRSgpKbHL6O7ujujoaCXj8ePHYTabERUVpYyJiYmBXq9HZmZmo8+5LsrLywEAbdq0AQDk5OTg4cOHdjnDwsIQFBRkl7NHjx7w9fVVxgwaNAgVFRU4e/ZsI86+bmpra5Gamoq7d+/CYrFoMmNiYiKGDBlilwnQ1npeunQJAQEB6NixI+Lj43H9+nUA2sm4c+dOREVF4b333oOPjw8iIiLw7bffKv1aPAbV1NRg48aNSEhIgE6n08xaAkDfvn1x8OBBXLx4EQBw+vRpHD16FLGxsQAadz35BbcO9ueff6K2ttbulxYAfH19ceHCBQfNqn6VlJQAgGrGJ30lJSXw8fGx63d2dkabNm2UMU2JzWbDtGnT0K9fP3Tv3h3A4wwGgwFms9lu7NM51Z6HJ31NRX5+PiwWCx48eIBWrVohLS0NXbt2RV5enmYyAkBqaipOnTqF7OzsZ/q0sp7R0dHYsGEDQkNDUVxcjKVLl+K1115DQUGBZjJeuXIFKSkpmDFjBubPn4/s7Gx89NFHMBgMsFqtmjwG7dixA2VlZRg3bhwA7fy+AsDcuXNRUVGBsLAwODk5oba2FsuXL0d8fDyAxv2bwiKJ6D9ITExEQUEBjh496uipNIjQ0FDk5eWhvLwc27Ztg9VqRUZGhqOnVa9u3LiBpKQkpKenw8XFxdHTaTBP/vcNAD179kR0dDTat2+PLVu2wGQyOXBm9cdmsyEqKgqffPIJACAiIgIFBQVYvXo1rFarg2fXMNauXYvY2FgEBAQ4eir1bsuWLdi0aRN++OEHdOvWDXl5eZg2bRoCAgIafT35dpuDeXl5wcnJ6ZkrEG7dugU/Pz8Hzap+Pcnxbxn9/PxQWlpq1//o0SPcuXOnyT0PU6dOxa5du3D48GG0a9dOaffz80NNTQ3Kysrsxj+dU+15eNLXVBgMBnTu3BmRkZFITk5GeHg4Vq1apamMOTk5KC0tRa9eveDs7AxnZ2dkZGTgq6++grOzM3x9fTWT9Z/MZjNeeeUVXL58WTPr6e/vj65du9q1denSRXlbUWvHoGvXruHAgQN4//33lTatrCUAzJo1C3PnzsWoUaPQo0cPjB07FtOnT0dycjKAxl1PFkkOZjAYEBkZiYMHDyptNpsNBw8ehMViceDM6k9wcDD8/PzsMlZUVCAzM1PJaLFYUFZWhpycHGXMoUOHYLPZEB0d3ehzViMimDp1KtLS0nDo0CEEBwfb9UdGRqJFixZ2OQsLC3H9+nW7nPn5+Xb/eNPT0+Hm5vbMQb4psdlsqK6u1lTGAQMGID8/H3l5ecoWFRWF+Ph45WetZP2nqqoq/P777/D399fMevbr1++Zj+O4ePEi2rdvD0A7x6An1q9fDx8fHwwZMkRp08paAsC9e/eg19uXJ05OTrDZbAAaeT3/jxPQqZ6kpqaK0WiUDRs2yLlz52TixIliNpvtrkBo6iorKyU3N1dyc3MFgKxcuVJyc3Pl2rVrIvL4ck2z2Sw//vijnDlzRoYNG6Z6uWZERIRkZmbK0aNHJSQkpEldfjt58mRxd3eXI0eO2F2Ge+/ePWXMpEmTJCgoSA4dOiQnT54Ui8UiFotF6X9yCe7AgQMlLy9P9u3bJ97e3k3qEty5c+dKRkaGFBUVyZkzZ2Tu3Lmi0+nk559/FhFtZHyef17dJqKNrDNnzpQjR45IUVGRHDt2TGJiYsTLy0tKS0tFRBsZs7KyxNnZWZYvXy6XLl2STZs2iaurq2zcuFEZo4VjkMjjq5+DgoJkzpw5z/RpYS1FRKxWq7Rt21b5CIDt27eLl5eXzJ49WxnTWOvJIqmJ+PrrryUoKEgMBoP06dNHTpw44egpvZDDhw8LgGc2q9UqIo8v2Vy4cKH4+vqK0WiUAQMGSGFhod0+/vrrLxk9erS0atVK3NzcZPz48VJZWemANOrU8gGQ9evXK2Pu378vU6ZMEQ8PD3F1dZURI0ZIcXGx3X6uXr0qsbGxYjKZxMvLS2bOnCkPHz5s5DTPl5CQIO3btxeDwSDe3t4yYMAApUAS0UbG53m6SNJC1pEjR4q/v78YDAZp27atjBw50u7zg7SQUUTkp59+ku7du4vRaJSwsDBZs2aNXb8WjkEiIvv37xcAz8xdRDtrWVFRIUlJSRIUFCQuLi7SsWNHWbBggd3HFDTWeupE/vERlkREREQEgOckEREREalikURERESkgkUSERERkQoWSUREREQqWCQRERERqWCRRERERKSCRRIRERGRChZJRNQsXL16FTqdDnl5eQ32GOPGjcPw4cMbbP9E1LhYJBHRS2HcuHHQ6XTPbIMHD67T/QMDA1FcXIzu3bs38EyJSCucHT0BIqK6Gjx4MNavX2/XZjQa63RfJyenJvVN50TU9PGVJCJ6aRiNRvj5+dltHh4eAACdToeUlBTExsbCZDKhY8eO2LZtm3Lfp99u+/vvvxEfHw9vb2+YTCaEhITYFWD5+fl48803YTKZ4OnpiYkTJ6Kqqkrpr62txYwZM2A2m+Hp6YnZs2fj6W95stlsSE5ORnBwMEwmE8LDw+3mRERNG4skItKMhQsXIi4uDqdPn0Z8fDxGjRqF8+fPP3fsuXPnsHfvXpw/fx4pKSnw8vICANy9exeDBg2Ch4cHsrOzsXXrVhw4cABTp05V7v/FF19gw4YNWLduHY4ePYo7d+4gLS3N7jGSk5Px/fffY/Xq1Th79iymT5+OMWPGICMjo+GeBCKqP///9/USETU8q9UqTk5O0rJlS7tt+fLlIiICQCZNmmR3n+joaJk8ebKIiBQVFQkAyc3NFRGRoUOHyvjx41Ufa82aNeLh4SFVVVVK2+7du0Wv10tJSYmIiPj7+8unn36q9D98+FDatWsnw4YNExGRBw8eiKurq/z22292+54wYYKMHj36vz8RRNRoeE4SEb003njjDaSkpNi1tWnTRvnZYrHY9VksludezTZ58mTExcXh1KlTGDhwIIYPH46+ffsCAM6fP4/w8HC0bNlSGd+vXz/YbDYUFhbCxcUFxcXFiI6OVvqdnZ0RFRWlvOV2+fJl3Lt3D2+99Zbd49bU1CAiIuLFwxNRo2ORREQvjZYtW6Jz5871sq/Y2Fhcu3YNe/bsQXp6OgYMGIDExER8/vnn9bL/J+cv7d69G23btrXrq+vJ5kTkWDwniYg048SJE8/c7tKly3PHe3t7w2q1YuPGjfjyyy+xZs0aAECXLl1w+vRp3L17Vxl77Ngx6PV6hIaGwt3dHf7+/sjMzFT6Hz16hJycHOV2165dYTQacf36dXTu3NluCwwMrK/IRNSA+EoSEb00qqurUVJSYtfm7OysnHC9detWREVFoX///ti0aROysrKwdu1a1X0tWrQIkZGR6NatG6qrq7Fr1y6loIqPj8fixYthtVqxZMkS3L59Gx9++CHGjh0LX19fAEBSUhJWrFiBkJAQhIWFYeXKlSgrK1P237p1a3z88ceYPn06bDYb+vfvj/Lychw7dgxubm6wWq0N8AwRUX1ikUREL419+/bB39/fri00NBQXLlwAACxduhSpqamYMmUK/P39sXnzZnTt2lV1XwaDAfPmzcPVq1dhMpnw2muvITU1FQDg6uqK/fv3IykpCb1794arqyvi4uKwcuVK5f4zZ85EcXExrFYr9Ho9EhISMGLECJSXlytjli1bBm9vbyQnJ+PKlSswm83o1asX5s+fX99PDRE1AJ3IUx/sQUT0EtLpdEhLS+PXghBRveE5SUREREQqWCQRERERqeA5SUSkCTxzgIjqG19JIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFSwSCIiIiJS8T8IBxsauELk9QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(episode_rwds_ppo)\n",
"plt.xlabel(\"Episode\")\n",
"plt.ylabel(\"Total Reward\")\n",
"plt.title(\"Total Rewards Per Episode\")\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\91740\\AppData\\Local\\Temp\\ipykernel_8108\\1561640575.py:31: DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning disappear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly.\n",
" frames = [imageio.imread(path) for path in frames_paths]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Episode 1 evaluated, GIF saved to eval_gifs\\episode_1.gif.\n",
"Episode 2 evaluated, GIF saved to eval_gifs\\episode_2.gif.\n",
"Episode 3 evaluated, GIF saved to eval_gifs\\episode_3.gif.\n",
"Episode 4 evaluated, GIF saved to eval_gifs\\episode_4.gif.\n",
"Episode 5 evaluated, GIF saved to eval_gifs\\episode_5.gif.\n",
"Episode 6 evaluated, GIF saved to eval_gifs\\episode_6.gif.\n",
"Episode 7 evaluated, GIF saved to eval_gifs\\episode_7.gif.\n",
"Episode 8 evaluated, GIF saved to eval_gifs\\episode_8.gif.\n",
"Episode 9 evaluated, GIF saved to eval_gifs\\episode_9.gif.\n",
"Episode 10 evaluated, GIF saved to eval_gifs\\episode_10.gif.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIjCAYAAAB20vpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1LklEQVR4nOzdd3hT5fvH8XeS7gkUStmbQtmUVfYuQxEFERUZiijIVPwh4kJA3CAOREW2ytQvOFjKKnuVvaFllzILLV3J+f3x0JTSFlpoepL2fl1XrzxJT5JP0kPpnWcZNE3TEEIIIYQQQgghhN0x6h1ACCGEEEIIIYQQGZOiXQghhBBCCCGEsFNStAshhBBCCCGEEHZKinYhhBBCCCGEEMJOSdEuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYaekaBdCCCGEEEIIIeyUFO1CCCGEEEIIIYSdkqJdCCFEptauXYvBYGDt2rV6R7ELBoOBDz74QO8Ydqtv376ULVs2V5/TFudoVFQU3bt3x8/PD4PBwOTJk3Psse3FBx98gMFg4PLly3pHEUII8QBStAshhJ0xGAxZ+spKkfLRRx/xxx9/2DzzzJkz02RzcnKiRIkS9O3bl3Pnztn8+UX2pRRtmX1dvHhR74i6GTFiBCtWrGD06NHMmTOHDh062PT57vdzePXVV2363DmhR48eGAwGRo0apXeUdOLi4vjggw/kg0chhENz0juAEEKItObMmZPm+uzZs1m1alW626tWrfrAx/roo4/o3r07Xbt2zcmImfrwww8pV64c8fHxbNmyhZkzZxIWFsb+/ftxc3PLlQwie6ZOnYqXl1e62wsUKJDtx/rxxx+xWCw5kEpf//33H0888QQjR47Mteds164dvXv3Tnd75cqVcy3Dw4iJiWHZsmWULVuWX3/9lY8//hiDwaB3LKu4uDjGjh0LQMuWLfUNI4QQD0mKdiGEsDO9evVKc33Lli2sWrUq3e32qGPHjtSrVw+A/v37U7hwYT755BOWLl1Kjx49dE73YLGxsXh6euodI8fExcXh4eFx32O6d+9O4cKFc+T5nJ2dc+Rx9Hbp0qWH+tAiM/Hx8bi4uGA0Zj7AsXLlyg7xb/xeixcvxmw28/PPP9O6dWvWr19PixYt9I4lhBB5igyPF0IIBxQbG8sbb7xBqVKlcHV1JTAwkM8//xxN06zHGAwGYmNjmTVrlnWobd++fQGIjIxk0KBBBAYG4u7ujp+fH08//TQRERE5mrNZs2YAnDhxIs3thw8fpnv37hQqVAg3Nzfq1avH0qVLrd+/fv06JpOJKVOmWG+7fPkyRqMRPz+/NK9z4MCBBAQEWK9v2LCBp59+mtKlS+Pq6kqpUqUYMWIEt2/fTpOhb9++eHl5ceLECTp16oS3tzfPP/88AAkJCYwYMYIiRYrg7e1Nly5dOHv2bLrXd/PmTYYPH07ZsmVxdXXF39+fdu3asWvXrvu+LylD0w8fPkyPHj3w8fHBz8+PYcOGER8fn+74uXPnEhwcjLu7O4UKFaJnz56cOXMmzTEtW7akevXq7Ny5k+bNm+Ph4cHbb7993xxZkTJnfP78+bz99tsEBATg6elJly5d0mXIaE77b7/9RnBwMN7e3vj4+FCjRg2++uqrNMecPHmSp59+mkKFCuHh4UGjRo3466+/0mU5e/YsXbt2xdPTE39/f0aMGEFCQkKGubdu3UqHDh3w9fXFw8ODFi1asHHjxvu+1pRpHpqm8e2331r/3WQnZ8r79dtvv/HOO+9QokQJPDw8iImJue9zZ0VWz23Aem4VKVIEd3d3AgMDGTNmTLrjrl+/Tt++fSlQoAC+vr7069ePuLi4LGeaN28e7dq1o1WrVlStWpV58+ZleNzevXtp0aIF7u7ulCxZkvHjxzNjxgwMBkO63zv//PMPzZo1w9PTE29vbzp37syBAwfSHJPy7/fcuXN07doVLy8vihQpwsiRIzGbzQBERERQpEgRAMaOHWv9ecq6FEIIRyM97UII4WA0TaNLly6sWbOGl156idq1a7NixQrefPNNzp07x6RJkwA1zL5///40aNCAAQMGAFChQgUAtm/fzqZNm+jZsyclS5YkIiKCqVOn0rJlSw4ePPjA3tmsSvljvGDBgtbbDhw4QJMmTShRogRvvfUWnp6eLFiwgK5du7J48WKefPJJChQoQPXq1Vm/fj1Dhw4FICwsDIPBwNWrVzl48CDVqlUDVCGT8uEAwMKFC4mLi2PgwIH4+fmxbds2vv76a86ePcvChQvT5EtOTiY0NJSmTZvy+eefW193//79mTt3Ls899xyNGzfmv//+o3Pnzule36uvvsqiRYsYPHgwQUFBXLlyhbCwMA4dOkTdunUf+P706NGDsmXLMnHiRLZs2cKUKVO4du0as2fPth4zYcIE3n33XXr06EH//v2Jjo7m66+/pnnz5uzevTtNj/CVK1fo2LEjPXv2pFevXhQtWvSBGa5evZruNicnp3Q9zRMmTLDOW7506RKTJ0+mbdu2hIeH4+7unuFjr1q1imeffZY2bdrwySefAHDo0CE2btzIsGHDALXoW+PGjYmLi2Po0KH4+fkxa9YsunTpwqJFi3jyyScBuH37Nm3atOH06dMMHTqU4sWLM2fOHP777790z/vff//RsWNHgoODef/99zEajcyYMYPWrVuzYcMGGjRokGHe5s2bM2fOHF544YV0w9WzmjPFuHHjcHFxYeTIkSQkJODi4pLJT0CJj4/PcFE4Hx8f632zem7v3buXZs2a4ezszIABAyhbtiwnTpxg2bJlTJgwIc3j9+jRg3LlyjFx4kR27drFTz/9hL+/v/XndT/nz59nzZo1zJo1C4Bnn32WSZMm8c0336R5vefOnaNVq1YYDAZGjx6Np6cnP/30E66urukec86cOfTp04fQ0FA++eQT4uLimDp1Kk2bNmX37t1pPhQym82EhobSsGFDPv/8c1avXs0XX3xBhQoVGDhwIEWKFGHq1KkMHDiQJ598kqeeegqAmjVrPvC1CSGEXdGEEELYtddee027+9f1H3/8oQHa+PHj0xzXvXt3zWAwaMePH7fe5unpqfXp0yfdY8bFxaW7bfPmzRqgzZ4923rbmjVrNEBbs2bNfTPOmDFDA7TVq1dr0dHR2pkzZ7RFixZpRYoU0VxdXbUzZ85Yj23Tpo1Wo0YNLT4+3nqbxWLRGjdurFWqVCnN6y5atKj1+uuvv641b95c8/f316ZOnappmqZduXJFMxgM2ldffXXf1zZx4kTNYDBokZGR1tv69OmjAdpbb72V5tjw8HAN0AYNGpTm9ueee04DtPfff996m6+vr/baa6/d973JyPvvv68BWpcuXdLcPmjQIA3Q9uzZo2mapkVERGgmk0mbMGFCmuP27dunOTk5pbm9RYsWGqB9//332cqQ0VdgYKD1uJRzoESJElpMTIz19gULFmhAmve+T58+WpkyZazXhw0bpvn4+GjJycmZ5hg+fLgGaBs2bLDedvPmTa1cuXJa2bJlNbPZrGmapk2ePFkDtAULFliPi42N1SpWrJjmHLVYLFqlSpW00NBQzWKxWI+Ni4vTypUrp7Vr1+6B7w2Q7uea1Zwp71f58uUzPBcze77Mvn799dc0r+FeGZ3bzZs317y9vdPcpmlamvcj5ef/4osvpjnmySef1Pz8/LKU+/PPP9fc3d2t58XRo0c1QPv999/THDdkyBDNYDBou3fvtt525coVrVChQhqgnTp1StM09X4WKFBAe/nll9Pc/+LFi5qvr2+a21P+/X744Ydpjq1Tp44WHBxsvR4dHZ3u360QQjgaGR4vhBAO5u+//8ZkMll7oFO88cYbaJrGP//888DHuLtnNCkpiStXrlCxYkUKFCjwwKHd99O2bVuKFClCqVKl6N69O56enixdupSSJUsCqlf3v//+o0ePHty8eZPLly9z+fJlrly5QmhoKMeOHbOuNt+sWTOioqI4cuQIoHrUmzdvTrNmzdiwYQOget81TUvT0373a4uNjeXy5cs0btwYTdPYvXt3uswDBw5Mc/3vv/8GSPf+Dh8+PN19CxQowNatWzl//nx23yoAXnvttTTXhwwZkibDkiVLsFgs9OjRw/peXb58mYCAACpVqsSaNWvS3N/V1ZV+/fplK8PixYtZtWpVmq8ZM2akO6537954e3tbr3fv3p1ixYpZs2akQIECxMbGsmrVqkyP+fvvv2nQoAFNmza13ubl5cWAAQOIiIjg4MGD1uOKFStG9+7drcd5eHhYR5GkCA8P59ixYzz33HNcuXLF+p7FxsbSpk0b1q9f/1CL5WU1Z4o+ffpkOgIhI0888US6n8OqVato1aqV9ZisnNvR0dGsX7+eF198kdKlS6d5jowWiLt3dfpmzZpx5cqVLA3nnzdvHp07d7aeF5UqVSI4ODjdEPnly5cTEhJC7dq1rbcVKlTIOh0lxapVq7h+/TrPPvtsmvPdZDLRsGHDdOd7ZvlPnjz5wOxCCOFIZHi8EEI4mMjISIoXL56mgILU1eQjIyMf+Bi3b99m4sSJzJgxg3PnzqWZI37jxo2Hzvbtt99SuXJlbty4wc8//8z69evTDIE9fvw4mqbx7rvv8u6772b4GJcuXaJEiRLWQnzDhg2ULFmS3bt3M378eIoUKcLnn39u/Z6Pjw+1atWy3v/06dO89957LF26lGvXrqV57Htfm5OTk/UDhRSRkZEYjUbrVIIUgYGB6bJ++umn9OnTh1KlShEcHEynTp3o3bs35cuXf9BbBagi524VKlTAaDRapxUcO3YMTdPSHZfi3oXfSpQo8cBh2Pdq3rx5lhaiuzeDwWCgYsWK910HYdCgQSxYsICOHTtSokQJ2rdvT48ePdJsoRYZGUnDhg3T3ffu87l69epERkZSsWLFdIXnvT+XY8eOAapozsyNGzfSTNnIiqzmTFGuXLlsPX7JkiVp27btfY/JyrmdUrDeneV+7i3sU96Xa9eu4ePjk+n9Dh06xO7du+nduzfHjx+33t6yZUu+/fZbYmJirPePjIwkJCQk3WNUrFgxzfWUn13r1q0zfM5787i5uVnnrN+d/973RgghHJ0U7UIIkQ8NGTKEGTNmMHz4cEJCQvD19cVgMNCzZ89H2rKrQYMG1tXju3btStOmTXnuuec4cuQIXl5e1sceOXIkoaGhGT5Gyh/yxYsXp1y5cqxfv56yZcuiaRohISEUKVKEYcOGERkZyYYNG2jcuLF1VW6z2Uy7du24evUqo0aNokqVKnh6enLu3Dn69u2b7rW5urred0XvB+nRowfNmjXj999/Z+XKlXz22Wd88sknLFmyhI4dO2b78e4tSC0WCwaDgX/++QeTyZTu+Hu3astOz25u8Pf3Jzw8nBUrVvDPP//wzz//MGPGDHr37m2dB53TUn7Gn332WZqe3btltMVdTsvpn0V2z+2syui8AtJ8kJeRuXPnAmpP+xEjRqT7/uLFi7M96iPlNcyZMyfN4pIpnJzS/tmaWXYhhMhrpGgXQggHU6ZMGVavXs3NmzfT9LYfPnzY+v0Ume2XvGjRIvr06cMXX3xhvS0+Pp7r16/nWE6TycTEiRNp1aoV33zzDW+99Za1B9rZ2fmBvYqghrquX7+ecuXKUbt2bby9valVqxa+vr4sX76cXbt2WfdgBti3bx9Hjx5l1qxZaRYRu9/w7HuVKVMGi8XCiRMn0vTipgzTv1exYsUYNGgQgwYN4tKlS9StW5cJEyZkqWg/duxYmh7Z48ePY7FYrIttVahQAU3TKFeunO77daf0gqbQNI3jx48/cFEvFxcXHn/8cR5//HEsFguDBg1i2rRpvPvuu1SsWJEyZcpk+N7eez6XKVOG/fv3o2lamvP63vumjJDw8fHJ0jmWVVnNaStZPbdT/o3t37/fZlk0TeOXX36hVatWDBo0KN33x40bx7x586xFe5kyZdL0xqe497aUn52/v3+O/ezsac94IYR4WDKnXQghHEynTp0wm8188803aW6fNGkSBoMhTbHo6emZYSFuMpnS9aR9/fXX1q2SckrLli1p0KABkydPJj4+Hn9/f1q2bMm0adO4cOFCuuOjo6PTXG/WrBkRERHMnz/fOlzeaDTSuHFjvvzyS5KSktLMZ0/pebv7tWmalm6LsftJef/u3m4OYPLkyWmum83mdMPt/f39KV68eKbbkN3r22+/TXP966+/TpPhqaeewmQyMXbs2HQ/L03TuHLlSpaeJyfMnj2bmzdvWq8vWrSICxcu3PfDiXvzGY1Ga5Gf8h516tSJbdu2sXnzZutxsbGx/PDDD5QtW5agoCDrcefPn2fRokXW4+Li4vjhhx/SPEdwcDAVKlTg888/59atW+ky3XuOZVVWc9pKVs/tIkWK0Lx5c37++WdOnz6d5nsP6j3Pqo0bNxIREUG/fv3o3r17uq9nnnmGNWvWWNd6CA0NZfPmzYSHh1sf4+rVq+nmvoeGhuLj48NHH31EUlJSuud9mJ9dyo4QOfmBpBBC5DbpaRdCCAfz+OOP06pVK8aMGUNERAS1atVi5cqV/O9//2P48OFp5mIHBwezevVqvvzyS+tw84YNG/LYY48xZ84cfH19CQoKYvPmzaxevRo/P78cz/vmm2/y9NNPM3PmTF599VW+/fZbmjZtSo0aNXj55ZcpX748UVFRbN68mbNnz7Jnzx7rfVMK8iNHjvDRRx9Zb2/evDn//PMPrq6u1K9f33p7lSpVqFChAiNHjuTcuXP4+PiwePHibM1xrV27Ns8++yzfffcdN27coHHjxvz777/pegVv3rxJyZIl6d69O7Vq1cLLy4vVq1ezffv2NCMY7ufUqVN06dKFDh06sHnzZus2cylz9CtUqMD48eMZPXo0ERERdO3aFW9vb06dOsXvv//OgAEDGDlyZJZfW0YWLVqU4XDxdu3apdkyrlChQjRt2pR+/foRFRXF5MmTqVixIi+//HKmj92/f3+uXr1K69atKVmyJJGRkXz99dfUrl3bOhf8rbfe4tdff6Vjx44MHTqUQoUKMWvWLE6dOsXixYut0xdefvllvvnmG3r37s3OnTspVqwYc+bMSbc9odFo5KeffqJjx45Uq1aNfv36UaJECc6dO8eaNWvw8fFh2bJl2X6fsprzYR09etQ65PxuRYsWpV27dtk6t6dMmULTpk2pW7cuAwYMoFy5ckRERPDXX3+lKZwf1rx58zCZTBlugwjQpUsXxowZw2+//cbrr7/O//3f/zF37lzatWvHkCFDrFu+lS5dmqtXr1p7w318fJg6dSovvPACdevWpWfPnhQpUoTTp0/z119/0aRJk3QfVj6Iu7s7QUFBzJ8/n8qVK1OoUCGqV6+e5Tn/QghhF3J1rXohhBDZdu+Wb5qmtkYaMWKEVrx4cc3Z2VmrVKmS9tlnn6XZ0knTNO3w4cNa8+bNNXd3dw2wbv927do1rV+/flrhwoU1Ly8vLTQ0VDt8+LBWpkyZNFvEZXfLt+3bt6f7ntls1ipUqKBVqFDBuvXXiRMntN69e2sBAQGas7OzVqJECe2xxx7TFi1alO7+/v7+GqBFRUVZbwsLC9MArVmzZumOP3jwoNa2bVvNy8tLK1y4sPbyyy9re/bs0QBtxowZ1uP69OmjeXp6Zvh6bt++rQ0dOlTz8/PTPD09tccff1w7c+ZMmq2jEhIStDfffFOrVauW5u3trXl6emq1atXSvvvuu/u+V5qWut3WwYMHte7du2ve3t5awYIFtcGDB2u3b99Od/zixYu1pk2bap6enpqnp6dWpUoV7bXXXtOOHDliPaZFixZatWrVHvjc92bI7CvlZ55yDvz666/a6NGjNX9/f83d3V3r3Llzui3F7t3ybdGiRVr79u01f39/zcXFRStdurT2yiuvaBcuXEhzvxMnTmjdu3fXChQooLm5uWkNGjTQ/vzzz3SZIyMjtS5dumgeHh5a4cKFtWHDhmnLly/P8BzdvXu39tRTT2l+fn6aq6urVqZMGa1Hjx7av//++8D3hgy2fMtqzpT3a+HChQ98nrufL7OvFi1aWI/L6rmtaZq2f/9+7cknn7RmDQwM1N59913r91N+/tHR0Wnul/JvOWUbtnslJiZqfn5+Gf7bu1u5cuW0OnXqWK/v3r1ba9asmebq6qqVLFlSmzhxojZlyhQN0C5evJjmvmvWrNFCQ0M1X19fzc3NTatQoYLWt29fbceOHdZjMvv3m/K67rZp0yYtODhYc3Fxke3fhBAOyaBpOTRWSgghhBBZ8sEHHzB27Fiio6OztHK7ntauXUurVq1YuHBhmu3WhHhUw4cPZ9q0ady6dUsWlRNCiPuQOe1CCCGEEMKmbt++neb6lStXmDNnDk2bNpWCXQghHkDmtAshhBBCCJsKCQmhZcuWVK1alaioKKZPn05MTAzvvvuu3tGEEMLuSdEuhBBCCCFsqlOnTixatIgffvgBg8FA3bp1mT59Os2bN9c7mhBC2D2Z0y6EEEIIIYQQQtgpmdMuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVz2gGLxcL58+fx9vbGYDDoHUcIIYQQQgghRB6naRo3b96kePHiGI2Z96dL0Q6cP3+eUqVK6R1DCCGEEEIIIUQ+c+bMGUqWLJnp96VoB7y9vQH1Zvn4+OicRtibpKQkVq5cSfv27XF2dtY7jhA2Jee7yE/kfBf5iZzvIr9wpHM9JiaGUqVKWevRzEjRDtYh8T4+PlK0i3SSkpLw8PDAx8fH7v/hC/Go5HwX+Ymc7yI/kfNd5BeOeK4/aIq2LEQnhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYadkTnsWmc1mkpKS9I4h7mIymXBycpJt+oQQQgghhBB5lhTtWXDr1i3Onj2Lpml6RxH38PDwoFixYri4uOgdRQghhBBCCCFynBTtD2A2mzl79iweHh4UKVJEenXthKZpJCYmEh0dzalTp6hUqRJGo8z2EEIIIYQQQuQtUrQ/QFJSEpqmUaRIEdzd3fWOI+7i7u6Os7MzkZGRJCYm4ubmpnckIYQQQgghhMhR0jWZRdLDbp+kd10IIYQQQgiRl0nFI4QQQgghhBBC2Ckp2oUQQgghhBBCCDslc9pzidmise3UVS7djMff240G5QphMsqQeyGEEEIIIYQQmZOe9lywfP8Fmn7yH8/+uIVhv4Xz7I9baPrJfyzff8Hmz71582ZMJhOdO3e2+XNlJiIiAoPBQHh4+AOPHTp0KMHBwbi6ulK7dm2bZxNCCCGEEEIIeyZFu40t33+BgXN3ceFGfJrbL96IZ+DcXTYv3KdPn86QIUNYv34958+ft+lz5ZQXX3yRZ555Ru8YQgghhBBCCKE7KdqzSdM04hKTs/R1Mz6J95ceQMvoce5cfrD0IDfjk7L0eJqW0SNl7tatW8yfP5+BAwfSuXNnZs6cme6YpUuXUqlSJdzc3GjVqhWzZs3CYDBw/fp16zFhYWE0a9YMd3d3SpUqxdChQ4mNjbV+v2zZsnz00Ue8+OKLeHt7U7p0aX744Qfr98uVKwdAnTp1MBgMtGzZMtPMU6ZM4bXXXqN8+fLZeq1CCCFEtljMGCLDKHF1M4bIMLCY9U4khO3I+S7yizx6rtvNnPaPP/6Y0aNHM2zYMCZPngxAfHw8b7zxBr/99hsJCQmEhoby3XffUbRoUev9Tp8+zcCBA1mzZg1eXl706dOHiRMn4uRkm5d2O8lM0HsrcuSxNOBiTDw1PliZpeMPfhiKh0vWX9eCBQuoUqUKgYGB9OrVi+HDhzN69Gjr9nWnTp2ie/fuDBs2jP79+7N7925GjhyZ5jFOnDhBhw4dGD9+PD///DPR0dEMHjyYwYMHM2PGDOtxX3zxBePGjePtt99m0aJFDBw4kBYtWhAYGMi2bdto0KABq1evplq1ari4uGT5NQghhBA57uBSWD4Kp5jz1AOInAo+xaHDJxDURe90QuQsOd9FfpGHz3W76Gnfvn0706ZNo2bNmmluHzFiBMuWLWPhwoWsW7eO8+fP89RTT1m/bzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvvdx+CXZp+vTp9OrVC4AOHTpw48YN1q1bZ/3+tGnTCAwM5LPPPiMwMJCePXvSt2/fNI8xceJEnn/+eYYPH06lSpVo3LgxU6ZMYfbs2cTHpw7579SpE4MGDaJixYqMGjWKwoULs2bNGgCKFCkCgJ+fHwEBARQqVMjGr1wIIYTIxMGlsKA3xNwzZSzmgrr94FJ9cglhC3K+i/wij5/ruve037p1i+eff54ff/yR8ePHW2+/ceMG06dP55dffqF169YAzJgxg6pVq7JlyxYaNWrEypUrOXjwIKtXr6Zo0aLUrl2bcePGMWrUKD744AOb9Oi6O5s4+GFolo7dduoqfWdsf+BxM/vVp0G5Bxey7s6mLD0vwJEjR9i2bRu///47AE5OTjzzzDNMnz7dOjz9yJEj1K9fP839GjRokOb6nj172Lt3L/PmzbPepmkaFouFU6dOUbVqVYA0H7gYDAYCAgK4dOlSlvMKIYQQNmcxw/JRkOnENQMsfwuqdAZj1v/PFcIuyfku8ot8cK7rXrS/9tprdO7cmbZt26Yp2nfu3ElSUhJt27a13lalShVKly7N5s2badSoEZs3b6ZGjRpphsuHhoYycOBADhw4QJ06dTJ8zoSEBBISEqzXY2JiAEhKSiIpKSnNsUlJSdYi1WKxAODmlLUBCk0q+BHg40ZUTHyGp5ABCPB1o0kFvyxt/6ZpWpbntf/0008kJydTvHjxNPd3dXVlypQp+Pr6Wh8v5XUB1nbK67116xYDBgxgyJAh6Z6jdOnS1uOdnJzSPI7BYMBsNqd53+5uZ+W13p0nMxaLBU3TSEpKwmSyzT/ClHPi3nNDiLxIzneRlxkiw3C6txcmDQ1izpF8cj1amaa5lksIW5DzXeQXjnyuZ/XvLV2L9t9++41du3axfXv63uiLFy/i4uJCgQIF0txetGhRLl68aD3m7oI95fsp38vMxIkTGTt2bLrbV65ciYeHR5rbnJycCAgI4NatWyQmJmbpdd3tzTZlGfn7YQyk/ewnpUQf2bossbduZvtx7yc5OZnZs2czfvx4WrVqleZ7vXr1YsaMGbz44ouULVuWVatWWT+0ANi4cSMAN2/exGg0Ur16dfbt24e/v3+654mPjyc+Ph6LxUJ8fHyaxzGbzSQkJBATE2P9gCQmJibNMfeTkJCA2Wx+4PGJiYncvn2b9evXk5ycnKXHflirVq2y6eMLYU/kfBd5UYmrm9U8xwcI37CCcwey9v+VEPZKzneRXzjyuR4XF5el43Qr2s+cOcOwYcNYtWoVbm5uufrco0eP5vXXX7dej4mJoVSpUrRv3x4fH580x8bHx3PmzBm8vLweKueT9X1wd3fnwz8PcTEmdQ54gK8b73auSofqAQ//QjLxxx9/cP36dQYNGoSvr2+a73Xv3p1ff/2V4cOHM2TIEL777jvryu/h4eH89ttvAPj4+ODj48OYMWNo3LgxY8aM4aWXXsLT09M6JeHrr78GwGg04ubmlua9M5lMuLq64uPjg4eHB+7u7oSFhREYGIibm1u6XCmOHz/OrVu3uHbtGomJiZw8eRKAoKCgDKc7xMfH4+7uTvPmzW12HiUlJbFq1SratWuHs7OzTZ5DCHsh57vIywyRPmphogeo3SyUWnbWGyNEdsn5LvILRz7Xs9qhqVvRvnPnTi5dukTdunWtt5nNZtavX88333zDihUrSExM5Pr162l626OioggIUIVuQEAA27ZtS/O4UVFR1u9lxtXVFVdX13S3Ozs7p/sj1Ww2YzAYMBqNGI0Pt25fp5rFCa1ejG2nrnLpZjz+3m40KFcoS0PiH8aMGTNo27YtBQsWTPe97t2789lnn7F//35q1qzJokWLeOONN5gyZQohISGMGTOGgQMH4u7ujtFopHbt2qxbt44xY8bQokULNE2jQoUKPPPMM2nej5T36G4pt7m4uDBlyhQ+/PBD3n//fZo1a8batWszzD5gwIA0i+UFBwcDaqX7smXLpjveaDRiMBgy/NnltNx4DiHshZzvIk8q31ytJJzpMEoD+BTHqXxzh533KIRV+ebgXQxuXsjkADnfRR7hwL/bs/q3lm5Fe5s2bdi3b1+a2/r160eVKlUYNWoUpUqVwtnZmX///Zdu3boBauG006dPExISAkBISAgTJkzg0qVL1uHbq1atwsfHh6CgoNx9QQ9gMhoIqeCXK8+1bNmyTL/XoEGDNPPiu3TpQpcuqVsgTJgwgZIlS6bpta5fvz4rV2a+LV1ERES628LDw9Nc79+/P/37939g9syKeSGEEOKRGU0QOhEW9sn8mA4f290fdUI8FKMJKrWHXbMyP0bOd5EXGE3Q9kNYklGtcaeT1MHPdd2Kdm9vb6pXr57mNk9PT/z8/Ky3v/TSS7z++usUKlQIHx8fhgwZQkhICI0aNQKgffv2BAUF8cILL/Dpp59y8eJF3nnnHV577bUMe9JFet999x3169fHz8+PjRs38tlnnzF48GC9YwkhhBC24ep9p5HBajNPfu/we/kKYWVOhlN3Ri+6+UL8jbTfbzBAzneRd1w7pS4NJtDMqbf7FFcFu4Of67qvHn8/kyZNwmg00q1bNxISEggNDeW7776zft9kMvHnn38ycOBAQkJC8PT0pE+fPnz44Yc6pnYsx44dY/z48Vy9epXSpUvzxhtvMHr0aL1jCSGEELYR/ou6rNeP5CpdCN+wnOBrf2GIOXOfYcRCOKCDf8C1CPDwg6F7SD67g/ANK6hTMBZT+Gw4tAzafgAuHg94ICHs3M2LEDZZtZ+aRrJ7YcI3rKB2s1C7HBL/MOyqaL93aLSbmxvffvst3377bab3KVOmDH///beNk+VdkyZNYtKkSXrHEEIIIWwv/gYc/lO16/RC86/JuQMx1K5ZHadlg2HLVGg4EJxzd4FcIXKcpsHGyard4BVw80Yr05RzB2Ko1b41plNr4cZp2PwttHhTz6RCPLo1EyApFkrWh+rd0ZKT1blepmmeKNgBHm5lNSGEEEIIR3Pgd0iOh8KBUDx1IVyt2lPgUwJuRcHe33QMKEQOOfEfXNwHzh7Q4OW033Nyg7bvq3bYJLgZlfv5hMgpUQdg91zVbj8BDLZZ6FtvUrQLIYQQIn8I/1Vd1n4u7R92JhcIubOey8avwGJOf18hHEnYnVGUwX3Bo1D671fvBiWCVe/kmgm5Gk2IHKNpsGIMaBYI6gqlG+qdyGakaBdCCCFE3nflBJzZAgYj1Hwm/ffr9ga3AnD1pJrrK4SjOrcTIjaA0QlCXsv4GIMBQj9S7d1zIOpg7uUTIqccXw0n16gPXtt+oHcam5KiXQghhBB53547vezlW4FPsfTfd/VSq2mDmgusaemPEcIRpCzIVeNp8C2Z+XGlG0HQE6qXcuU7uRJNiBxjTk49bxsMgELl9M1jY1K0CyGEECJvs1hgz5256rWfy/y4hq+Akzuc3w2n1udONiFy0uXjqSNFmgx78PFtPwCjM5z4F46ttmk0IXLU7tkQfRjcC0LzkXqnsTkp2oUQQgiRt0VsgBtnwNUXqnTO/DjPwlD3BdUOk51VhAPa9BWgQeWO4F/1wccXKq8+rALVa2lOtmk8IXJEfAysuTO9o+VoVbjncVK05xaLGU5tgH2L1KUsciOEEELkjpSh8dWfBGf3+x8bMhgMJjVP8ny4zaMJkWNuXkwdUdJ0eNbv13ykKnqiD6n57ULYu42TITYa/CpCvRf1TpMrpGjPDQeXwuTqMOsxWPySupxcXd1uY5s3b8ZkMtG58316FmwsIiICg8FAeHj4fY/bs2cPzz77LKVKlcLd3Z2qVavy1Vdf5U5IIYQQeVPCTTj4P9WudZ+h8SkKloHqT6n2Rvk/SDiQLd+BORFKNVLz1bPKvSC0GKXaayaofzNC2KsbZ2Hzt6rd7kMwOeubJ5dI0W5rB5fCgt4Qcz7t7TEX1O02LtynT5/OkCFDWL9+PefPn3/wHXS0c+dO/P39mTt3LgcOHGDMmDGMHj2ab775Ru9oQgghHNXBpZAUB4UqQKkGWbtPk+F37vuHWk1eCHt3+zps/1m1m47I/v3rvaSGysdGpy5kJ4Q9+vdDSI6HMk0hsJPeaXKNFO3ZpWmQGJu1r/gY+Of/gIxWoL1z2/JR6risPF42V7K9desW8+fPZ+DAgXTu3JmZM2emO2bp0qVUqlQJNzc3WrVqxaxZszAYDFy/ft16TFhYGM2aNcPd3Z1SpUoxdOhQYmNjrd8vW7YsH330ES+++CLe3t6ULl2aH374wfr9cuXUao516tTBYDDQsmXLDPO++OKLfPXVV7Ro0YLy5cvTq1cv+vXrx5IlS7L1uoUQQgirlKHxtZ9Nuzf7/QRUh4rt1Kram762XTYhcsqOnyHxJhSpCpXaZ//+Ti7Qbpxqb/5G9WYKYW/O7YS981U7dHzWf6fnAU56B3A4SXHwUfEcejBN9cB/XCprh799Hlw8s/zoCxYsoEqVKgQGBtKrVy+GDx/O6NGjMdw5wU+dOkX37t0ZNmwY/fv3Z/fu3YwcmXb1xRMnTtChQwfGjx/Pzz//THR0NIMHD2bw4MHMmDHDetwXX3zBuHHjePvtt1m0aBEDBw6kRYsWBAYGsm3bNho0aMDq1aupVq0aLi4uWX4NN27coFChQlk+XgghhLC6FqEWocMANXtm775Nh8PxVbB7nlroyMvfBgGFyAFJ8bBlqmo3GQbGh+yTq9IZyjSByI3w7zh4alrOZRTiUWkarLizxVvNnlC8jr55cpn0tOdh06dPp1evXgB06NCBGzdusG7dOuv3p02bRmBgIJ999hmBgYH07NmTvn37pnmMiRMn8vzzzzN8+HAqVapE48aNmTJlCrNnzyY+Pt56XKdOnRg0aBAVK1Zk1KhRFC5cmDVr1gBQpEgRAPz8/AgICMhyEb5p0ybmz5/PgAEDHuVtEEIIkV/tudMjU645FMjiB+QpyjSBkvXBnABbv8/5bELklD2/Quwl8CkJNbo//OMYDNB+vGrv/Q3O7cqZfELkhMN/wulN4OQGbd7VO02uk5727HL2UD3eWRG5CeZl4Zfn84ugTOOsPXcWHTlyhG3btvH7778D4OTkxDPPPMP06dOtw9OPHDlC/fr109yvQYO08/327NnD3r17mTdvnvU2TdOwWCycOnWKqlXVdiI1a9a0ft9gMBAQEMClS5eynPde+/fv54knnuD999+nffuHGOYlhBAif9M02POLat9vb/bMGAxqbvv852HbT6rt5pOTCYV4dBYzbJqi2o0HP/qiXCXqQs1n1BDkle9A37/y1RBkYaeSE2HVe6rdeAj4ltQ3jw6kaM8ugyHrQ9QrtAaf4mrRuQzntRvU9yu0BqMpJ1Myffp0kpOTKV48dSi/pmm4urryzTff4Ovrm6XHuXXrFq+88gpDhw5N973SpUtb287Oaf+TMBgMWCyWh8p+8OBB2rRpw4ABA3jnnXce6jGEEELkc6c3q+HxLl5Q9fGHe4zATlC4Mlw+CjtnQpP0/xcKoatDS9Viie4FoW7vnHnMNu+pHRciN8Lhv6DqYznzuEI8rB3T1Xnu6a+mgORDMjzelowm6PDJnSv3fkp553qHj3O8YE9OTmb27Nl88cUXhIeHW7/27NlD8eLF+fVXtShPYGAgO3bsSHPf7du3p7let25dDh48SMWKFdN9ZXVuespxZvOD96Y/cOAArVq1ok+fPkyYMCFLjy+EEEKkE35nhFhQ12ytB5OG0QiN7xTqW76D5IQciSZEjtC01JXeGwx4+PP8Xr4lIeQ11V71nurlFEIvt6/Bujv1VOsx4Oqtbx6dSNFua0FdoMds8CmW9naf4ur2oC45/pR//vkn165d46WXXqJ69eppvrp168b06dMBeOWVVzh8+DCjRo3i6NGjLFiwwLrCfMpidaNGjWLTpk0MHjyY8PBwjh07xv/+9z8GDx6c5Tz+/v64u7uzfPlyoqKiuHHjRobH7d+/n1atWtG+fXtef/11Ll68yMWLF4mOjn60N0QIIUT+khgHB+7szf4wQ+PvVrMHeBeHmxdSVy0Wwh6cXAsXwsHJHRq8krOP3XQEeBaBqyfUyvRC6GX956pw9w+COi/onUY3UrTnhqAuMHw/9PkTuk1Xl8P32aRgBzU0vm3bthkOge/WrRs7duxg7969lCtXjkWLFrFkyRJq1qzJ1KlTGTNmDACurq6Amqu+bt06jh49SrNmzahTpw7vvfdemmH3D+Lk5MSUKVOYNm0axYsX54knnsjwuEWLFhEdHc3cuXMpVqyY9eveefdCCCHEfR3+U21/VaAMlA55tMdycoWQQaq9cQo85NQvIXLcxsnqsm5v8PTL2cd29YZW6m9C1n2siiYhctuVE7D1zi4G7cfl+OhkRyJz2nOL0QTlmuXKUy1btizT7zVo0ADtrv3eu3TpQpcuqR8eTJgwgZIlS+Lm5ma9rX79+qxcuTLTx4yIiEh3W3h4eJrr/fv3p3///vfN/cEHH/DBBx/c9xghhBDigVKGxtd+7uG3v7pbcF9Y/xlcOQZH/nr4OfJC5JTzu1VPu8GUOpQ9p9V5QRVM0YdUb2eoTFsUuWz1B2BJggptoGJbvdPoSnra87nvvvuO7du3c/LkSebMmcNnn31Gnz599I4lhBBCPJwbZ+Hkne1Na2Vzb/bMuHpD/ZdVO2ySmksshJ42fqUuq3eDgmVs8xwmp9Qt4LZOUwuBCZFbIjerhRYNxtTzMB+Toj2fO3bsGE888QRBQUGMGzeON954Q3q7hRBCOK49vwGa2me9YNmce9yGr6r9gc/thIiwnHtcIbLrygm1ujtA0+G2fa5KbdUuR5Yk1espRG6wWGDlnekZdXtD0SB989gBKdrzuUmTJnH+/Hni4+M5evQo7777Lk5OMmtCCCGEA9I02KN2SHnkBeju5VUEaj+v2ilziYXQw6avQbNApfZQtJrtn6/9eNXbefB/cHqL7Z9PiANL1AekLl6payvkc1K0CyGEECJvOLsdrhwHZw8IynjR00fSeIgqXo6vhov7cv7xhXiQm1EQ/otqNxmeO89ZtBrU6aXaK8bI9BBhW0nxsHqsajcdDl7+usaxF1K0Z5Emv6DskvxchBBCWKUUM1W72GYv30LloNqTqp2yP7YQuWnrVDAnQMkGUKZx7j1vq3fA2RPO7YD9i3PveUX+s3Uq3DgNPiWgkY0WWXRAUrQ/gMmkthZITEzUOYnISFxcHADOzs46JxFCCKGrpHjYv0S1az9ru+dpMkxdHlgC1yJs9zxC3Cs+Brbf2TO96XAwGHLvub2Lqr3bQfWCJsXn3nOL/ONWNKz/QrXbvAcuHvrmsSMyefkBnJyc8PDwIDo6GmdnZ4w5sXWMeGSaphEXF8elS5coUKCA9cMVIYQQ+dSRvyDhBviUhLLNbfc8xWqphblO/AebvoHOn9vuuYS4284Z6hwvHAiVO+b+84e8Bjt+Vr2gW6emFvFC5JS1EyHxJhSrDTV66J3GrkjR/gAGg4FixYpx6tQpIiMj9Y4j7lGgQAECAgL0jiGEEEJv4XcWoKvVM2f2Zr+fpiNU0b57DrQYpRapE8KWkhNg83eq3WSo7c/xjLh4qN7PP16FDV+qfdw9C+d+DpE3RR+BnTNVO3SCPue4HZOiPQtcXFyoVKmSDJG3M87OztLDLoQQAmIuwIl/VbuWDYfGpyjbDIrXhfO7YNs0aP2O7Z9T5G97foNbF8G7uL49kDWfUb3sF/aoXtHOX+iXReQtK98FzQxVHoOyTfVOY3ekaM8io9GIm5ub3jGEEEIIca99C9QWWKUaQuGKtn8+g0HNKV7QG7b9qFbxdvWy/fOK/Mlihk1TVDvkNXBy0S+L0QjtJ8Csx2DHDGgwAIoE6pdH5A0n18KxFWB0grZj9U5jl2TcgRBCCCEcl6alrhqfG73sKao8BoUqQPx12DUr955X5D+H/1JbGbr5QnAfvdNAuWYQ2En1iq56T+80wtFZzLDizmil+v1z54NXByRFuxBCCCEc1/ndEH0YnNxSt2PLDUZT6krym76BZJlCJ2xA0yBskmo3GGCbrQwfRrsPVa/o0eVwcp3eaYQjC/8FovapD6VajNI7jd2Sol0IIYQQjmvPnQXoqnQG9wK5+9y1eoJXANw8D/sW5u5zi/whYoNaO8HJDRq8oneaVIUrQb2XVHvlGNVbKkR2JdyC/8ardvM3waOQvnnsmBTtQgghhHBMyQmpxXLt53L/+Z1codFA1d74FVgsuZ9B5G1hk9VlnV72t0tBi1Hg6gsX96V+eCZEdmz6Wi2wWLCsGkkiMiVFuxBCCCEc09EVcPsaeBeD8q30yVDvRVW4XD4CR//RJ4PImy7sUbsiGIwQMljvNOl5+kHzkar97zhIjNU3j3AsMRdSF1hs+4H6EFRkSop2IYQQQjimlAXoavZQc8z14OYD9V9U7bDJag6yEDlh41fqstpTUKicvlky0/AVKFBG9ZZu+lrvNMKR/DcekuLUrh9BXfVOY/ekaBdCCCGE47l1CY6tVO1aOgyNv1vDgWByhbPb4PRmfbOIvOHqKTjwu2qnLHhoj5xcVS8pqA8ZYi7oGkc4iAt7IXyeaod+pLbRFPclRbsQQgghHM++hWrLqeJ1wb+Kvlm8i0LtO9vNpcxBFuJRbP4GNAtUaAPFauqd5v6qPQklG6he0zXj9U4j7J2mqcUL0aB6NyhZT+9EDkGKdiGEEEI4nvA7C1/psQBdRhoPVXOPj62AqAN6pxGO7FY07J6r2k1H6JslKwwGCJ2g2rvnqYXphMjM0RVwar0andTmfb3TOAwp2oUQQgjhWC7sVfv6mlxUT4098KsAVbuodspcZCEextbvITkeSgRD2aZ6p8maUg3U3Hs0WDFG1nYQGTMnwap3VbvRq1CwjL55HIgU7UIIIYRwLCnbSwV2tK99fZsOV5f7FsH107pGEQ4q4SZs/1G1mwx3rLm+bd9XH6SdWpe63oQQd9s5Ey4fBQ8/aPaG3mkcihTtQgghhHAc5iTYu0C19V6A7l7F60D5lmqu/aZv9E4jHNHOmRB/A/wqQpXOeqfJnoJloeGrqr3yXTAn6xpH2Jn4G7B2omq3HA1uvvrmcTBStAshhBDCcRxbBXGXwbMIVGyjd5r0mgxXl7tmQ+wVXaMIB5OcCJu/U+0mw/TbxvBRNHsD3AvB5SOwa6beaYQ92fAlxF2BwpUhuK/eaRyOFO1CCCGEcBx7UvZmfwZMzvpmyUj5llCsFiTfhm0/6J1GOJJ9C+DmefAups5vR+ReQPWiAqyZCPExusYRduJaJGyZqtrtxtnn7247J0W7EEIIIRxD3FU4sly1az2rb5bMGAypve3bpkFirK5xhIOwWFIXMGw0UO1/7qjq9QO/SmpETNiXeqcR9uDfD8GcAOWaQ+VQvdM4JCnahRBCCOEY9i0CSxIE1ISA6nqnyVzQE1CwHNy+pobJC/EgR/5WC3S5+kJwP73TPBqTM7Qfp9qbv5NFGfO7sztg/yLAAO0nONbiinZEinYhhBBCOIaUofH2sjd7ZowmaDJUtTd/qxbPEyIzmgYbJ6t2/ZfAzUfXODmicgco20z1rq4eq3caoRdNgxVvq3bt56BYTX3zODAp2oUQQghh/y4dgvO7wegENZ7WO82D1XoOPP3hxhnYv1jvNMKeRW6Cs9vB5KqGxucFBgOETgAMqpf17E69Ewk9HPwfnNkKzh7Q+h290zg0KdqFEEIIYf/C7/SyVwoFz8L6ZskKZ7fUAixsspqzLERGwiapy9rPgZe/vllyUrFaqWtPrHhb9bqK/CM5AVa/r9qNh4BPcX3zODgp2oUQQghh38zJsHe+ate20wXoMlLvRXDxhuhDcGyl3mmEPbq4H46vAoNRFTZ5TZt3wckdzmyBQ0v1TiNy07Yf4VoEeAVA46F6p3F4UrQLIYQQwr6dXAO3otT+z5UcaOVh9wJqJW1InbMsxN1SVowPegL8KuibxRZ8iqd+GLHqfbUXvcj74q7C+k9Vu/U74Oqlb548QIp2IYQQQti38HnqssbT4OSib5bsajQITC5wejOc3qJ3GmFPrkWmrneQsk1gXtRkGHgVhWunYPuPeqcRuWHdpxB/A4pWt/+FQx2EFO1CCCGEsF+3r8Hhv1XbEf/48ykGtXqqdthkXaMIO7P5G9DMUL4VFK+tdxrbcfVKXYRs3aeqF1bkXZePp34403682k1DPDIp2oUQQghhvw78rraN8g9SC1s5osbDAAMc/Uetgi9E7GXYNUe1mw7XNUquqP286nWNv64Kd5F3rX4fLMlQqT1UaKV3mjxDinYhhBBC2K/wu/ZmNxj0zfKwCleEqo+p9sYp+mYR9mHbD5B8G4rVhnIt9E5je0YTtB+n2tt/hCsn9M0jbCMiDA7/CQYTtBund5o8RYp2IYQQQtiny8fU/tUGE9TooXeaR9NkhLrctwCun9E3i9BXwi3YOk21mw533A+jsqtCa6jYTvXCrnpP7zQip1kssGKMagf3Af8q+ubJY6RoF0IIIYR9Sullr9gGvIvqm+VRlQyGss1UwbLlO73TCD3tmq2GiRcqD1W76J0md7Ufp7a3O/wnRGzUO43ISfsWwoVwtc1ly7f1TpPnSNEuhBBCCPtjMd+1N7sDLkCXkZS5yztnyWJc+ZU5CTZ/q9qNh+a/Rbr8q0LdPqq9cozqnRWOLzEO/h2r2s1eB68i+ubJg6RoF0IIIYT9ObUOYs6Bmy9U7qh3mpxRoQ0E1ICkWNj+k95phB72LYKYs+DpD7We1TuNPlq9DS5ecH437F+kdxqRE7Z8q35f+5ZS21yKHCdFuxBCCCHsT/iv6rJ6d3B20zdLTjEYUvfj3vq96p0S+YfFAhsnq3bIoLxzXmeXl7/qjQVYPRaSbuubRzyam1Gp21m2eT//ntc2JkW7EEIIIexLfAwcWqbaeWVofIqgrlCgDMRdgd1z9U4jctOxFRB9GFx9oN6LeqfRV6NBqlc25mzqdAHhmNZ+BIm3oHhdqN5N7zR5lhTtQgghhLAvB/9Q22EVrgwlgvVOk7NMTtB4iGpv+lrNcRb5Q0pvZL1+atpHfubsDm3urCAfNgluXdI3j3g4UQfVwooAoR+BUUpLW5F3VgghhBD2JWVofK1n8+Z2WHV6gUdhuHEaDvyudxqRGyI3w5ktYHKROb8pqneH4nVUL+2aj/ROIx7GqndBs0DVx6FMiN5p8jQp2oUQQghhP66ehNObAAPUfEbvNLbh7A6NXlXtjV+BpumbR9heylz2Ws+Cd4CuUeyG0ah6ZwF2zYJLh/TNI7Ln+L9wfDUYnaHtWL3T5HlStAshhBDCfuz5TV1WaAW+JfTNYkv1+6sVtKP2qz98Rd4VdRCOLgcMaps3kapMY6jymOqtXfmu3mlEVlnMsPId1W4wAPwq6JsnH5CiXQghhBD2wWK5a2h8HluA7l7uBSG4r2qnzHUWedOmKeqy6uNQuKK+WexRuw/B6ATHV6neW2H/ds+BSwfBrQA0H6l3mnxBinYhhBBC2IfIjWqet6sPVOmsdxrbazRIDS2NDIMz2/VOI2zh+hnYt1C1mw7XNYrd8qugemtB9bZbzPrmEfeXcBP+m6DaLUaBRyF98+QTUrQLIYQQwj7sudPLXq0ruHjoGiVX+JZInbefMudZ5C2bvwVLMpRrnvd2QshJzd9UvbaXDshWiPZu41cQewkKlVfTfESukKJdCCGEEPpLuAUH/lDt2s/rGiVXNbkzx/nwnxB9RN8sImfFXVULrAE0Ga5rFLvnUQha/J9qr5mgfh8I+3PjHGz6RrXbjgUnF33z5CNStAshhBBCf4eWQVKs6r0p1VDvNLmnSKBaiAtg4xR9s4icte0HSIqDgJpQobXeaexf/ZehYDm4FaV6c4X9+W8cJN+G0o3VGg0i10jRLoQQQgj9hc9Tl3l1b/b7SemF3Ttf9WQJx5cYC1unqXbT4fnvnH4YTi7Q7s7WYZu+ln8L9uZ8eOoUptDxck7nMinahRBCCKGv66chYoNq1+qpbxY9lKoPZZqAJQm2fKd3GpETds+F21ehYFmo+oTeaRxH1S5QOkT15v43Xu80IoWmpW7xVqOHrM+gAynahRBCCKGvlL3ZyzaDAqX1zaKXlN72nTPh9jU9k4hHZU5KnffbeAiYnPTN40gMBmh/Z2XyPb+q3l2hvyN/qw9WndygzXt6p8mXpGgXQgghhH40LXXIZX5agO5eldqBfzVIvAXbf9I7jXgU+5eorQs9i+Tvc/phlQyGGk8Dd3p3NU3vRPmbOQlW3SnUGw2CAqX0zZNPSdEuhBBCCP2c2QpXT4KzZ/5e2MhgSN3He8v3kHRb1zjiIWla6iJqDV8FZ3d98ziqNu+ByVX17h75R+80+duOn+HKcfUhVNMReqfJt3Qt2qdOnUrNmjXx8fHBx8eHkJAQ/vkn9R9my5YtMRgMab5effXVNI9x+vRpOnfujIeHB/7+/rz55pskJyfn9ksRQgghxMNIWYCuWldw9dI1iu6qPQW+pSHucur7IhzLsVVqr3EXL6j/kt5pHFeB0hAySLVXvat6e0Xuu30d1n6s2i1Hg5uPrnHyM12L9pIlS/Lxxx+zc+dOduzYQevWrXniiSc4cOCA9ZiXX36ZCxcuWL8+/fRT6/fMZjOdO3cmMTGRTZs2MWvWLGbOnMl778lcCyGEEMLuJcal7s1e61ldo9gFk5OaAw1q+zezdEI4nLBJ6rJeP3AvqG8WR9f0dfAorHp5d8zQO03+tOFztaBikSpQt4/eafI1XYv2xx9/nE6dOlGpUiUqV67MhAkT8PLyYsuWLdZjPDw8CAgIsH75+KR+wrNy5UoOHjzI3LlzqV27Nh07dmTcuHF8++23JCYm6vGShBBCCJFVh/+ChBjVq1amid5p7EOdXuDhB9cj4eAfeqcR2XFmG5zeBEZnNfdXPBo3H2g1WrXXTlS9viL3XItI3baw/XhZUFFndvPum81mFi5cSGxsLCEhIdbb582bx9y5cwkICODxxx/n3XffxcPDA4DNmzdTo0YNihYtaj0+NDSUgQMHcuDAAerUqZPhcyUkJJCQkGC9HhMTA0BSUhJJSTL8RqSVck7IuSHyAznfRW4yhc/DCJir98BiNoPZnKvPb5fnu8EZY73+mNZ/ghY2meTALrIfsoMwbfgSI2Cp0QOzexGwp/MKOz3fH6Tm8zhtnYbh8lHM6z7D0uYDvRPlG6aV72E0J2Ip1xJzmRZ2dz7fjyOd61nNqHvRvm/fPkJCQoiPj8fLy4vff/+doKAgAJ577jnKlClD8eLF2bt3L6NGjeLIkSMsWbIEgIsXL6Yp2AHr9YsXL2b6nBMnTmTs2LHpbl+5cqX1AwEh7rVq1Sq9IwiRa+R8F7bmlniV9ifXAvDf1aLE/f23blns7Xx3Ti5Ne6MLTlH72D7/E6J9auodSTyA9+1ztD76DxoG1iTW4JaO5/OD2Nv5/iBFfR6j0eUvYev3rI0pR5xrEb0j5XkFbx2j+bH/oWFgnWtbYv5xzMUAHeFcj4uLy9JxuhftgYGBhIeHc+PGDRYtWkSfPn1Yt24dQUFBDBgwwHpcjRo1KFasGG3atOHEiRNUqFDhoZ9z9OjRvP7669brMTExlCpVivbt26cZfi8EqE/AVq1aRbt27XB2dtY7jhA2Jee7yC3GTV9hOKBhKdWIlk/20yWDPZ/vBve9sG0ajZK3YO70lt5xxAOYlqm1CLTATjR/qr/OaTJmz+f7fWkdsfy6E9OpdbTR1mPuNF3vRHmbpmGaNUU1az1H08defcAd7I8jnespI74fRPei3cXFhYoVKwIQHBzM9u3b+eqrr5g2bVq6Yxs2bAjA8ePHqVChAgEBAWzbti3NMVFRUQAEBARk+pyurq64urqmu93Z2dnuf7BCP3J+iPxEzndhU5oG++YDYKzzPEadzzW7PN+bDIUd0zFGhmG8tBdKBOudSGTmxjnYvwgAY7PXdT+fH8Quz/cHCZ0A3zfDeOh/GC8OhlIN9E6Ud+1fDOd2gLMnxrbv2f35fD+OcK5nNZ/d7dNusVjSzDe/W3h4OADFihUDICQkhH379nHp0iXrMatWrcLHx8c6xF4IIYQQdubcTrh8FJzcIair3mnsk29JqPG0aodN1jWKeIAt34ElCco0hZL19E6TNwXUgDrPq/aKt9UHfyLnJcXD6g9Uu8kw8M68E1TkLl2L9tGjR7N+/XoiIiLYt28fo0ePZu3atTz//POcOHGCcePGsXPnTiIiIli6dCm9e/emefPm1Kyp5na1b9+eoKAgXnjhBfbs2cOKFSt45513eO211zLsSRdCCCGEHQj/RV1WfVz2/b2fJsPU5aFlcPmYvllExuKupm5H1nSEvlnyulbvgLMHnN0OB37XO03etG0aXD8N3sWg8WC904i76Fq0X7p0id69exMYGEibNm3Yvn07K1asoF27dri4uLB69Wrat29PlSpVeOONN+jWrRvLli2z3t9kMvHnn39iMpkICQmhV69e9O7dmw8//FDHVyWEEEKITCXFW4cSU/s5fbPYO/+qULkjoMGmKXqnERnZPh2SYqFoDajYRu80eZtPsdQPslZ/AMkZj8wVDyn2Mqz/XLVbvwsunvrmEWnoOqd9+vTMF5IoVaoU69ate+BjlClThr/teIVOIYQQQtzl6D8QfwN8SkC55nqnsX9Nh6v3bM9v0PJtVbgI+5AYB1u/V+0mw2RrvtzQeAjsnAnXI9Ue4k2G6p0o71j7MSTEQEBNqPWs3mnEPexuTrsQQggh8rCUofE1nwGjSd8sjqB0IyjVCMyJau60sB/h8yDuMhQoDdWe1DtN/uDiCa3fUe31n0PsFX3z5BXRR2HHz6odOgGMUiLaG/mJCCGEECJ33IyC4/+qtgyNz7qUudI7ZsDt67pGEXeYk1OnLDQeCibdN2TKP2o9qxamS7gB6z7WO03esOo90MxqOo6MgLJLUrQLIYQQInfsW6D+MCxZHwpX0juN46jUHopUhcSbqb1hQl8H/1ALdnn4Qe3n9U6TvxhN0H6Cau/4WRZpfFSn1qspOAYTtJN1weyVFO1CCCGEsD1NSx0aL73s2WM0pi7AtWWqWsxP6EfTUrfha/gquHjoGidfKt8CKncAS7LqJRYPx2KBFWNUu96LUKSyvnlEpqRoF0IIIYTtXdgDlw6CyRWqPaV3GsdTozv4lITYS7DnF73T5G/H/4WofeDsCfX7650m/2o3TvUOH/kbTm3QO41j2vsbXNwLrj7Q8i2904j7kKJdCCGEELaX0stepTO4F9A1ikMyOafum7zpa7CY9c2Tn22crC6D+4JHIT2T5G9FKkO9fqq9cozqNRZZlxgL/45T7WZvgGdhffOI+5KiXQghhBC2lZwI+xaqtgyNf3h1e4N7Qbh6Eg4t1TtN/nR2B0RsAKMThAzSO41oOVr1El/YA3vn653GsWz6Bm6eV7sfNHxV7zTiAaRoF0IIIYRtHVsBt6+CV1Eo30rvNI7LxRMaDFDtsElqbrXIXWGT1GWNHuBbUt8sQvUON3tdtf/9EBLj9M3jKG5ehI1fqXbbD8DZTdc44sGkaBdCCCGEbYX/qi5rPiNbYz2qBq+Ak7vqWTy5Vu80+cvlY3D4L9VOWRhQ6K/hQPAtrXqNN3+jdxrH8N94SIpVO3nIGiMOQYp2IYQQQthO7GXV0w4yND4nePqpYfKQOrda5I6NXwEaBHYC/yp6pxEpnN2g7fuqHTZZ9SKLzF3cD7vnqnb7CWAw6JtHZIkU7UIIIYSwnX0L1bZMxeuAf1W90+QNIa+pVbNProXzu/VOkz/EnIc9v6l2k+G6RhEZqN4NStRTvcdrJuidxn5pGqx8B9AgqCuUbqh3IpFFUrQLIYQQwnZSVo2vJb3sOaZgGbUFHKTuFy5sa8t3YEmC0o2l0LFHBgOEfqTau+dC1AF989ir46vh5Bowuai57MJhSNEuhBBCCNu4uF/tAWx0Ti0yRc5ImVN9aClcOaFvlrzu9nXYMVO1mw7XMYi4r9INIegJ0Cx3epNFGubk1PelwQAoVE7fPCJbpGgXQgghhG3subMAXWAH2c86pxWtBpXaqwJl09d6p8nbdkyHxJvgH6Tec2G/2n6gPiQ88R8cW613GvuyaxZEHwb3QtD8Tb3TiGySol0IIYQQOc+clLpvsgyNt42UudXhv8DNKF2j5FlJt2HLVNVuMkwW7bJ3hcpDw1dUe+UY1bssID4G1tyZPtDyLXAvoGsckX1StAshhBAi5x3/F2KjwaMwVGqnd5q8qUxjKNkAzAmwdareafKm8F/UeexbSi12Juxf85HgXlD1Ku+erXca+xA2CeIug19FqPei3mnEQ5CiXQghhBA5b8+dBehq9gCTs75Z8iqDIXWO9fafVW+ayDkWc+rUg5DBch47CveC0OIt1V7zkfy7uH5GLaQI0O5DOY8dlBTtQgghhMhZcVfhyD+qLXuz21bljlA4EBJuwM4ZeqfJWw7+D66dUnOA676gdxqRHfVehEIV1CiJjZP1TqOvfz+E5Hgo0xQCO+mdRjwkKdqFEEIIkbP2LwZzIhStAQE19E6TtxmNqSvJb/4OkhP0zZNXaJoaUgxqjrSLp755RPY4uaheZYDN38KNs/rm0cu5nbBvgWqHjpc1GRyYFO1CCCGEyFkpe7NLL3vuqPE0+JSAWxdhz296p8kbTq5R2xU6e6jtsYTjqdIZyjRRvcz/fqh3mtynabDizhZvNXtC8Tr65hGPRIp2IYQQQuScS4fh/C4wOqliUtiekws0GqTam6aoudji0YRNVpd1e8t2hY7KYID241V773zV65yfHFoGpzeBkzu0eVfvNOIRSdEuhBBCiJyTsgBdxXbgVUTfLPlJcB9w84Urx+Hwn3qncWzndsGpdWAwQchreqcRj6JEXdXLDKrXWdP0zZNbkhNh9fuq3Xgw+JbUN494ZFK0CyGEECJnWMyw9878SRkan7tcvVOHcYdNzj/FiS2kLFxW42koUFrXKCIHtHkXnNxUr3N++UBr+09w9SR4+qeueSEcmhTtQgghhMgZJ9fAzQtqy6XKoXqnyX8avKKKk/O7IGKD3mkc05UTcHCpakuxkzf4llRb9gGsek/1QudlcVdh3Seq3XqM+kBPODwp2oUQQgiRM1IWoKvxNDi56pslP/IqAnV6qXbKnGyRPZumABpUCoWiQXqnETml6XDV63z1JOyYrnca21r/OcRfB/8gqCNbFeYVUrQLIYQQ4tHdvg6H/1LtWs/qGiVfazxEzcU+8S9c2KN3Gsdy82LqB09NR+ibReQsV29o9bZqr/sEbl/TN4+tXDkB235Q7fbjwGjSN4/IMVK0CyGEEOLRHfhdba1UpKpsLaSngmWh2pOqvfErXaM4nC1TwZwIpRpCmRC904icVucF9fvp9jXVG50XrX4fLElQoQ1UbKt3GpGDpGgXQgghxKPb86u6rP2s2mpJ6CdlLvaB3+HqKX2zOIr4G7DjZ9VuMlzXKMJGTE6pW8BtnaZ6pfOSyE1qmzeDMfV1ijxDinYhhBBCPJrLx+HMVvXHYs1n9E4jitVUPW2aBTZ9rXcax7DjZ0iIgSJVoHIHvdMIW6nUVv3bsCTB6g/0TpNzLBZYMUa16/aW9RjyICnahRBCCPFoUnrZK7QB7wB9swglZU52+Dy4Fa1vFnuXFK+GxoMapWCUP4/ztPbj1QeMh5ZC5Ga90+SM/YvVrhEuXtBqjN5phA3IbyUhhBBCPDyLBfb8ptq1ZQE6u1G2KZQIVusMbP1e7zT2be9vcCsKfEpA9e56pxG2VvSuVdVXjlG/wxxZ0m34d6xqNx0OXv66xhG2IUW7EEIIIR5exHqIOQuuvhDYWe80IoXBkDo3e/uPkHBT1zh2y2KGjVNUO+Q1cHLRN4/IHa3GqF7pczvhwBK90zyaLVPhxhn1oVOj1/ROI2xEinYhhBBCPLzwO0Pjqz8Fzm76ZhFpVXkM/CqpRdZ2ztQ7jX06tAyungC3AlC3j95pRG7xLpr6odbqsWqKhCO6FQ0bvlTtNu+Bi4e+eYTNSNEuhBBCiIeTcFPNCwWo/by+WUR6RiM0Garam7+D5ER989gbTYONk1W7wQBw9dI1jshlIa+Bd3G4cRq2TtU7zcNZ+xEk3oRitaFGD73TCBuSol0IIYQQD+fg/yApDvwqQsl6eqcRGan5DHgXg5vnYd8CvdPYl1Pr4fxucHKHhq/onUbkNhcP1TsNsP4Lx1uw8dLh1BE0oRNkAcU8Tn66QgghhHg44b+oy1qyN7vdcnKFRgNVO2yy4y+6lZPCJqnLOr3As7C+WYQ+aj4DxWqp3uq1E/VOkz2r3lXbOlZ5TC08KfI0KdqFEEIIkX3XIiByI2CAWj31TiPuJ7ifWijwyjE48rfeaezD+XA4uQYMJmg8WO80Qi9GI4R+pNo7Z0L0EV3jZNmJNXBsJRidoO1YvdOIXCBFuxBCCCGyL2Wbt/ItwLekvlnE/bn5QP2XVDtskprLnd9t/EpdVn8KCpbVNYrQWdmmaucLzQwr39U7zYNZzLDyHdWu3x8KV9Q3j8gVUrQLIYQQInssltSh8bIAnWNoNBBMrnBux50REvnY1ZNw8A/VbjJM1yjCTrT7UPVaH1sBJ9fqneb+wn+BqP3g5gstRumdRuQSKdqFEEIIkT2nN8P1SHDxVvMphf3z8oc6dz5gCZusaxTdbfpazQWu2A4CauidRtiDwhWh3p3RKCveUb3Z9ijhFvw3XrWbvwkehfTNI3KNFO1CCCGEyJ6UXvZqXWVfYEfSeAgYjHB8FVzcr3cafdy6BLvnqXbT4bpGEXamxSi19kPUvtTfcfZm0xS4dVFN6WgwQO80IhdJ0S6EEEKIrEuMTR1aXPs5XaOIbCpUHoKeUO2UOd35zdbvwZwAJepBmSZ6pxH2xNMPmo9U7f/Gq15texJzHjZOUe22Y9XOECLfkKJdCCGEEFl3aBkk3lI9PaVD9E4jsqvJcHW5fzFci9Q1Sq6Lj4FtP6l20+GyTaFIr+ErUKCM6s3e9LXeadL6bzwk34ZSjVI/fBP5hhTtQgghhMg6697sz0nR44iK14byrdRK2Zu/0TtN7to5ExJugF8ltVq4EPdycoV2d7ZQ2zQFYi7omyfFhb2pv3tDJ8jv3nxIinYhhBBCZM31M3BqvWrL3uyOK2Uu9645EHtZ1yi5JjkBtnyn2k2Gqf25hchIUFco1RCS4lIXfdOTpsHKMYAG1btByXp6JxI6kN9YQgghhMiavb8BGpRtBgXL6J1GPKxyLaBYbTXUdus0vdPkjr3z4eYF8C4GNXvonUbYM4MB2k9Q7fB5qpdbT0dXqA9LTa7Q5n19swjdSNEuhBBCiAfTNAj/VbVrPatvFvFoDAZoOkK1t/1gfwtu5TSLJXUBr5DXZAEv8WCl6kO1p4A7vdyapk8OcxKsele1G70qH5bmY1K0C3E/FjOGyDBKXN2MITLMfvftzGssZji1AfYtUpfyvguhvzPb4OoJcPaURZDygqqPQ6EKEH8dds3WO41tHfkLrhwDN18I7qt3GuEo2r4PJhfVy310hT4Zds6Ey0fBww+avaFPBmEXpGgXIjMHl8Lk6jjN7Uq9yKk4ze0Kk6ur24Xt3HnfmfUYLH5JXcr7LoT+9txZBCmoC7h66ZtFPDqjSe3bDrD5W0hO1DePrWgahE1S7fr9wdVb3zzCcRQsCw1fVe1V76pe79wUfwPWTlTtlqPVh04i35KiXYiMHFwKC3qrPTHvFnNB3S4FpG3I+y6EfUq6DfuXqLYMjc87aj0Lnv4Qcxb2L9I7jW1EhMG5nWo+cEoBJkRWNXtD9XJfPqp6vXPThi8g7goUrgzB/XL3uYXdcdI7gBB2x2KG5aOAjOYv3bntf4Pg/C4wyOdeOUazwLYfyfx9N8Dyt6BKZ9VDJITIPYf/goQY8C2lFqETeYOzG4QMgtUfwMavoGbPvLeq+sbJ6rJOL/Dy1zWKcEDuBVQv998jVa93zR650+N9LRK2TFXtduPAJCVbfidngBAJN+HSIYjaD1EHIHJz+p7ejO6TMtxO5BINYs5B5CYoJ0WDELlqT8oCdHmwqMvv6r0IG76E6MNwbAUEdtQ7Uc65uA+Or1YfsKdMBRAiu4L7ql0WrhxT/1ZS9nG3pX/HgjkRyjWHyqG2fz5h96RoF/mHxQxXT6UW51EH4NIBuBbxcI9XoS0UrpSjEfO1y8fgxOoHH3cryvZZhBCpYi7Aif9UW4bG5z1uvlCvn+ppD5uUt4r2sMnqMqgrFCqnZxLhyEzO0H4c/NpT9X7Xe9G2q7if2Q77FwN3tp4zGGz3XMJhSNEu8qbYK6ogjzqQWqRfOqz2pM2IdzEoWk19GZwg7IsHP0fT4dLjm5NObcha0e5V1PZZhBCp9s5X01dKNQK/CnqnEbbQaJAqRs5sVaPNyoTonejRXYuAA3fWYWg6XM8kIi+o3EFNDYrYAP9+CN2n2+Z5NA1WvK3atZ+DYjVt8zzC4UjRLhxbcoJaHCTqYNoe9FsXMz7eyR38q94p0KtD0SDwrwaefqnHWMyw91fVu5Th/GoD+BSHMo1t8YryrzKN1fua6fuO+vkVr5ursYTI1zQNwu+sGl/7OX2zCNvxDlCjKHbNUnPA80LRvukb9WFThdZQrJbeaYSjMxggdAJMa6EWbWw0EErWy/nnOfgHnN0Gzh7Q+p2cf3zhsKRoF45B09Q885Qh7SnF+eWjYEnO+D4Fy94pzO/0oPtXU8PjHrSImdEEHT5Rq5VjIG0BeWeIUoePZTG0nHbf9/2O5Nvwy9PQcx64F8zthELkP+d3weUj4OQG1brqnUbYUuOhar/2o8vVB+FFg/RO9PBuRcPuOardZLiuUUQeUqyW+nBrzy+qN/zFFTk7dD05AVa9r9qNh6qODCHukKJd2J/E2LQLw6X0osdfz/h4N19VkKcU50Wrg3+VR9uLNagL9JitVpG/e1E6n+KqYA/q8vCPLTKX6fteAur2VnsJR26EnztCr8XgW0K/rELkBym97FUflz2C87rCFdXP+dBSNb/9qWl6J3p426ZBcjwUr6MW8hIip7R5Fw78rqaSHPxfzn6Yue0HuB4JXgHQZGjOPa7IE6RoF/qxWODaqdRe86j9cOmgWiwuo15Wg0ntVVk06K7h7dVUQWeLRTqCukCVziSfXE/4hhXUbhaKU/nm0sNua3fedyI3qUXnvIqqofNGE1R5DOZ2g+hDML2dKtz9q+qdWIi8KTkB9t3Zu1sWoMsfmg5XRfv+RWpoboFSeifKvoRbd7YPBZqOkEW8RM7yKa4K6nWfwOr31cKNTq6P/rhxV2H9Z6rd+h1w8Xz0xxR5ihTtInfEXVUFeZqF4Q5BUlzGx3sVTTusvWg1KBKYM78Ys8NoQivTlHMHYqhVpqkU7LnFaMp4kb+A6tB/Fcztrobs/hwKz/4m6wsIYQtHl6sRTt7FoXxLvdOI3FAiWPVMn1qvRjZ1/FjvRNm3a5Y6bwtVUB/0CpHTGg+FnTPVYofbfoTGgx/9Mdd9AvE3VIeUrB8iMiBFu8hZyYlqH8t7F4a7mcm+505uUKTKXXPP7ywM51Ukd3MLx1GgNLy4XG29cmYrzO4K3X6EoCf0TiZE3pIyNL7WM/KBZX7SZLgq2nfNghb/Bx6F9E6UdcmJagE6UL2hct4KW3D1Ur3hS4fA+k9Vkf0o/04uH4ftP6l2+/Fy3ooMSdEuHo6mwc2LaYe1Rx2A6CNgScr4PgVKp10Yrmh1KFRefjmJ7PMoBL3/B4v7w+E/YUEf6PgpNBygdzIh8oZbl+DYKtWuJb0++UqF1hBQEy7uVXNsW76ld6Ks27dQdRJ4BciUDmFbtZ+HrdPU38DrPoGOnzz8Y616Ty2qXKk9VGiVcxlFniJFu3iwxDg1hzjqQNqv21czPt7VB/yD7lkYriq4+eRubpG3OburRev+Hgk7foZ/3oSbF6DNezKHUYhHtXcBaGYoUQ+KVNY7jchNBoOa277oRVWUNB7iGPNrLRa1gB6o7bhyezqdyF+MJmg/DuY8qXrJ67+sFnPMrogwOPKXWrep3biczynyDCnaRSqLRa1aee/CcFdOkPHCcEbwq5Q6rD2lF923lBRNIncYTdD5SzXnds14CPtSFe5dvgaTs97phHBMafZml97KfKnqE2rb1GsRsHsuNHxF70QPdnS5WuvE1Qfq9dM7jcgPKrSGiu3g+Cq1KF3Pedm7v8Wito4DCO6rdj4SIhNStDsKiznj1bQf1u3rGS8Ml3gr4+M9CqtFwIpWT+1FLxKoejuF0JPBAC3eBO8AWDYM9vyqhvb2mK3mnQkhsufiXrh0AEwuUL2b3mmEHkxOqof9rzdg09dQ70X7/iBU0yBskmrXe1G2JxS5p/14OPGfmqoXEQZlm2b9vvsWwIU94OINLUfbLqPIE6RodwQHl2ayX/gnD94v3JwEV46nH9oeczbj400u6ReGK1odvPxz7vUIYQt1X1Dn6cK+cOJfmNkZnl8o564Q2RX+q7oM7ATuBfXNIvRT+3lY+zHcOAP7l6gFCe3V6c1wdhuYXNXQeCFyi38VCO6jpumtGAMvrwGj8cH3S4yDfz9U7WavywLM4oGkaLd3B5fCgt6kG54ec0Hd3mO2Ktw1TfUu3r0oXNR+tTCcOTHjx/Ytdde885SF4SqoT9iFcESVQ6HPn/DL03AhHKa3V3u5+1XQO5kQjiE5UfX+gGw7lN85u0PDV+G/cbBxMtTsYb9T38Imq8vaz6pRV0LkppZvw96F6u+OfQuz9gHXlm8h5pz6W7zRIJtHFI5PqjN7ZjGrHvaM5pOn3PbHQLVH5KWDEHc548dx8cp4YTj3AjYKLoSOSgbDS6vU4jDXTqnC/fkFav9hIcT9HV8FcVfA0x8qtNE7jdBb/ZfUsPNLB+HYSvXBqL2JOgDHVgAGtX+2ELnNqwg0G6F6zv8dC1UfBxePzI+/GZX6QVOb98HZLVdiCscmRbs9i9yUdkh8RhJvQcR61TYYVU/53YvCFa0GvqWzNlRHiLzCrwL0Xw3zuqv5YjMfU6NSKrXTO5kQ9i1lAbqaPWTUlVDTI+r1U/PawybbZ9GesmJ80BMyqkrop9Eg2DFDTSfZ8i00fzPzY9dMUH+/F68r64aILJNKzp7disracXX7qjk0o8/BkB2qOGnxf1Cls1r9VQp2kR95+UPfv9Tqrklx8MszsDubK7sKkZ/EXoGjK1RbhsaLFI0GgdEZTm+CM9v0TpPW9dOwb5FqNx2uaxSRzzm7qy1nQX3AdTOTv+GjDsLuOaod+pH8jS6yTM4Ue+ZVNGvH1egOJerefyiOEPmRqzc8Ox9q9lR7Tv9vEKz/XK0BIYRIa/8isCRBsVpqlJYQoBa+TZmjmzKk115s/lb9bi/XAorX0TuNyO+qd1fnYeItWPtRxsesfAc0C1TtAmVCcjefcGhStNuzMo3Vf5ZktvCLAXxKqOOEEBlzcoEnv4cmw9X1/8bB3yPVmhFCiFThd0ai1H5e3xzC/jQeBhjgyF9w6bDeaZTYK7BzlmpLL7uwB0aj6j0H2DVb9arf7fhqtbuN0Rnajc39fMKhSdFuz4wmta0bkL5wv3O9w8ePtl+7EPmBwaD+g+z4KWCA7T/Bwj6QdFvvZELYh6iDav0Ho7PqLRLibkUqqyl3AJum6JslxbYfIPm2GhlSvpXeaYRQyjRWC9FpFlj1burtFjOsvHO9wQAoVF6ffMJhSdFu74K6qDnqPsXS3u5TPHW7NyFE1jR8BZ6eASYXOLRMrTB/+5reqYTQ3547C9BVDgVPP32zCPvUdIS63LsAbpzVN0tiLGybptpNhtvvVnQif2o7Vn0Aenw1EUsnsuPPHzi38P/ULgxuBaD5SL0TCgeka9E+depUatasiY+PDz4+PoSEhPDPP/9Yvx8fH89rr72Gn58fXl5edOvWjaiotAs7nD59ms6dO+Ph4YG/vz9vvvkmycnJuf1SbCuoCwzfr/af7jZdXQ7fJwW7EA+j2pPwwu/g6gunN8PPHeD6Gb1TCaEfczLsma/asgCdyEzJelCmqVr3YPN3+mbZNVt94FqwnFo1Xgh74leBS/5NACi762Pq7XiTEod+AuBs0dbgUUjPdMJB6Vq0lyxZko8//pidO3eyY8cOWrduzRNPPMGBAwcAGDFiBMuWLWPhwoWsW7eO8+fP89RTT1nvbzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvPb1eku0YTVCumVp0rlwzGRIvxKMo2xRe/Ae8i0P0YbWXe9QBvVMJoY8T/0HsJfDwg4qyLaK4j5Te9p0zIe6qPhnMSWoBOoAmQ+XvIWF3dq+YReELa9OteatpUDxiCbtXzNInmHBouhbtjz/+OJ06daJSpUpUrlyZCRMm4OXlxZYtW7hx4wbTp0/nyy+/pHXr1gQHBzNjxgw2bdrEli1bAFi5ciUHDx5k7ty51K5dm44dOzJu3Di+/fZbEhMT9XxpQgh7V7Qa9F8FRarAzfPwc0eICNM7lRC5L2UBuho91MKNQmSmYhsoWgOSYmH7dH0y7F+s9sL29IdaMjJE2BdzcjLFN6tF5u6dtZFyvdjmsZjz2qhgYXNOegdIYTabWbhwIbGxsYSEhLBz506SkpJo27at9ZgqVapQunRpNm/eTKNGjdi8eTM1atSgaNHUrdFCQ0MZOHAgBw4coE6djLf/SEhIICEhwXo9JiYGgKSkJJKSkmz0CoWjSjkn5NzIgzyKwgt/YlrYC+OZLWhznsT8xFS0qvl3uKWc7/nM7es4HfkbA5BU/WnIZz93Od+zz9DoNZz+9yra1u9Jrj8AnHNxu1nNglPYJAyAuf4ALJjy3Tn7KOR8t73DW/6hBlcy3fjJaIAArrBv899UadQxd8PlI450rmc1Y5aK9tdffz3LT/zll19m+ViAffv2ERISQnx8PF5eXvz+++8EBQURHh6Oi4sLBQoUSHN80aJFuXjxIgAXL15MU7CnfD/le5mZOHEiY8em32ph5cqVeHjIXuciY6tWrdI7grARY6H+BMckU/zGDkxL+rO/xBpO+rfXO5au5HzPH8pG/0stcyI33EqxducZMOi8wJhO5HzPOoPmShuXwnjGXebQL+9wqkjbB98phxS9sZtG0YdJMrqx8koJkv/+O9eeOy+R8912EiO3UCMLxx3evZmTV7UHHygeiSOc63FxcVk6LktF++7du9Nc37VrF8nJyQQGBgJw9OhRTCYTwcHB2YwJgYGBhIeHc+PGDRYtWkSfPn1Yt25dth8nO0aPHp3mg4iYmBhKlSpF+/bt8fHxselzC8eTlJTEqlWraNeuHc7OznrHEbZieRzzyrcx7ZxOjXNzCSpdEEurd8GQvzbZkPM9fzHN+AoAr6Yv06lhZ53T5D453x+OseglWDGKGjfXUvWFT8GYOwM3TbPVAnjGBv1p3+bpXHnOvETOd9s7vMUA/z54ocYqdUKkp92GHOlcTxnx/SBZ+i27Zs0aa/vLL7/E29ubWbNmUbBgQQCuXbtGv379aNasWbaDuri4ULFiRQCCg4PZvn07X331Fc888wyJiYlcv349TW97VFQUAQEBAAQEBLBt27Y0j5eyunzKMRlxdXXF1dU13e3Ozs52/4MV+pHzI69zhse+gAIl4N8PMW3+GlPsJejyTb6c5yvnez4QfRTO7wSDCVPtZzHl45+3nO/ZFNwbNnyK4cZpnI/+pRbJtbXTW+DMFjC5YGo8OF+fr49KznfbCQrpRNS/fhTRrmDMYIi8RYNLBj+CQjphcrKbWcp5liOc61nNl+0upC+++IKJEydaC3aAggULMn78eL744ovsPlw6FouFhIQEgoODcXZ25t9//7V+78iRI5w+fZqQkBAAQkJC2LdvH5cuXbIes2rVKnx8fAgKCnrkLPbEbNHYfOIK/ws/x+YTVzBbZEiNEDnOYIBmb0DXqWAwwd758OszkHBT72RC5LyUvdkrtQMvf32zCMfi4gENX1XtsMmkWybbFsImq8uaz4BPMds/nxAPweTkxKbKbwKqQL9byvULIe9LwS6yLdtnTExMDNHR0eluj46O5ubN7P1hO3r0aDp27Ejp0qW5efMmv/zyC2vXrmXFihX4+vry0ksv8frrr1OoUCF8fHwYMmQIISEhNGrUCID27dsTFBTECy+8wKeffsrFixd55513eO211zLsSXdUy/dfYOyyg1y4EW+9rZivG+8/HkSH6vIflxA5rvZzamXiBb3VdlgzO8NzC8G76IPvK4QjsJhT92av9ay+WYRjqt9fFdJR++D4v1DJhnPbLx2Co/8ABmgyzHbPI8QjunE7iY8jKrE8aThjnWcTQOrWiBfx4xuXl5jQvreOCYWjynZP+5NPPkm/fv1YsmQJZ8+e5ezZsyxevJiXXnopzR7qWXHp0iV69+5NYGAgbdq0Yfv27axYsYJ27dQ+sZMmTeKxxx6jW7duNG/enICAAJYsWWK9v8lk4s8//8RkMhESEkKvXr3o3bs3H374YXZflt1avv8CA+fuSlOwA1y8Ec/AubtYvv+CTsmEyOMqtYW+y8CjMFzYA9PbwZUTeqcSImecXKu2OnQrAIEyr1I8BI9CENxXtTdOtu1zbZyiLqs+BoUr2fa5hHgEH/11iKiYBI4WaoX3W4c50O4XdtT7jB0tZ9PO8jW/3KzN2qPpOz+FeJBs97R///33jBw5kueee866RL2TkxMvvfQSn332WbYea/r0++/x6ebmxrfffsu3336b6TFlypTh7zy6eqjZojF22UEyGnSmoXaTGLvsIO2CAjBlNHFGCPFoSgTDSythbje4dkoV7s8thJLZX3RTCLuy51d1WaM7OOWdkWkil4UMgm3TIGIDnN0BJevl/HNcPwP7Fqh2kxE5//hC5JD1R6OZv+MMBgN80q0mnu6uVGuSusBnz1sHmR52iu/XnqBVoExJEtmTrZ52s9nMjh07mDBhAleuXGH37t3s3r2bq1ev8t133+Hp6WmrnPnStlNX0/Ww300DLtyIZ9upq5keI4R4RH4V4KVVULwOxF2BWY/B0RV6pxLi4cXfgEPLVLv2c/pmEY7NtyTU6KHaYZNs8xxbvgNLMpRtJh+YCrt1KyGZ0Uv2AdAnpCwNyhVKd8xLTcvhZDSw9dRVdp2+ltsRhYPLVtFuMplo3749169fx9PTk5o1a1KzZk0p1m3k0s3MC/aHOU4I8ZC8ikCfP6FiW0iKg1+fhV1z9E4lxMM58Ackx0PhQCheV+80wtGlzDE//BdcPpazjx13FXbOUu2mw3P2sYXIQR//c4hz129TqpA7b4YGZnhM8QLudK1TAoDv18p0O5E92Z7TXr16dU6ePGmLLOIe/t5uOXqcEOIRuHrBs79BredAM8PSwbDus9xZNVmInJQyNL72s2rHBCEehX8VCOwEaLDxq5x97O0/QVIsBNSACm1y9rGFyCGbT1xh7pbTAHz8VE08XTOfffxqi/IArDoUxfFLt3Iln8gbsl20jx8/npEjR/Lnn39y4cIFYmJi0nyJnNOgXCGK+bqR2Z9UBtQq8hkNwRFC2IDJGbp+p7aFA1gzHv56Xa3ELYQjuHICTm8Gg1FtnSVETmgyXF3u+Q1izufMYybGwdbvUx9fPmASdiguMZlRi/cC8GyD0jSpWPi+x1f096Zt1aJoGvywXnrbRdZlu2jv1KkTe/bsoUuXLpQsWZKCBQtSsGBBChQokGbvdvHoTEYD7z+u9pvP7L+q9x8PkkXohMhNBgO0eQ86fQ4YYMfPMP8FSLqtdzIhHmzPb+qyfCvwKa5vFpF3lG4IpRuDJUnNQc8Ju+eqdUQKlIGgrjnzmELksM9XHOX01TiK+brxdqcqWbrPwJYVAPh99zku3mftKiHulu3V49esWWOLHCITHaoXY2qvuun2aXdxMjKlZ23Zp10IvTR4GbyKwuL+cOQvmP2EGj7vISNfhJ2yWO4aGi8L0Ikc1nQ4/LIJdsxQo5HcH6Ejx5wEm75W7cZDwJTtP1eFsLmdkVeZsekUAB89VQNvN+cs3S+4TEEalC3EtoirTA87yZjOQbaMKfKIbP8WbNGihS1yiPvoUL0Y7YIC2HbqKocvxDD2z4MkJluoVtxX72hC5G9BXcDzD/i1J5zZCj+HQq/FUKC03smESC8yDG6cAVdfqNL5wccLkR2V2oN/EFw6CNunQ/ORD/9YB36HG6fBozDU6ZVzGYXIIfFJZt5ctBdNg251S2Z7C7dXW5Zn28yr/LL1NINbVcLXI2sFv8i/sj08PkVcXByHDx9m7969ab6EbZiMBkIq+NGvaTmaVPQDYNHOszqnEkJQpjG8uAJ8SsDlo/BTO7i4T+9UQqQX/ou6rP4kOLvrm0XkPQZD6kryW79/+ClD2l0L2jV8Vc5VYZcmrz7GyehYini78t5j2e8pbxXoT2BRb2ITzczdGmmDhCKvyXbRHh0dzWOPPYa3tzfVqlWjTp06ab6E7fWoVwpQRbvZIitXC6E7/6pqL3f/ILh1EWZ0glPr9U4lRKqEW3BwqWrXkqHxwkaqdwPfUhAbnfohUXYdXw1R+8HFCxr0z9l8QuSAPWeuWxeRm9C1+kP1khsMBl5tqVaS/znsFPFJsqCtuL9sF+3Dhw/n+vXrbN26FXd3d5YvX86sWbOoVKkSS5cutUVGcY/QagH4uDlx7vptNh6/rHccIQSAbwno9w+UaQIJMTC3G+xfrHcqIZRDS9XWWYUqQKkGeqcReZXJGUIGq/amKWBOzv5jhE1Wl8F9H21evBA2kJBs5v8W7cWiQZdaxWlfLeChH+uxmsUpUcCdK7GJLJTRs+IBsl20//fff3z55ZfUq1cPo9FImTJl6NWrF59++ikTJ060RUZxDzdnE13rlABgwY4zOqcRQli5F4BeSyDoCTAnwqIXYXMOraQsxKNI6fWUvdmFrdV9AdwLwbUIOPS/7N33zHa19oLRGRoNskk8IR7Ft2tOcCTqJn6eLnzQpdojPZazyUj/ZuUA+HH9SZLNlpyIKPKobBftsbGx+PurxRYKFixIdHQ0ADVq1GDXrl05m05kKmWI/MoDUVyLTdQ5jRDCytkNus+ABq+o6ytGw4oxauVuIfRwLRIiNgAGqNlT7zQir3PxhIZ3fv+FTVZz1LNq42R1WfMZNXpJCDty4PwNvltzHICxT1SjkKfLIz/mM/VLUdDDmdNX4/hn/8VHfjyRd2W7aA8MDOTIkSMA1KpVi2nTpnHu3Dm+//57ihWT7cdyS/USvgQV8yHRbOGP8HN6xxFC3M1ogo6fQNux6vrmb+D3AZAsH7AJHaTszV6uORQopW8WkT80GADOHnBxL5zM4lbB0Ufg8J+q3WSo7bIJ8RCSzBb+b9Feki0aHaoF0LlGztQ8Hi5O9GlcFoCpa0+gZedDLpGvZLtoHzZsGBcuXADg/fff559//qF06dJMmTKFjz76KMcDisw9U1/98TV/+xn5Ry6EvTEY1L7FT04DoxPsWwjzukN8jN7JRH6iabAnZWi8LEAncolHIajbW7XDJmXtPhunqMvAzlAk0Da5hHhIP6w/yYHzMRTwcObDrtUw5OA0oz4hZXF3NnHwQgwbjslaVSJj2S7ae/XqRd++fQEIDg4mMjKS7du3c+bMGZ555pmczifuo2vtErg4GTl88Sb7z0khIIRdqtUTnlsAzp5wah3M7AQ3ZQicyCWnN6u5xS5eUPVxvdOI/CTkNTCY1E4a5x4wffLGOdg7X7WbDrd5NCGy42jUTb5afQyA9x8Pwt/bLUcfv6Cni7Uj7vt1J3L0sUXeke2i/eTJk2mue3h4ULduXQoXLpxjoUTW+Ho40+HOqpXzd5zWOY0QIlMV20C/v8CziNrDfXo7uHxM71QiP0hZgC6oq5prLERuKVAaajyt2ilz1TOz5TuwJKndN2R3A2FHzBaNNxftJdFsoXUVf7rWts1aC/2blcPJaGDTiSvsOXPdJs8hHFu2i/aKFStSunRpXnjhBaZPn87x48dtkUtkUcqCdP8LPy97PAphz4rXUXu5FyoP10/D9PZqpWQhbCUxDg78odq1n9U1isinmgxTlweXwpVMehBvX4OdM+8cPzw3UgmRZdPDTrLnzHW8XZ2Y8GT1HB0Wf7eSBT3oUqs4IL3tImPZLtrPnDnDxIkTcXd359NPP6Vy5cqULFmS559/np9++skWGcV9NK7gR8mC7tyMT2a5rDophH0rVE4V7sXrwu2rMOtxOPKP3qlEXnX4T0i8CQXKQOnGeqcR+VHRIKgUCmiw8auMj9n+EyTeAv9qUKldrsYT4n5ORt/ii5VHAXjnsaoU83W36fO90qICAMsPXORk9C2bPpdwPNku2kuUKMHzzz/PDz/8wJEjRzhy5Aht27ZlwYIFvPLKK7bIKO7DaDTwdHDqgnRCCDvnWRj6/gmV2kPybfjtOdg5S+9UIi9KGRpf61kwZvu/eyFyRtMR6nLPr+nX80i6DVu+v3PccLWApxB2wGLRGLV4LwnJFppVKmwd2WpLgQHetKnij6bBjxtOPvgOIl/J9v/icXFxrFy5krfffpvGjRtTs2ZN9uzZw+DBg1myZIktMooH6F6vJAYDbD55hcgrsXrHEUI8iIsn9PwV6vQCzQLLhsLaj7O3n7EQ93PjLJxcq9q1ZG92oaMyIVCqIZgTYcvUtN8Lnwdxl8G3NFR7Sp98QmRg9uYItkdcw9PFxMSnathsWPy9Xm2petsX7zzHpZj4XHlO4RiyXbQXKFCAF154gfj4eN566y3Onz/P7t27mTRpEk888YQtMooHKFHAnaYV1UKAC3ec1TmNECJLTE7Q5Rto/qa6vnYiLBsG5mR9c4m8Ye98QFMLexUqp3cakd+lzFXf8TPE31Btc3LqNm+NB6vfiULYgTNX4/hk+REA3upYhZIFPXLtueuXLURwmYIkmi1M33gq155X2L9sF+2dOnXCbDbz22+/8dtvv7Fw4UKOHj1qi2wiG1K2ili08yxmi/TWCeEQDAZo/Q50/hIMRtg1C+b3UguICfGwNC11aLzszS7sQeUOUKQKJMSoOeynNsCK0XA9EtwKqlFHQtgBTVPD4m8nmWlYrhDPNyyT6xlevTO3/Zctp4mJT8r15xf2KdtF+x9//MHly5dZvnw5ISEhrFy5kmbNmlnnugt9tAsqSgEPZy7GxLP+WLTecYQQ2VH/JegxB5zc4Og/MLsLxF7RO5VwVGd3wJXj4OwBQTICTtgBozF1Jfn/xsOsx2DbD+q6lgzH/9UvmxB3+XXbGTaduIKbs5FPutXEaMz9dRbaVPGnkr8XNxOSmbslMtefX9inh16ZpkaNGjRp0oSQkBDq16/PpUuXmD9/fk5mE9ng6mSy7h25QBakE8LxVH0Mev8P3ArA2e3wcyhck/+sxUPYc6eXverj4OqtbxYhUji5qUvNkvb2hFuwoLfaFk4IHZ2/fpuP/j4EwMj2gZQt7KlLDqPRYF1J/uewCNnSWQAPUbR/+eWXdOnSBT8/Pxo2bMivv/5K5cqVWbx4MdHR0sOrp5Qh8qsPRXHlVoLOaYQQ2Va6Eby0EnxLwZVjML0dXNirdyrhSJLiYf9i1Zah8cJeWMywckwm37wzpW/5W+o4IXSgaRqjl+zjVkIydUsXoF8TfdcC6VKrOMV83bh8K4Elu87pmkXYh2wX7SlF+uzZs7l8+TI7duywFvIFCxa0RUaRRVWL+VCzpC9JZo3fd8s/cCEcUpFAVbgXrQ63omBGp9RVwIV4kCN/q4W+fEpC2eZ6pxFCidwEMefvc4AGMefUcULoYPGuc6w7Go2Lk5FPu9fCpMOw+Lu5OBnp36w8AD+sPyHrVYnsF+3bt2/n888/57HHHsPX19cWmcQjSNlHcsGOM2iyfZQQjsmnOPT7G8o2g8SbMLc77FukdyrhCKx7s/eUvdmF/bgVlbPHCZGDomLi+XDZAQBGtK1MRX8vnRMpPeuXwtfdmYgrcSzff1HvOEJnD/U/+oYNG+jVqxchISGcO6d6dOfMmUNYWFiOhhPZ93it4rg6GTkadYvwM9f1jiOEeFhuvtBrMVR7EixJsPgl2PS13qmEPbt5EU7cWdCr1rP6ZhHibl5Fc/Y4IXKIpmmM+X0/MfHJ1Cjhy8vN7GeLTE9XJ/qEqNXrv193Qjrj8rlsF+2LFy8mNDQUd3d3du/eTUKCmjt948YNPvrooxwPKLLH192ZTjWKAbBA9mwXwrE5uUK3n6HRIHV95Tuw/G2wWO5/P5E/7Z2vFvkq1RAKV9Q7jRCpyjRWI4jIbMixAXxKqOOEyEXL9l5g9aEonE0GPnu6Jk4m+xqh1KdxWdycjew7d4NNJ2RXmfws22fm+PHj+f777/nxxx9xdna23t6kSRN27dqVo+HEw0kZIr9sz3niEpN1TiOEeCRGI3SYCO3Hq+tbvoUl/SFZFpsUd9E0CP9VtaWXXdgbowk6fHLnyr2F+53rHT5WxwmRSy7fSuD9/+0HYHCrSlQJ8NE5UXp+Xq48c+fv+qlrT+icRugp20X7kSNHaN48/eI2vr6+XL9+PScyiUfUqHwhyvh5cCshmb/3yRwYIfKExkPgqR/B6KxWB5/bTS04JgTAhXCIPgQmVzWlQgh7E9QFeswGn2Jpb/cprm4P6qJPLpFvvb/0ANfikqgS4M3AlhX0jpOp/s3KYzIaCDt+mX1n5f/9/CrbRXtAQADHjx9Pd3tYWBjly5fPkVDi0RgMBp4OLgmoBemEEHlEzR7w/EJw8YaIDWpl+ZgLeqcS9iBlAbqqj4F7AV2jCJGpoC4wfD/0+RO6TVeXw/dJwS5y3fL9F/hr7wVMRgOfP10LFyf7GhZ/t1KFPHispvqw6/v10tueX2X7DH355ZcZNmwYW7duxWAwcP78eebNm8fIkSMZOHCgLTKKh9A9uBRGA2w7dZVTl2P1jiOEyCkVWqmV5b2KQtR+tZd79BG9Uwk9JSfAvoWqXUv2Zhd2zmiCcs2gRnd1KUPiRS67FpvIO3+o1eJfbVGe6iXsfzesV1uokQD/7LtAhPxdny9lu2h/6623eO6552jTpg23bt2iefPm9O/fn1deeYUhQ4bYIqN4CAG+brSoXASQ3nYh8pxiNdVe7n4V4cYZ+DkUTm/VO5XQy9EVcPsaeBdTH+oIIYTI1Lg/D3L5VgIV/b0Y0rqS3nGypGoxH1oGFsGiwQ8bTuodR+gg20W7wWBgzJgxXL16lf3797Nlyxaio6MZN24ct2/ftkVG8ZBSFqRbvPMsyWZZbVqIPKVgWXhxJZSopwq22V3g8F96pxJ62HNnAbqaPaTXUggh7uO/w1Es2X0OowE+614TN2fH+Z2Z0tu+aOdZLt2M1zmNyG0PPYHDxcWFoKAgGjRogLOzM19++SXlytnP3oYC2lQtip+nC5duJrDuaLTecYQQOc3TD/osg8odIDke5veCHT/rnUrkplvRcGylasvQeCGEyNSN20mMXrIPgJealqNO6YI6J8qehuUKUad0ARKTLczcGKF3HJHLsly0JyQkMHr0aOrVq0fjxo35448/AJgxYwblypVj0qRJjBgxwlY5xUNwcTLyZJ0SAMzfLkPkhciTXDzgmXlQt7fao/vPEfDfBLUFmMj79i0ESzIUrwv+VfROI4QQduujvw4RFZNAucKevNE+UO842WYwGKy97XO2RHIzPknnRCI3Zblof++995g6dSply5YlIiKCp59+mgEDBjBp0iS+/PJLIiIiGDVqlC2ziofQo74aIv/f4UtE35R9nYXIk0xO8PgUaPGWur7+U1g6BMzJ+uYStrfnzqrxtaWXXQghMrPhWDTz76zx9Ek3xxoWf7d2VYtSoYgnN+OT+WXrab3jiFyU5aJ94cKFzJ49m0WLFrFy5UrMZjPJycns2bOHnj17YjI55smf11Uu6k3tUgVItmgs2XVW7zhCCFsxGKDVaHj8KzAYYfcc+O05SJRVZvOsi/vUl8kFqnfTO40QQtilWwnJvLVYDYvvE1KGBuUK6Zzo4RmNBl5prnrbp4edIiHZrHMikVuyXLSfPXuW4OBgAKpXr46rqysjRozAYDDYLJzIGc/c6W1fsOMMmgyZFSJvC+4LPX8BJ3c4tgJmPQ6xl/VOJWwh/M4CdJU7gIfj/hEqhBC29Mk/hzl3/TYlC7rzfx0cfxrRE3WKE+DjxqWbCfyx+5zecUQuyXLRbjabcXFxsV53cnLCy8vLJqFEznqsZjHcnU2ciI5l1+lrescRQthaYEfosxTcC8K5nTC9PVyL0DuVyEnmJNg7X7VrP69vFiGEsFNbTl5hzpZIQA2L93R10jnRo3N1MvFSU7X497R1JzFbpEMuP8jymatpGn379sXV1RWA+Ph4Xn31VTw9PdMct2TJkpxNKB6Zt5sznWoUY/Gus8zffobgMtIjI0SeV6oBvLQK5jwFV0/AT+3g+YVQvLbeyUROOL4a4i6DZxGo2EbvNEIIYXduJ5oZtXgvAM82KE2TioV1TpRznm1Ymq//O8bJy7GsOniRDtWL6R1J2FiWe9r79OmDv78/vr6++Pr60qtXL4oXL269nvIl7FPKEPk/914gNkEWpxIiXyhcCfqvgqI1IPYSzOwMJ/7TO5XICeHz1GXNZ8DkrG8WIYSwQ5+vPELklTiK+boxupPjD4u/m5erE71DygIwdd1Jmf6aD2S5p33GjBm2zCFsrH7ZgpQv7MnJy7H8tfeCdVV5IUQe5x0A/f5We7ifWgfznoYnvoNaz+idTDysuKtwZLlq13pW3yxCCGGHdkZe5eeNpwD46Kka+LjlvQ83+zYpy48bTrLnzHU2n7xC4wp5ZySBSC/LPe3CsRkMBp6upwr1lC0vhBD5hJsPPL8IqndXe3r/PgA2fiV7uTuq/YvBkgQBNSGgut5phBDCrsQnmXlz0V40DbrVLUmrQH+9I9lEYS9Xnq5XEoDv153UOY2wNSna85FudUtgMhrYGXmN45du6h1HCJGbnFzgqR8hZLC6vuo9WD4aLBZ9c4nsSxkaL3uzCyFEOl/9e4yT0bEU8Xbl3ceq6h3HpgY0q4DRAOuPRnPg/A294wgbkqI9H/H3caNVYBEAFu6QPduFyHeMRgidAKEfqetbp8KifpAUr28ukXWXDsH53WB0ghpP651GCCHsyt6z1/lhvep1ntC1OgU8XB5wD8dW2s+DzjWLA2oleZF3SdGez/S4M0R+8a6zJJmlh02IfCnkNeg2HYzOcPAPmNsNbl8HixlDZBglrm7GEBkGFrPeScW9wn9Rl5VCwVPmLwohRIrEZAtvLtyL2aLxeK3itK8WoHekXPFK8/IA/Ln3PKevxOmcRtiKFO35TKsq/hT2cuXyrUT+O3xJ7zhCCL3U6A69FoOrD0SGwdSm8GUQTnO7Ui9yKk5zu8Lk6nBwqd5JRQpzMuxdoNq1ZQE6IYS42zdrjnMk6iZ+ni6M7VJN7zi5pnoJX5pVKoxFgx83SG97XpWl1eOXLs36H21dunR56DDC9pxNRrrVLcG09SdZuOMMofnkU0ghRAbKt1Ary898DGIyWKAy5gIs6A09ZkOQ/G7X3ck1cOsiuBdSPe1CCCEAOHg+hu/WHAdg7BPVKOSZt4fF32tgywpsOHaZBTvOMKxtJQp7ueodSeSwLBXtXbt2zdKDGQwGzGYZTmnvnq5XimnrT7LmSDSXYuLx93HTO5IQQi/+QeCU2X/uGmCA5W9Blc5gNOVmMnGvlKHxNZ5WCwsKIYQgyWzhzUV7SLZohFYrSucaxfSOlOtCyvtRq6Qve87eYObGCEaGBuodSeSwLA2Pt1gsWfqSgt0xVPT3ol6ZgpgtGot2yYJ0QuRrkZvgVtR9DtAg5hycWJNrkUQGbl+Hw3+ptqwaL4QQVj+sP8mB8zH4ujszrmt1DAaD3pFyncFg4NUWFQCYvTmCWwnJOicSOU3mtOdTKQvSLdxxFk32ahYi/7pvwX6XX3qoYfTrP4dzO2WRutx2YAmYE9TIiGK19E4jhBB24VjUTb5afQyA9x8Pwt87/44ebV8tgHKFPYmJT+a3baf1jiNyWJaGx98rNjaWdevWcfr0aRITE9N8b+jQoTkSTNhW55rFGLvsAKcux7I94hoNyhXSO5IQQg9eRbN2nGaGiA3q679x4FYAyjWHCq2gfEsoVN6WKUX4r+qy1rOQD3uRhBDiXmaLxpuL9pJottC6ij9P1imhdyRdmYwGXmlenreW7OOnDafoHVIWFyfpn80rsl207969m06dOhEXF0dsbCyFChXi8uXLeHh44O/vL0W7g/B0deKxmsWZv+MM87efkaJdiPyqTGPwKa4WnSOjUTcG9f0X/oBT6+DkWji1AeKvw6Gl6gugQBlVvFdoBeVagIf8Tskxl4/B2W1gMEHNHnqnEUIIu/Bz2CnCz1zH29WJCU/mz2Hx93qybgm+XHWUizHx/BF+zjqyVji+bH/8MmLECB5//HGuXbuGu7s7W7ZsITIykuDgYD7//HNbZBQ20qO++of8974L3IxP0jmNEEIXRhN0+OTOlXv/4LlzvcPHUKQyNHgZes6D/zsJL62GVu9AmSZqv/frkbBrFizsC5+Whx9awuoP4OQ6SIrPtZeTJ+2508tesQ14y44fQghx6nIsn688AsCYzlUp5uuucyL74Opk4sWm5QCYtu4EFotMgc0rsl20h4eH88Ybb2A0GjGZTCQkJFCqVCk+/fRT3n77bVtkFDZSt3QBKhTx5HaSmT/3XtA7jhBCL0Fd1LZuPvesuOtTPOPt3kxOUKo+tHhTbRk3KgKeWwiNBkGRqoAG53dD2CSY3QU+KQtznoSNU+DCXrBYcumF5QEWM+z5TbVlATohhMBi0Ri1aC8JyRaaVizMM/WlN/luzzcsjbfb/7d33+FN1usfx99JuktbaKGTVTZlQxllg0xxIFtBQVQEweOex4UL9/G4QBQBRZGhqCAiILJXGWWVTaFQWgqUDlo6k98fAc4PRWW0fdLk87quXNokTT7Vp2nufL/Pfbtx8GQ2S3dfYd8acXhXvT3e3d0ds9le6wcHB5OYmEj9+vUJCAjg6NHLzPkVh2UymRjcsgqvL9zDrNij3N6qqtGRRMQoUbdAvT4UHlpJ3KpfadqhJ241Ol7ZmDfPclCnh/0CkJVi30Z/8Hf7P8+mwMFl9guAT0X7VvoL2+kDKpfMz+QMElbau/d7BUCd3kanEREx3Ffrj7DxcBo+HhYm9GukbfF/4OflzrA21Zi4/CATVxyke1SI/hs5gasu2ps1a0ZsbCy1a9emU6dOvPDCC5w6dYqvvvqKhg0blkRGKUG3NavMW4v2Enc0nX0nsqgT4md0JBExitmCrVp7knZl0qRa+2ufy+4XCk2G2C82G5zc878C/vBqyDkFO+faLwBBtf9XwFdvby9Qxe7C1viGA8Dddbsii4gAHE3L4c1FewB4pnc9qgT6GJzIMd3drjpTViewNTGdjQlptK4RZHQkuU5XvT3+9ddfJyzMvoXytddeo0KFCowZM4aTJ0/y6aefFntAKVmV/DzpWi8YgFmx2ikhIsXMZILg+hDzAAydbd9KP2IhdHwSKrcEkxlO74fYz+DbO+DNSPi8O/z+OhxZB0Uu3G8jNxPizzf609Z4EXFxNpuNp77bTk5+Ea0jAxnauprRkRxWsJ8X/Zvbd7FNWnHQ4DRSHK56pT06OvrivwcHB7No0aJiDSSlb3DLKiyOP8G8rUk81auexkOISMlx84Dq7eyXrv+Gc+n21fdDv9tX49MO2julH9sIK94Ej3L21fca50fLVarrOiPP4n+EwnP2nQgRLYxOIyJiqG9jj7L24Gm83M282b8xZrOL/C24Rvd3rMGs2ER+33uS3cmZ1A/zNzqSXIerrs66du1Kenr6n67PzMyka9euxZFJSlmnOpUI9vMkLTuf39SwQkRKk3d5qH8T9HkX/rUFHt4Bt3wIDfqBTxDkn4V9i2DRU/BJa3gvCuaNgW2zIMvJX6/ivrH/s+kdrvNBhYjIZRxPP8drP+8G4PEedale0dfgRI6vekVfeje0747+VKvtZd5VF+3Lly8nPz//T9fn5uayatWqYgklpcvNYmZAC/sWmlmbtEVeRAxUvio0vwsGToXHD8D9K6HbePtKu5sXZB2Hbd/AvFHwbh34pC0sehb2L4H8bKPTF5+0Q5C4FjBB48FGpxERMYzNZuPZeTs4m1dI86rlubtdpNGRyozRnWoCMH97MkfTcgxOI9fjirfHb9++/eK/x8fHk5KScvHroqIiFi1aRERERPGmk1IzMLoKnyw/yMp9J0nOOKd5lyJiPLMZwprYL+0fhoJzkLje3tDu0O/28XGpu+yX9R/b58VXaQ01O0ONrhDe9Nqb6Rntwpi3ml0gQH9bRcR1fbclieV7T+LhZuatAU2waFv8FWtUOYD2tSqy+sAppqxO4KVbGhgdSa7RFRftTZs2xWQyYTKZLrsN3tvbmw8//LBYw0npiazoS6vIQDYmpPHd5mOM61rb6EgiIpdy97YXsTW7AOMh+zQkrDh/PvxyyEiEI6vtl2Wv2rvQR3b83/nwgTXKxjZzq/V/XeObqAGdiLiu1MxcXp6/C4CHu9WmVnA5gxOVPaM71WT1gVN8G5vIg11rEVTO0+hIcg2uuGhPSEjAZrNRo0YNNm7cSKVKlS7e5uHhQXBwMBZLGV3REAAGR1dhY0Iaszcd44HOtdTgQ0Qcm28QNOxnv9hs9i3lFxraJayC3AzYPd9+AfvW+wsFfI3O4BNoZPq/lrgW0hPB0x/q9TE6jYiIIWw2G//+YSeZuYU0ighgVIcaRkcqk9rVCqJhhD87kzKZvu4Ij3avY3QkuQZXXLRXq2Yfq2C1WkssjBjrxkZhvPjTLhLTclifcJq2NSsaHUlE5MqYTBBU035peS8UFUJy3P/mwx/dYC+Et0y3XzDZt91fmA9fpY3jzEG/0ICuQV/w0AxiEXFN87cnsyT+BO4WE28PbIybRdONroXJZGJ0p5qM+2YrX647zOhONfDxuOoBYmKwa/o/dvDgQd5//31277Z3cYyKiuKhhx6iZs2axRpOSpe3h4Wbm4Qzc2MiczYdU9EuImWXxQ0qR9svnZ6AvLNwZO3/zodPjbcX9clxsOZ9e5O7qjH2Ar5GFwhpaD+nvrTlnYVdP9j/XVvjRcRFnT6bx0s/2bfFj+1Si3qhGld2PXo3DKNa0F6OnM7h241HGdlezfzKmqt+R/Lrr78SFRXFxo0bady4MY0bN2bDhg00aNCAJUuWlERGKUWDW1YBYOGOZDLOFRicRkSkmHiWgzo9oNfr8MA6eGwv3DYZmtwO5UKhMNdezC95AT7tAO/UhrkjYctXkF6KUzV2z4eCbKgQCVXblN7ziog4kBd+2kVadj71Qv14oHMto+OUeRaziVEd7acXfL7qEAVF2jld1lz1SvvTTz/NI488whtvvPGn65966im6d+9ebOGk9DWpHEDdED/2nsjip23HubNNNaMjiYgUP79QaDLYfrHZ4OTe/50Pf3g15JyCnd/ZLwBBtf53PnxkB3uTu5KwTbPZRcS1LdqZzM/bk7GYTbwzsAkebtoWXxz6N6/Mf5bs53hGLj/FHaf/+XHPUjZc9W/B7t27ueeee/50/ciRI4mPjy+WUGIck8nEwGj7L/HsWM1sFxEXYDJBcD1oMwaGzoanDsPdv0DHJ6FyKzBZ4PQBiP0MZg2FNyPh8+6w7DX7lvuiYtqVlJ4ICSvt/95kSPE8pohIGZKek89zP9i3xY/uVIOGESX0AakL8nK3MLJ9dQA+XXkQq9VmbCC5KlddtFeqVIm4uLg/XR8XF0dwcHBxZBKD9WteGXeLiR1JGcQfzzQ6johI6XLzgGptoeu/4d4l8FQCDP7a3uAuqBbYiuDYRlj5FkztDW9Wh68HwfqJkLrHvnJ/LbbNsv+zegd7p3sRERfz8vx4Tp3No1ZwOR7U+OFiN7R1Ncp5urHvxFmW7Uk1Oo5chSveHv/yyy/z+OOPc9999zFq1CgOHTpE27ZtAVizZg1vvvkmjz76aIkFldIT6OtB96gQFu5IYfamo7x0SwOjI4mIGMcrAOrfZL+A/Rz3Cw3tDi2HnNOw/1f7BcAv7PxYuS5Qo5N9K/7fsRbBkTWwcbL96ya3l9APIiLiuJbtOcH3W5Mwm+CtAY3xctco6eIW4O3O0NZV+XTlISatOEi3qBCjI8kVuuKV9vHjx3P27Fmef/55XnjhBT788EM6depEp06d+Oijj3jppZd47rnnrurJJ0yYQMuWLfHz8yM4OJi+ffuyd+/eS+7TuXNnTCbTJZfRo0dfcp/ExET69OmDj48PwcHBPPHEExQWFl5VFrnUoGh7Q7of4pLIKywyOI2IiAMpXwWa3wkDvoDHD8D9q6D7y/Yi3c0LspJh20yYNwrerQufxMCiZ2HfYsjPvvSx4n+C9xvC9Jsh+/yqx7JX7NeLiLiIzNwCnv1+JwD3tI+kedUKBidyXiPbR+JhMbPpyBk2HU4zOo5coSteabed3+5nMpl45JFHeOSRR8jKygLAz8/vmp58xYoVjB07lpYtW1JYWMizzz5Ljx49iI+Px9fX9+L97rvvPl5++eWLX/v4/G9ubVFREX369CE0NJS1a9eSnJzMXXfdhbu7O6+//vo15RLoULsSYQFeJGfksiT+BDc1Djc6koiI4zGbIayx/dLuISjIhaPrz8+H/x2St9vHy6XGw/qPwewOVVrbV+LNbvDbeOAP2+mzUmD2XTDoS4i6xYifSkSkVL3+825SMnOpHuTDo93rGh3HqYX4e9GveQTfxh5l0oqDfF490OhIcgWuqnu86Q+dbK+1WL9g0aJFl3w9bdo0goOD2bx5Mx07drx4vY+PD6Ghl99euHjxYuLj41m6dCkhISE0bdqUV155haeeeoqXXnoJDw+P68roqixmEwNaVObDZQeYFXtURbuIyJVw9zq/Nb4zMB6yT0PCiv9tp09PhCOr7Ze/ZANMsOhpqNcHzNoiKiLOa9X+k3x7vvnxWwOa4O2h17ySNqpjDWZtOsrS3ansTcmibuj11XRS8q6qaK9Tp86fCvc/Sku79m0WGRkZAAQGXvqJz9dff82MGTMIDQ3l5ptv5vnnn7+42r5u3ToaNWpESMj/zsno2bMnY8aMYdeuXTRr1uxPz5OXl0deXt7FrzMz7c3WCgoKKCjQbPIL+jYJ5cNlB1h94BSHT2YSUd7b6EiGuHBM6NgQV6DjvZh5+EPdm+0Xmw3OJGBOWI5p1/eYj67/m2+0QWYShYdWYqvWvtTiuhod7+JKHPF4P5tXyNPfbQfgztZVaFbZz6HyOasq5T3pXj+YxfGpTFq+n7f6NzI6UrFyxGP9r1xpxqsq2sePH09AQMmMXrBarTz88MO0a9eOhg0bXrz+jjvuoFq1aoSHh7N9+3aeeuop9u7dy/fffw9ASkrKJQU7cPHrlJSUyz7XhAkTGD9+/J+uX7x48SVb7wVq+5vZn2nmjVnL6V3FtUdDLFmyxOgIIqVGx3tJCiXC3Ixo/q5ot4tb9StJuzTFo6TpeBdX4kjH+9xDZpLSzQR62mhkS2DhwgSjI7mMhmZYjBs/bjtOY/NRAj2NTlT8HOlY/ys5OTlXdL+rKtqHDBlSYmPdxo4dy86dO1m9+tItg6NGjbr4740aNSIsLIwbbriBgwcPUrNmzWt6rmeeeeaSTveZmZlUqVKFHj164O/vf20/gJMqiEjm8bk72HHWl//26oDZ/Pc7LZxRQUEBS5YsoXv37ri7uxsdR6RE6XgvHaYj/nBk4j/er2mHnjTRSnuJ0fEursTRjvcNCWmsWrcJgP/cHk3bmkEGJ3I9a7NjWZ9whsOeNRh2Yz2j4xQbRzvW/86FHd//5IqL9n/aFn89xo0bx4IFC1i5ciWVK1f+2/u2bt0agAMHDlCzZk1CQ0PZuHHjJfc5ceIEwF+eB+/p6Ymn558/TnJ3d3f4/7Gl7aYmEYxfsJuk9FxiEzNpX7ui0ZEMo+NDXImO9xJWoyP4h0NmMn9qRAeACfzDcavRUee0lwId7+JKHOF4P5dfxL9/jAfg9lZV6FTvH0ZjSokY06U26xM2MntTEg93q0sFX+fqBeYIx/o/udJ8Vzzy7UL3+OJks9kYN24c8+bNY9myZURGRv7j98TFxQEQFhYGQExMDDt27CA1NfXifZYsWYK/vz9RUVHFntnVeLlb6Ns0AoBZm44anEZExEmYLdDrzfNf/PFD8fNf93pDBbuIOKV3F+/lyOkcwgK8eObG+kbHcVkda1ckKsyfcwVFfLnuiNFx5G9ccdFutVqLfWv82LFjmTFjBt988w1+fn6kpKSQkpLCuXPnADh48CCvvPIKmzdv5vDhw/z000/cdddddOzYkcaNGwPQo0cPoqKiuPPOO9m2bRu//vorzz33HGPHjr3sarpcvQsz23/dlUJ6Tr7BaUREnETULfaxbv5hl17vH65xbyLitDYfOcOUNfZz11/v1wh/L8deCXVmJpOJ0Z3tpxtPW5tATn6hwYnkr1xx0V4SJk6cSEZGBp07dyYsLOziZdasWQB4eHiwdOlSevToQb169Xjsscfo378/8+fPv/gYFouFBQsWYLFYiImJYdiwYdx1112XzHWX69Mwwp/6Yf7kF1r5Me640XFERJxH1C3w8E4YvgD6T7H/8+EdKthFxCnlFhTx5Nxt2GzQv3llutQtmV5ZcuVubBhKlUBvzuQUMDtWu2od1VU1oitu/7TlvkqVKqxYseIfH6datWosXLiwuGLJH5hMJgZHV+al+fHMij3K8LbVjY4kIuI8zBaI7GB0ChGREvff3/Zz8GQ2lfw8ef4mbYt3BG4WM6M61OD5H3fx2aoEhraphrvF0HVduQz9H5Er0rdZBB4WM/HJmexMyjA6joiIiIiUIduPpTN55SEAXu3bkPI+ztX0rCwbGF2FIF8PktLP8fP2ZKPjyGWoaJcrUt7Hgx4NQgCYrYZ0IiIiInKF8gutPDl3O0VWGzc3CadnA3WLdyRe7hbublcdgEkrDpZIA3K5Pira5YoNbmlvSPfD1iRyC4oMTiMiIiIiZcHHvx9gT0oWQb4evHSzpjs5ojvbVMfXw8KelCyW7z1pdBz5AxXtcsXa1axIRHlvMnML+XVXitFxRERERMTB7U7O5OPfDwAw/tYGBJXTdCdHFODjzu2tqgIwccVBg9PIH6lolytmNpsY0KIyALPUXVJERERE/kZBkZUn5m6j0GqjZ4MQ+jQK++dvEsPc0yESd4uJjQlpbD5yxug48v+oaJerMjC6MiYTrD14mqNpOUbHEREREREHNXnlIXYmZRLg7c4rfRtiMpmMjiR/IyzAm75NIwD7ue3iOFS0y1WpXMGH9rUqAjBHDelERERE5DIOpGbx36X7AXjx5iiC/bwMTiRX4v5ONQBYEn+CA6lZBqeRC1S0y1UbFG1vSDdn8zGKrOouKSIiIiL/U2S18cTc7eQXWelStxK3NYswOpJcoVrBfvSIsk+M+nTFIYPTyAUq2uWqdY8KIcDbneSMXFYfOGV0HBERERFxIFPXJLA1MR0/Tzde79dI2+LLmNGdawLwQ1wSyRnnDE4joKJdroGXu+XiJ6az1ZBORERERM5LOJXN27/uBeDffeoTFuBtcCK5Ws2rVqBVZCAFRTamrEowOo6gol2u0YUt8ovjU0jLzjc4jYiIiIgYzWq18dTc7eQVWmlfqyKDW1YxOpJcozGd7KvtMzcmkpFTYHAaUdEu1yQq3J+GEf4UFNmYtzXJ6DgiIiIiYrCv1h9h4+E0fDwsTNC2+DKtc91K1Av1Izu/iK/WHzY6jstT0S7XbPCFhnSbjmKzqSGdiIiIiKs6mpbDm4v2APB073pUCfQxOJFcD5PJxOjzq+1T1xwmt6DI4ESuTUW7XLNbmkbg6WZmT0oW249lGB1HRERERAxgs9l4+vvt5OQX0SoykGGtqxkdSYrBTY3DiCjvzensfI16NpiKdrlmAd7u9G4YCsAs/SKLiIiIuKRvY4+y5sBpvNzNvNW/MWaztsU7AzeLmVEd7XPbJ686RGGR1eBErktFu1yXCw3p5scd51y+ts2IiIiIuJLj6ed47efdADzeoy7VK/oanEiK06DoKgT6enA07Rw/70g2Oo7LUtEu16VNjSCqBHqTlVfILzv1iywiIiLiKmw2G8/O28HZvEKaVS3P3e0ijY4kxczbw8LwmOoATFpxSH2sDKKiXa6L2WxiUAv7avsszWwXERERcRnfb0li+d6TeLiZeXtAYyzaFu+U7oqphre7hd3Jmazcf8roOC5JRbtctwHRlTGZYENCGodPZRsdR0RERERKWGpmLuPn7wLg4W61qRXsZ3AiKSkVfD24vVVVACYtP2hwGtekol2uW1iANx1rVwJgzmattouIiIg4M5vNxnM/7CQzt5BGEQGM6lDD6EhSwu7tEImb2cS6Q6eJO5pudByXo6JdisXglvYt8nM3H1NnSREREREntmB7MovjT+BuMfH2wMa4WVRSOLvw8t7c0jQc0Gq7EfQbJsWiW/0QAn09OJGZx8r9J42OIyIiIiIl4PTZPF78yb4tfmyXWtQL9Tc4kZSW0Z1qAvBrfAoHT541OI1rUdEuxcLDzUzfphEAzI49ZnAaERERESkJL/60i7TsfOqF+vFA51pGx5FSVCfEj271g7HZYPKKQ0bHcSkq2qXYXNgiv3T3CU6dzTM4jYiIiIgUp0U7U1iwPRmL2cTbA5rg4aZSwtVcWG2ftzWJE5m5BqdxHfpNk2JTN9SPJlXKU2i1MW9LktFxRERERKSYpOfk89wPOwG4v2MNGlUOMDiRGCG6eiDR1SqQX2Tli9UJRsdxGSrapVgNjj4/s33TUWw2m8FpRERERKQ4vLwgnlNn86gVXI5/3VDb6DhioDGd7avtX29IJONcgcFpXIOKdilWNzUJw8vdzIHUs2zVOAgRERGRMm/ZnhN8vyUJkwneGtAYL3eL0ZHEQF3qBlMnpBxn8wqZsf6I0XFcgop2KVb+Xu7c2CgMgNmxmtkuIiIiUpZl5hbw7Pf2bfH3tIukedUKBicSo5nNJu7vaF9tn7rmMLkFRQYncn4q2qXYXdgiP3/bcbLzCg1OIyIiIiLXasLC3aRk5lI9yIfHetQ1Oo44iFuahhMe4MWps3l8t0WTo0qainYpdq0iA6ke5EN2fhELdyQbHUdERERErsHq/aeYudG+c/LN/o3x9tC2eLFzt5i5t0MNACavPESRVb2sSpKKdil2JpOJgedX22dv0hZ5ERERkbImO6+Qp77bDsDwmGq0rhFkcCJxNENaVaG8jztHTufwy04t1JUkFe1SIga0qIzZBLGHz3Dw5Fmj44iIiIjIVXhz0R6S0s9RuYI3T/aqZ3QccUA+Hm7cFVMdgEkrDmpyVAlS0S4lIsTfiy51gwGttouIiIiUJRsOnebLdfau4G/2b4yvp5vBicRRjWhbHS93MzuTMllz4LTRcZyWinYpMRe2yH+3OYmCIqvBaURERETkn5zLL7q4Lf72VlVoV6uiwYnEkQX6ejCkZVUAJq44YHAa56WiXUrMDfWDqVjOg1Nn81i+96TRcURERETkH7y7eC+HT+cQFuDFMzfWNzqOlAH3tI/EYjax5sBpdhzLMDqOU1LRLiXG3WKmX/PKAMzSzHYRERERh7Yl8QxT1iQA8PptjfD3cjc4kZQFVQJ9uKVJOGA/t12Kn4p2KVGDou1F++97U0nNzDU4jYiIiIhcTm5BEU/M2YbNBv2aR9ClXrDRkaQMub+Tffzbwp3JJJzKNjiN81HRLiWqVrAfzauWp8hq4/utSUbHEREREZHL+OC3/Rw8mU0lP09euCnK6DhSxtQL9adL3UrYbPa57VK8VLRLiRvc8vzM9tijGgUhIiIi4mB2HMvg0/OF1qt9G1Lex8PgRFIWje5UE4DvthwjNUs7bIuTinYpcX0ah+PjYeHQqWw2HTljdBwREREROS+/0MoTc7dRZLVxU+MwejYINTqSlFGtIgNpXrU8+YVWpq45bHQcp6KiXUpcOU83+jQKA+yr7SIiIiLiGD5ZfoA9KVkE+now/pYGRseRMsxkMl1cbZ+x7giZuQUGJ3IeKtqlVFzYIv/zjmTO5hUanEZEREREdidn8tEy+2zt8bc0IKicp8GJpKzrVj+EWsHlyMor5JsNiUbHcRoq2qVUtKhWgRqVfMnJL2LBtuNGxxERERFxaYVF9m3xhVYbPRuEcFPjMKMjiRMwm03c39HeSX7K6gRyC4oMTuQcVLRLqTCZTAyOtq+2z9qkLfIiIiIiRpq86hA7kzIJ8HbnlVsbYjKZjI4kTuLWphGEBXhxMiuPeZoeVSxUtEupua15BBazia2J6ew/kWV0HBERERGXdCA1i/eX7AfghZuiCPb3MjiROBMPNzP3tI8E7OPfiqyaHnW9VLRLqQn286JrvWAAZmu1XURERKTUFVltPDF3O/lFVrrUrUS/5hFGRxInNKRVVfy93Eg4lc3iXSlGxynzVLRLqbqwRf77LUnkF1oNTiMiIiLiWqavO8LWxHT8PN14vV8jbYuXElHO043hbasDMGnFQWw2rbZfDxXtUqo6161EJT9PTmfns2xPqtFxRERERJxekdXGhoQ0fj9u4p3F9m3x/+5Tn7AAb4OTiTMb3rY6nm5mth3LYN3B00bHKdNUtEupcrOY6d+8MqAt8iIiIiIlbdHOZNq/uYxhX2zihyMWCqw2PCxmArzdjY4mTq5iOU8Gnd9lO3HFQYPTlG0q2qXUDYq2F+3L96aSkpFrcBoRERER57RoZzJjZmwh+Q/vt/KLrDzw9RYW7Uw2KJm4ilEda2Axm1i1/xQ7kzKMjlNmqWiXUlejUjlaVQ/EaoPvthwzOo6IiIiI0ymy2hg/P56/O5N4/Px4dfaWElUl0Ic+jcIA+7ntcm1UtIshBkb/b4u8GlOIiIiIFK+NCWl/WmH//2xAckYuGxPSSi+UuKT7O9UAYOGOZI6czjY4Tdmkol0M0adxGOU83ThyOocN+mMhIiIiUqxSs67sFMQrvZ/ItWoQHkCnOpWw2uCzVYeMjlMmqWgXQ/h4uHFzE/tWmdmxakgnIiIiUpyC/Tyv8H5eJZxEBEZ3qgnAnE3HOJmVZ3CaskdFuxjmQjfJhTuTycwtMDiNiIiIiPPYeTzzb283AWEBXrSKDCydQOLS2tQIpEmV8uQVWpm2NsHoOGWOinYxTNMq5akdXI7cAivztx03Oo6IiIiIU1i8K4XXF+6++LXpD7df+PrFm6OwmP94q0jxM5lMjDl/bvtX645wNq/Q4ERli4p2MYzJZGJwS/tqu7bIi4iIiFy/7cfSeejbOGw2GNq6KhOHNic04NIt8KEBXkwc1pxeDcMMSimuqEdUKDUq+ZKZW8jMDYlGxylTVLSLoW5rFoGb2cS2YxnsSfn7bVwiIiIi8teS0s9xz/RNnCsoolOdSoy/pQG9G4Wx+qmuzBgZzV21i5gxMprVT3VVwS6lzmw2cX9H+2r756sPkVdYZHCiskNFuxgqqJwn3eqHADA7VjPbRURERK5FZm4BI6fGcjIrj3qhfnx0RzPcLPa3+hazidaRgbSoaKN1ZKC2xIth+jaLIMTfkxOZefy4VafHXikV7WK4C1vk5209pk/cRERERK5SQZGVsV9vYe+JLIL9PPliREv8vNyNjiXyJ55uFu5pHwnApJUHsVptBicqG1S0i+E61qlEqL8XZ3IKWBqfanQcERERkTLDZrPxwo87WbX/FN7uFr4Y0ZLw8t5GxxL5S7e3qoqflxuHTmazZPcJo+OUCSraxXAWs4kBLSoDMGuTGtKJiIiIXKnJKw8xc+NRTCb48PZmNIwIMDqSyN/y83LnzjbVAJi4/CA2m1bb/4mKdnEIA6PtRfuq/Sc5nn7O4DQiIiIijm/hjmQm/LIHgBduiqJbVIjBiUSuzN3tIvFwMxN3NJ0NCWlGx3F4KtrFIVQL8qVNjUBsNpi7WQ3pRERERP7OlsQzPDIrDoARbatzd7tIYwOJXIVKfp4MPL/TdtKKgwancXwq2sVhXJzZvumomlKIiIiI/IWjaTncN30TeYVWbqgXzPM3RRkdSeSqjepYA7MJlu89SfxxjX7+OyraxWH0ahCGn6cbx86cY/2h00bHEREREXE4GTkFjJi6kdPZ+TQI9+eD25tphJuUSdWCfOndKAyAT1dqtf3vqGgXh+HtYeGWpuGAGtKJiIiI/FF+oZUxX2/m4MlswgK8+GJES3w93YyOJXLNxnSqCcCC7ckcTcsxOI3jUtEuDuXCFvlfdqaQkVNgcBoRERERx2Cz2Xh23g7WHjyNr4eFKcNbEuLvZXQskevSMCKADrUrUmS18fmqQ0bHcVgq2sWhNIoIoF6oH/mFVn7clmR0HBERERGH8PHvB5i7+RgWs4mPhjYnKtzf6EgixWL0+dX2WZuOcvpsnsFpHJOKdnEoJpOJQdH/a0gnIiIi4up+jEvincX7AHjplgZ0qRtscCKR4tO2ZhCNIgLILbAyfe1ho+M4JBXt4nBuaxaBh8XMzqRMdh3PMDqOiIiIiGFiD6fxxJztANzXIZI721QzOJFI8TKZTIzpbF9tn77uCNl5hQYncjwq2sXhVPD1oHuDEABmx2q1XURERFzT4VPZjPpyE/lFVno2COGZ3vWNjiRSIno2CCWyoi8Z5wqYuTHR6DgOR0W7OKTB57fI/xB3nNyCIoPTSGkrstpYd/A0P8Ylse7gaYqsNqMjiYiTKbLa2JCQxuZTJjYkpOl1RhzOmex87p4Wy5mcAppUDuD9wc0wa7SbOCmL2cR9HWoAMGV1AvmFVoMTORZDi/YJEybQsmVL/Pz8CA4Opm/fvuzdu/eS++Tm5jJ27FiCgoIoV64c/fv358SJE5fcJzExkT59+uDj40NwcDBPPPEEhYXaVlGWtatVkfAALzLOFbA4/sQ/f4M4jUU7k2n/5jJu/2w9D30bx+2fraf9m8tYtDPZ6Ggi4iQuvM4M+2ITX+63MOyLTXqdEYeSV1jE/V9tJuFUNhHlvflseDTeHhajY4mUqH7NI6jk50lyRi4/bTtudByHYmjRvmLFCsaOHcv69etZsmQJBQUF9OjRg+zs7Iv3eeSRR5g/fz5z5sxhxYoVHD9+nH79+l28vaioiD59+pCfn8/atWuZPn0606ZN44UXXjDiR5JiYjGbGHChIZ22yLuMRTuTGTNjC8kZuZdcn5KRy5gZW/SGWkSum15nxNHZbDaemrudjYfT8PN0Y+rdLQn202g3cX5e7hZGtosE4NMVB7FqB9RFhhbtixYtYsSIETRo0IAmTZowbdo0EhMT2bx5MwAZGRlMmTKF9957j65du9KiRQumTp3K2rVrWb9+PQCLFy8mPj6eGTNm0LRpU3r37s0rr7zCxx9/TH5+vpE/nlyngS0qA7D6wCmOpuUYnEZKWpHVxvj58Vzu5fnCdePnx2sLq4hcM73OSFnw/tL9/BB3HDeziYnDWlAnxM/oSCKlZmibqvh5urE/9Sy/7Uk1Oo7DcDM6wP+XkWHvFB4YGAjA5s2bKSgooFu3bhfvU69ePapWrcq6deto06YN69ato1GjRoSEhFy8T8+ePRkzZgy7du2iWbNmf3qevLw88vL+NwMwMzMTgIKCAgoKCkrkZ5OrF+rnTtsagaw9lMbs2CP8q2stQ3JcOCZ0bJSsDQlpf1r5+v9sQHJGLusOpNI6MrD0grkYHe/izPQ6I45u3tbj/Pe3/QCMv7k+rasHFNvrsV7fpSzwtsCQlpX5bPVhJi4/QOfaV/9aXJaO9SvN6DBFu9Vq5eGHH6Zdu3Y0bNgQgJSUFDw8PChfvvwl9w0JCSElJeXiff5/wX7h9gu3Xc6ECRMYP378n65fvHgxPj4+1/ujSDGqZTGxFgsz1hykxrl9GNl/ZcmSJcY9uQvYfMoE/PP5eotXbeD0bq2ClTQd7+KM9Dojjmx/homJu82AiW7hVsqlbmfhwu3F/jx6fRdHVyUfLCYLWxLT+fDbhdT0v7bHKQvHek7Ole0mdpiifezYsezcuZPVq1eX+HM988wzPProoxe/zszMpEqVKvTo0QN//2s8KqRE3FBQxI9vr+DMuUIC6raiQ62KpZ6hoKCAJUuW0L17d9zd3Uv9+V2F776TfLl/6z/ez1wxku496+Bu0fCLkqDjXZzajhS+3P/PRVCPDq210i6l6uDJbJ6fvIEiWyE3NgzhPwMbF3uneL2+S1myy7SLWZuS2F4QyoM3Nr+q7y1Lx/qFHd//xCGK9nHjxrFgwQJWrlxJ5cqVL14fGhpKfn4+6enpl6y2nzhxgtDQ0Iv32bhx4yWPd6G7/IX7/JGnpyeenp5/ut7d3d3h/8e6Gnd3d/o2jWD6uiN8vzWZrvXDDM2i46NknD6bxwfLDl7RfaetS2TF/tM83qMuNzYKxWTS+JuSoONdnM2+E1lMWLT3H+9XwcedmFrBWDRaS0rJ6bN5jJqxlczcQppXLc97g5vh6V5yneL1+i5lwf2dajF7cxLL953i0Olc6oZefW+HsnCsX2k+Q5eqbDYb48aNY968eSxbtozIyMhLbm/RogXu7u789ttvF6/bu3cviYmJxMTEABATE8OOHTtITf1fo4IlS5bg7+9PVFRU6fwgUqIGnu8iv3jXCc5kq7mgszlyOpv+E9eyPSkT3/PjbP74Vtl0/jIoujJBvh4knMpm7DdbuPXjNaw9cKq0I4tIGbMxIY0BE9eSkplHiL/9Q/u/KsnP5BQwY/2R0gsnLi23oIj7vtxEYloOVQN9+OyuaLxKsGAXKStqVCpH74b2BdhPV1zZwo4zM7RoHzt2LDNmzOCbb77Bz8+PlJQUUlJSOHfuHAABAQHcc889PProo/z+++9s3ryZu+++m5iYGNq0aQNAjx49iIqK4s4772Tbtm38+uuvPPfcc4wdO/ayq+lS9jSMCKBBuD/5RVZ+iEsyOo4Uox3HMug/cS2HT+dQuYI3Pz3YnknDmhMacOlom9AALyYOa85bA5qw4skuPNytNr4eFrYfy+COzzdw55QN7EzKMOinEBFHtmhnMsOmbCAzt5AW1Sqw6KGOl32dCQvwokNt+ylYL/60izcX7cFm03ntUnKsVhuPzdnGlsR0/L3c+GJES4LK6b2ryAWjO9UE4Kdtxzl2xrUnSRm6PX7ixIkAdO7c+ZLrp06dyogRIwD4z3/+g9lspn///uTl5dGzZ08++eSTi/e1WCwsWLCAMWPGEBMTg6+vL8OHD+fll18urR9DSsHgllV44cddzIo9yoi21bUl2gms2HeSMTM2k5NfRFSYP9Pubkmwvxc1K5Wje1QoGxPSSM3KJdjPi1aRgRe3qpbzdOPhbnUY1qYaHy07wNcbjrBq/ylW7V/NzU3CebxHHaoF+Rr804mII/hy3WFe/GkXNht0jwrhw9ub4eVuoVfDMLpHhbLuQCqLV22gR4fWxNQKxmyCj5Yd4N0l+5i4/CAnMnN5s39j9dCQEvHO4r38vD0Zd4uJT++MplZwOaMjiTiUxpXL07ZmEGsPnubzVQm8dEsDoyMZxtCi/Uo+wfby8uLjjz/m448//sv7VKtWjYULFxZnNHEwtzaJ4NWfd7MnJYudSZk0qhxgdCS5Dt9vOcaTc7dTaLXRvlZFJg5rjp/X/87psZhNxNQM+tvHqFjOk5duacDIdpG8u2QvP8YdZ/624/yyI5k7Wlflwa61qeSnFQsRV2Sz2Xj71718sty+pfKO1lV5+ZYGuP2/4ttiNtE6MpDTu220/n8fDD54Q21C/L14Zt4Ovt+SxKmz+Uwc2hxfT4doAyROYlZs4sXj841+jf/xb56IqxrdqSZrD55mVuxRHrqhNhV8PYyOZAh9dCxlQoCPO70a2M9rmbUp0eA0cq1sNhsTlx/k0dnbKLTauLVpOF+MaHlJwX61qgb58N8hzfj5X+3pVKcShVYbX647Qqe3f+e9JfvIynX8GZ0iUnwKiqw8Pmf7xYLose51eK1vw0sK9n8yqGUVPrurBd7uFlbuO8mQyes5mZVXUpHFxazef4p/z9sJwL9uqE3/FpX/4TtEXFeH2hVpEO7PuYIipq87bHQcw6holzJjcEt7Q7of446TW1BkcBq5WkVWGy+dP08UYFTHGvxnUFM83IrnZahBeADTR7bim/ta06RyADn5RXzw2346vb2cqWsSyCvUMSPi7LLzCrl3+ia+23IMi9nEm/0b8eANta/plKqu9UKYOaoNgb4e7Eg633/jVHYJpBZXsu9EFmNmbL74wfUj3WobHUnEoZlMpovntk9be5ic/EKDExlDRbuUGTE1gqhcwZus3EIW7UwxOo5chdyCIh6cuYXp645gMsHzN0Xx7I31i30GLUDbmhX5YWw7PhnanBoVfUnLzmf8/HhueHcF87Yew2pVYykRZ3TqbB63f7aeFftO4uVu5rO7WjC4ZdXresymVcozd3QMVQK9SUzLof/EtWw7ml48gcXlpGblcvfUWLLyCmlVPZC3BjRWjx6RK9C7YShVA31IzylgVuxRo+MYQkW7lBlms4mBLeyr7a76C1sWZeQUcNcXG1m4IwUPi5kPb2/GPe0j//kbr4PJZOLGRmH8+khHXr+tEcF+nhw7c45HZm2jz4er+X1vqrpCiziRw6fOj448lkGgrwcz72tD13ohxfLYNSqV47sxbWkY4c/p7HyGTF7P73tT//kbRf6fc/lF3Dd9E0np54is6Mund7bA002j3USuhJvFzKiONQD4fFUCBUVWgxOVPhXtUqYMiK6MyQTrDp3myGltU3R0yRnnGPjpWjYmpOHn6ca0kS25qXF4qT2/u8XMHa2rsuKJLjzRsy5+Xm7sTs7k7qmxDJm8nq2JZ0oti4iUjO3H0uk/cS1HTudQJdCbuaNjaFa1QrE+R7CfF9+OiqFD7YqcKyji3umbmLNJHx7LlbFabTw8ayvbjmVQwcedqSNaumwzLZFrNaBFZSqW8yAp/RwLth83Ok6pU9EuZUpEeW861K4EwJxNxwxOI39n34ks+n2yln0nzhLs58ns0TG0rVnRkCzeHhbGdqnFyie6MKpjDTzczGxISOO2T9Yy+qvNHEg9a0guEbk+y/emMmTyek5n59Mg3J/vxrSlRqWSGZtVztONKcNbcluzCIqsNp6Yu52Plu3Xrh35RxN+2c2vu07gYTEz+a5oqlfUWFKRq+XlbuHudvadmpOWH3K5114V7VLmDI62b5Gfu/kYRTo/2SFtTEhjwMS1JGfkUiu4HN8/0Jb6Yf5Gx6KCrwfP3lif3x/vzMAWlTGbYNGuFHq+v5Jnvt9OSkau0RFF5ArN3XyMe6dvIie/iA61KzLr/hiC/bxK9Dk93My8O7DJxaZI7yzexws/7tLfIvlLX60/wmerEgB4e2BjWlYPNDiRSNk1rHU1fD0s7D2R5XKnKalolzKnW1QwFXzcScnMZeX+k0bHkT/4ZUcyw6ZsIDO3kBbVKjB3dAyVK/gYHesSEeW9eXtgExY93JFu9UMostqYufEond7+nTd+2UNGjsbEiTgqm83Gx78f4PE59tGRtzWLYMrwlpQrpTnqZrOJp3vX46WbozCZ7EXZA19v1lQT+ZPf96by4o/20W6Pda/DrU0jDE4kUrYF+LgztE01wL7a7kpUtEuZ4+lmoW8z+x++2WpI51Cmrz3MA99sIb/QSo+oEL6+tzXlfRz3vL06IX58PjyauaNjiK5WgbxCK5NWHKTj27/z6YqDehMu4mCKrDZe+HEXb/+6F4D7O9Xg3YFNim105NUY0S6Sj25vjofFzK+7TjDs8w2k5+SXeg5xTPHHMxn39RasNvu5uOO61jI6kohTGNkuEneLiY2H09h8JM3oOKVGRbuUSRdmti/dfYLTZ/MMTiM2m423Fu3hxZ92YbPB0NZVmTisBV7uZaMzbnT1QOaMjuHzu6KpE1KOjHMFTPhlD13eWc7s2KMUumCXUhFHk1tQxNivt/DVevvoyBdvjuKZ3iUzOvJK9Wkcxpf3tMLPy41NR84wYNI6ktLPGZZHHMOJzFzumR5Ldn4RMTWCeP22RhrtJlJMQgO8uO384t1EF1ptV9EuZVK9UH8aVw6goMjGvK1JRsdxaQVFVh6bs41Plh8E7FsAX+3bEIuBb6SvhclkoltUCL881JG3BzQmPMCL5IxcnvxuO73+u4pfd6W4XNMTEUeRkVPAnVM2sGjX/0ZHXmhIZLQ2NYKYMzqGUH8vDqSepf8na9mTkml0LDFIdl4hI6fFkpyRS81Kvkwa1sKQnSAizmxUx5qYTPbFu/0nsoyOUyr0KiJl1qDzDelmbzqqYsog2XmF3DN9E99vScJiNvFW/8Y8eEPtMr2iYDGbGBhdhWWPd+a5PvUp7+POgdSz3P/VZvpPtI+vE5HSczz9HAMmrSX28Bn8vNyYPrJVqY6OvBL1Qv35/oG21A4uR0pmLgMnrmPdwdNGx5JSVmS18a+ZW9l1PJMgXw+mjmhFgI+70bFEnE6t4HL0iAoB4NOVrrHarqJdyqxbmobj5W5m34mzxB1NNzqOyzmZlceQyetZue8k3u4WPrurBYPOn7bgDLzcLdzboQYrn+zC2C418XI3syUxnUGfrmPktFitpImUgj0pmfT7ZC37U88S4u/JnNExxNQMMjrWZYWX92bO6BhaVq9AVl4hw7/YyM/bk42OJaXolQXx/LYnFU83M58Nj6ZqkGM1YRVxJhemePywNYnjLnBakop2KbP8vdy5sWEYALM1s71UHT6VzYBJa9mRlEGgrwczR7Wha70Qo2OVCH8vd57oWY8VT3ThjtZVsZhNLNuTSu//ruLR2XEcO5NjdEQRp7T+0GkGTlpHSmYutYPL8f0D7agXavzoyL9T3seDr+5pTa8GoeQXWRk3cwtT1yQYHUtKwdQ1CUxbexiA/wxuSvOqFYwNJOLkmlWtQOvIQAqtNqasdv7XWRXtUqYNPL9Ffv624+TkFxqcxjVsO5pO/4lrOXI6hyqB3nw3pi1Nq5Q3OlaJC/H34vXbGrHkkY70aRSGzQbfb0mi6zsreGVBPGnZ6hotUlx+3p7MXVM2kpVbSMvqFZgzOoaI8t5Gx7oiXu4WPh7anDvbVMNmg/Hz45mwcDdWzXJ3WkvjT/DKgngAnu5djxsbhRmcSMQ1jOlsX22fuTHR6ad3qGiXMq1NjUCqBflwNq+QhTtSjI7j9H7fm8qQyes5nZ1Pwwh/vh/TjsiKvkbHKlU1KpXj46HN+XFsO2JqBJFfZGXK6gQ6vfU7Hy3brw+PRK7TtDUJjJu5hfwiKz0bhPDVPY49OvJyLGYTL9/agCd61gXs51w+OjuO/EJNonA2O45l8ODMrVhtcHurKtzfsYbRkURcRqc6lagf5k9OfhFfrjtidJwSpaJdyjSTyfS/hnSa2V6i5mw6yr3TN3GuoIgOtSvy7agYKvl5Gh3LME2qlOeb+1ozfWQrosL8ycor5J3F++j09nK+Wn+EAo2JE7kqVquNN37Zw0vz47HZ4M421fhkaNkZHflHJpOJsV1q8faAxljMJn6IO84902M5m6cP9pzF8fRz3DM99uLfxZdvbVimG7GKlDUmk4nRnewflE1be5hz+UUGJyo5KtqlzOvfvDJmE2w8nMahk2eNjuN0bDYbH/9+gCfmbqfIauO2ZhFMGd6Scp5uRkcznMlkolOdSix4sD3/HdKUqoE+nMzK4/kfdtL9vRUs2H5cW2JFrkB+oX105KQV9tGRT/Ssy8u3NihzoyMvZ2B0FaYMj8bHw8Kq/acY/Ok6UrNyjY4l1ykrt4CR02JJzcqjbogfHw9tjrtFb6tFSlufRmFUruBNWnY+czY77wKeXl2kzAsN8KJTnUoAzNmshnTFqchq44Ufd/H2r3sBe6fO9wY10czZPzCbTdzaNIKlj3Zi/C0NqFjOg8Oncxj3zVZu/XgNaw6cMjqiiMM6m1fIPdNjmbfVPjry7QGNGdulllOtWHauG8zM+9oQ5OvBruOZ9J+4Vh8yl2GFRVbGfbOVPSlZVPLz5Iu7W+LvpdFuIkZws5gZdf60lMkrD1HopDsd9c5bnMLg86PGvtt8zGl/WUtbbkERY7/ewlfrj2AywUs3R/F073pO9Ua6uHm4mRnetjrLn+jCI93q4OthYUdSBkM/38CdUzawMynD6IgiDiU1K5chk9exav8pvN0tfD48+mKDUWfTpEp5vhvTlmpBPhxNO8eASevYmnjG6FhylWw2Gy/+tIsV+07i5W5myvDoMtMkUcRZDWxRhUBfD46dOcfPO5xz1KaKdnEKXeuFEOTrQWpWHiv2nTQ6TpmXnpPPnVM2sGhXCh4WMx/d3pwR7SKNjlVmlPN046FutVnxZBdGtK2Ou8XEqv2nuOnD1Tw4cytHTmcbHVHEcAmnsuk/cS07kzIJ8vXg21Ft6FI32OhYJap6RV++G9OWxpUDSMvO547PNrBszwmjY8lV+HxVAl9vSMRkgv8OaUbjyuWNjiTi8rw9LIxoWx2ASSsOYbM536mJKtrFKXi4mbmtWQQAs9SQ7rokpdtXgGIPn8HPy40v72lFn8YaX3MtKpbz5KVbGvDbo53p2zQck8k+nvCGd1fwwo87OZmVZ3REEUPEnR8deTTtHFUDffhuTFuauMDoSLC/Lsy8rw0d61TiXEER9325mVmxiUbHkiuwaGcyr/+yG4B/31ifng1CDU4kIhfcFVMNHw8Lu5Mz+Wz1YTafMrEhIY0iJ+ktpKJdnMaFLfLL9qSqGLpGe1Iy6f/JWg6kniXU34s5o2NoUyPI6FhlXtUgH94f0owFD7anU51KFFptfLnuCJ3e/p33Fu8lK7fA6IgipWbZnhPcPnk9adn5NIoI4LsxbanuYqMjfT3dmDI8mn7NIyiy2njqux188Nt+p1wdchZxR9N5eFYcNpu9OLinvXafiTiS8j4exJx/z/r24v18ud/CsC820f7NZSzaWfa3zKtoF6dRO8SPZlXLU2i18f0WNaS7WusPnWbgpHWkZOZSO7gc3z/Qlnqh/kbHcioNwgOYPrIVM+9rQ5Mq5cnJL+KDZQfo9PZyvlidQF6h844qEQH7aM77vtzMuYIiOtapxLej2rjs6Eh3i5l3BzZhbJeaALy3ZB///mGn06wKOZOjaTncOz2W3AIrXepW4oWbotTfRcTBLNqZzG97Uv90fUpGLmNmbCnzhbuKdnEqgy/MbN90VCsWV+Hn7cncNWUjWbmFtKxegTmjYwhXY50SE1MziB8eaMukYc2pUdGXtOx8Xl4Qzw3vruD7Lcf0pl2cjs1m48Pf9vPkd/bRkf2aRzBleDS+Lj460mQy8UTPerx8awNMJvhmQyKjZ2x26lnDZU3GOftot1Nn86kf5s+HdzTHTaPdRBxKkdXG+Pnxl73twjuq8fPjy/T7K73qiFPp0zgMb3cLB09ms0Vdea/I1DUJjJu5hfwiK70ahPLVPa0p7+NhdCynZzKZ6NUwjMWPdGRCv0YE+3ly7Mw5Hp29jT4frOL3Pan64EmcQpHVxnM/7OTdJfsAeKBzTd4d2EQzrf+fu2Kq88kdzfFwM7Mk/gRDP1/Pmex8o2O5vIIiKw98vZn9qWcJ8ffkixHRlHPxD5pEHNHGhDSSM3L/8nYbkJyRy8aEtNILVcz0F1Ocip+X+8WmaWpI9/esVhsTftnN+Pnx2GxwZ5tqfDy0OV7uFqOjuRQ3i5nbW1VlxRNdeLJXXfy83NiTksXd02IZMnm9PnySMi23oIgxMzZf7LY9/pYGPNlLoyMvp3ejMGbc0xp/Lze2JKYzYNJajp3JMTqWy7LZbDw3bydrDpzGx8PCFyNaEhagHWgijig1668L9mu5nyNS0S5O50JDugXbk8nOKzQ4jWPKL7Ty2JxtfLriEABP9KzLy7c2wGLWG2mjeHtYeKBzLVY92YVRHWvg4WZmQ0Ia/T5Zy/1fbeJA6lmjI4pclfScfIZ+voHF8SfwcDPz8R3NGX5+JI9cXqvIQOaOaUtYgBcHT2bT75O1xB/PNDqWS5q44iCzNh3FbIKP7mhGg/AAoyOJyF8I9vMq1vs5IhXt4nSiq1WgRkVfcvKL+Hl72W46URLO5hVyz/RY5m1NwmI28c7AJoztUksrXw6ivI8Hz95Yn+WPd2Zgi8qYTfDrrhP0+M8Knv5uOyl/s/1LxFEcO5ND/4lr2XzkDP5ebnw1shU3NtLoyCtRJ8SP7x9oS90QP1Kz8hj86TrWHjhldCyXMn/bcd5atBeAl25pQNd6IQYnEpG/0yoykLAAL/7qnawJCAvwolVkYGnGKlYq2sXpmEwmBp5vSDdrk7bI/3+pWbkMmbyOVftP4eNhYcrwaAa0qGx0LLmM8PLevD2wCYse7kj3qBCsNvg29iid3v6dN37ZQ0aOxsSJY9qdnEn/iWs5eDKbsAAv5o5pS2uNjrwqYQHezB4dQ6vIQLLyChk+dSM/bTtudCyXsPlIGo/N2QbAyHaR3BVT3dhAIvKPLGYTL94cBfCnwv3C1y/eHFWmd5SqaBen1L9FBBazic1HznAgNcvoOA4h4VQ2/SeuZWdSJkG+Hsy8rw2d6wYbHUv+QZ0QPz67K5rvxsTQsnoF8gqtTFpxkA5vLWPSioPkFqjLtDiOtQdPMWjSOk5k5lEnpBzfjWlLnRA/o2OVSQHe7nw5shU3NgqloMjGv2Zu5fNVh4yO5dSOnM7mvi83k19opXtUCP/uU9/oSCJyhXo1DGPisOaEBly6BT40wIuJw5rTq2HZ3u2lol2cUrCfF13OF6RzNmlme9zRdPpPXMvRtHNUC/LhuzFtaVKlvNGx5Cq0qBbI7PtjmDI8mrohfmTmFvLGL3vo/PZyZsUmUlhkNTqiuLj5244z4otYsvIKaRUZyJz722p05HXycrfw4e3NGXG+F8CrP+/mtZ/jsZbhsUWOKj0nn7unxZKWnU+jiAD+O6RpmV6VE3FFvRqGsfqprswYGc1dtYuYMTKa1U91LfMFO6hoFyc2KNq+7fu7LccocOGCZtmeE9w+eT1p2fk0rhzAd2PaUr2ir9Gx5BqYTCZuqB/Cwoc68M7AJkSU9yYlM5envttBr/+u4tddKRoTJ4aYsjqBB2duJb/ISu+GoXw5shUBPu5Gx3IKF7Z9PtWrHgCfrUrg4Vlx5Be67t+14pZXWMT9X23m0MlswgO8mDI8Gh8PjXYTKYssZhOtIwNpUdFG68hAp/nwTUW7OK0u9YKpWM6TU2fzWbYn1eg4hpgde5T7vtzMuYIiOtapxMz72lCxnKfRseQ6WcwmBrSozG+PdeK5PvUp7+POgdSz3P/VZvpPXMuGQ6eNjiguwmq18drP8byyIB6A4THV+OgOjY4sbiaTiTGda/LeoCa4mU38tO04d0/bSFaueltcL5vNxjPf7WBDQhrlPN344u6WBPuX3Q7TIuKcVLSL03K3mOnfIgKwF6+uxGaz8cFv+3nyu+0UWW30b16ZKcOj8fXUyoEz8XK3cG+HGqx8sgvjutTCy93MlsR0Bk9ez8hpsexJ0agoKTn5hVYemR3HZ6sSAHiyV11eukWjI0tSv+aV+WJES3w8LKw5cJpBn64nNVMTJa7HB78d4Pvz01Q+GdqceqH+RkcSEfkTFe3i1Aad7yL/+95UTrjIG5siq41//7CT95bsA2Bsl5q8M7Ax7hb9ujsrfy93Hu9Zl5VPdGFo66pYzCaW7Uml939X8ejsOI6dyTE6ojiZrNwC7p62kR/jjuNmNvHuwCY80FmjI0tDxzqVmDUqhorlPNidnMltn6zl4MmzRscqk+ZtPcZ/ltr/Vr7atyEd61QyOJGIyOXpXbw4tZqVyhFdrQJWm/3cdmeXW1DE6Bmb+WZDIiYTvHxrA57oWU9vpF1EsL8Xr93WiKWPdqJP4zBsNvh+SxJd31nBy/PjScvONzqiOIHUzFwGf7qeNQdO20dHjmhJf42OLFWNKgfw/Zh2VA/yISn9HP0nrmXzkTNGxypTNhw6zVNzdwBwf6ca3N6qqsGJRET+mop2cXqDWtpX2+dsOubUTbrOZOcz9PMNLIk/gYebmU/uaK75si4qsqIvH9/RnJ/GtaNtzSDyi6x8sSaBjm/9zoe/7Scnv9DoiFJGHTx5ln4T1xKfnEnFch58O6oNnbQ6aYiqFyaBVA4gPaeAoZ+vZ0n8CaNjlQmHTp7l/hmbLzZOfKpnPaMjiYj8LRXt4vT6NArD18NCwqlsYg8750rEsTM5DJhkX2nx93Jjxj2t6d2o7I+3kOvTuHJ5vr63NV+ObEWDcH/O5hXy7pJ9dHxrOV+tP/KnqQpFVhsbEtLYfMrEhoQ0ijRWSv6fLYlnGDBxLcfOnKP6+YKxceXyRsdyaUHlPJk5qg1d6lYit8DK/V9tYubGRKNjObS0bPtot/ScAppWKc9/BjfFrD4MIuLgVLSL0/P1dOOmxuEAzHLChnTxxzPp98laDp7MJizAi7lj2tIqMtDoWOIgTCYTHetUYv649nxwezOqBvpw6mwez/+wk+7vrWD+tuNYrTYW7Uym/ZvLGPbFJr7cb2HYF5to/+YyFu1MNvpHEAewNP4Ed3y2njM5BTSpHMDcMW2pFqTRkY7Ax8ONyXdFM7BFZaw2eOb7HfxnyT6n3ll2rXILihj15SaOnM6hcgVvPrsrWpMORKRMUNEuLuHCFvmFO5KdakTO2oOnGPzpOlKz8qgb4sf3D7SlToif0bHEAZnNJm5pEs7SRzvx8q0NqFjOg8Onc3hw5lY6v7Oc0TO2kJxxabPGlIxcxszYosLdxX27MZFRX20it8BK57qV+EajIx2Ou8XMWwMa82DXWgD897f9PDtvB4VFmuV+gdVq44m529l05Ax+Xm5Mu7sllfx0HItI2aCiXVxC86rlqRVcjnMFRczf5hwFyPxtxxnxRSxZeYW0igxk9ugYwgK8jY4lDs7DzcxdMdVZ8UQXHulWBx93M4lpl+8uf2Gdbvz8eG2Vd0E2m433l+7j6e93YLXBgBaV+ewujY50VCaTicd61OXVvg0xm2DmxqOMnrGZc/lFRkdzCO8t2cf8bfZpB58Oa0GtYH3ALSJlh4p2cQkmk4nB58e/zd5U9rfIf77qEA/O3Ep+kZUbG4Xy5chWBHi7Gx1LyhBfTzce6lab/wxu+rf3swHJGblsTEgrlVziGAqLrDw7bwfvL90PwLgutXh7gEZHlgXD2lRj4rAWeLqZWbo7lTs+X+/ykyNmbzrKR78fAOD1fo1oW6uiwYlERK6O/vqKy7iteQRuZhNxR9PZdyLL6DjXxGq18drP8bz6824ARrStzoe3N9c5eXLNcguvbPtsSsa5Ek4ijuJcvn105MyNRzGZ4JW+DXm8Z12NjixDejYI5et7WxPg7c7WxHQGTFzL0b/YUePs1h44xbPf20e7jetSi0HnP8AXESlLVLSLy6hYzpMb6gcDZbMhXX6hlUdmx/HZqgQAnupVjxdvjsKirrdyHYL9vK7ofi/+tIuXftpF3NF0NbhyYmnZ+dzx+XqW7k7Fw83MxKEtuLNNNaNjyTWIrh7Id2NiiCjvzaFT2fSbuJadSRlGxypVB1KzuH/GZgqtNm5pEs5jPeoYHUlE5JqoaBeXMvh8Q7p5W5PIv8IVRkeQlVvA3dM28mOc/Xy89wY1YUznmlr5kuvWKjKQsAAv/u5IMpsgM7eQaWsP0/fjNXR5ZznvL93H4VPZpZZTSt7RNPvoyK2J6QR4u/P1va3p1TDU6FhyHWoF+/HdmLbUC/XjZFYeQyavZ/X+U0bHKhUns/IYMTWWrNxCoqtV4K0BjfU3U0TKLBXt4lI61q5EsJ8nadn5/Lb7hNFxrkhqZi6DP13PmgOn8fGw8MWIlvRrXtnoWOIkLGYTL94cBfCnwt10/vLB7c2YendLbm0ajre7hcOnc3h/6X46v7Ocvh+vYfraw5w+m1fa0aUY7TqeQb+Jazl0MpvwAC/mjo6hZXWNjnQGoQFezLo/hjY1AjmbV3j+A+Ako2OVqHP5Rdz75SaOnTlHtSAfJmu0m4iUcSraxaW4WcwMaGEveGeVgYZ0B0+epd/EtcQnZ1KxnAezRsXQsU4lo2OJk+nVMIyJw5oTGnDpVvnQAC8mDmvOTY3D6VI3mP8Oacam57rxn8FN6FSnEmYTxB1N58WfdtHq9d+4e6q9GMjJLzToJ5FrsebAKQZ/up6TWXnUC/Xj+wfaUVujI51KgLc700e2ok/jMAqKbDz0bRyfrTxkdKwSYbXaeHR2HNuO2neMTB3RkkBfD6NjiYhcF81tEZczKLoKnyw/yMp9J0nOOOewY9K2JJ7hnmmxnMkpoHqQD9NHtqJakK/RscRJ9WoYRveoUNYdSGXxqg306NCamFrBf+qZ4Ovpxm3NKnNbs8qczMpjwfbj/LA1iW3HMvh970l+33sSHw8LPRuE0rdZBO1qBuGmjuMO68e4JB6fs42CIhutIwOZfFe0JlE4KU83Cx8OaUaInxdfrEngtYW7ScnM5d831sfsRL1R3vx1D7/sTMHDYmbynS2oUamc0ZFERK6binZxOdUr+tI6MpANCWl8t/kY47rWNjrSnyyNP8G4mVvILbDSpHIAU0a0pGI5T6NjiZOzmE20jgzk9G57AfdPTQ4r+Xlyd7tI7m4XyaGTZ/khzl7AJ6blMG9rEvO2JlGxnCc3NwnjtmYRNIoI0DmlDuSzlYd4baF9EkWfRmG8O6iJthA7ObPZxPM31Sc0wJPXF+5hyuoETmTm8u6gJni6lf3/999sSOTTFfYdBG8NaEzrGkEGJxIRKR5a/hCXNOjizPZjWK2O1Qn7242JjPpqE7kFVrrUrcTMUW1UsIvDq1GpHI92r8OKJzrz/QNtuSumGoG+Hpw6m8fUNYe55aM13PDuCj74bT+Jp11z9JSjsFptvLIg/mLBfne76nx4ezMV7C7CZDIxqmNN3h/cFHeLiQXbkxnxRSyZuQVGR7suK/ad5PkfdwLwSLc69G0WYXAiEZHio6JdXNKNjcLw83QjMS2H9QmnjY4DgM1m4/2l+3j6+x1YbTCwRWUm3xWNj4c2xEjZYTKZaF61Ai/f2pANz97AFyOiublJOF7uZg6dyua9Jfvo+Pbv9PtkDV+uUwO70pZXWMRDs+KYsto+OvKZ3vV44aYop9oeLVemb7MIpo5oha+HhXWHTjNo0jpOZOYaHeua7EnJZOzXWyiy2ujXLIJ/3VDL6EgiIsVKRbu4JG8PCzc3DQdgzqZjBqeBwiIrz87bwftL9wPwYNdavDWgMe46F1jKMHeLma71Qvjw9mZseq477w5sQofaFTGbYEtiOi/8uIvWr//GyGmx/LTtOOfyi4yO7NQycwsY8UUs87fZR0f+Z3AT7u+k0ZGurH3tisy6P4aK5TzZk5JFv0/WciA1y+hYVyU1M5eRU2M5m1dI68hAJvRvpGNaRJyOKgJxWYPPb5FfuCOZjHPGbQs8l1/E6BmbmbnxKGYTvNq3IY/1qKs3HeJUynm60b9FZb66pzXrn7mB52+KolFEAIVWG8v2pPKvmVuJfnUJj86OY9X+kxQ52GkrZd2JzFwGTVrHukOn8fWwMPXultzWTKMjBRpGBDDvgbbUqOhLUvo5+k9cx+YjaUbHuiI5+YXcM30TxzNyqVHJl0/vbOEU5+aLiPyRinZxWY0rB1A3xI+8Qis/bTtuSIa07Hzu+Hw9S3en4ulmZuKwFgxrU82QLCKlJdjfi3vaRzL/wfYsfbQTD3atReUK3mTnF/H9liTunLKRmAm/8cqCeHYmZWCzqYC/HgdS7Suoe1KyqFjOk1n3x9ChtkZHyv9UCfRh7pi2NK1SnoxzBdzx2QYW70oxOtbfKrLa+NfMOHYkZRDo68HUES0p76PRbiLinFS0i8symUwManm+IV1s6c9sP5qWw4BJa9maaJ8l+/W9renZILTUc4gYqVZwOR7rUZdVT3bhuzExDGtTlQo+7qRm5TFldQI3fbiabu+t4KNl+zmapgZ2V2vzkTQGTFpHUvo5Iiv68v2YtjSMCDA6ljigQF8PvrmvNTfUCyav0MroGZv5esMRo2P9pdd+3s3S3SfwcDPz2V0tNBJVRJyainZxabc1i8DdYmJHUgbxxzNL7Xl3Hc+g38S1HDqZTXiAF3NHxxBdPbDUnl/E0ZhMJlpUC+TVvo3Y8Gw3Pr8rmpsah+HpZubgyWzeWbyPDm/9zoCJa/lq/RHOZOcbHdnhLd6Vwh2fbSA9p4AmVcozd3QMVYN8jI4lDszHw41P72zB4OgqWG3w73k7eXfxXofb7TJ97WG+WGNvpvjuwCa0qKa/nyLi3NSWWlxaoK8H3aNCWLgjhdmbjvLSLQ1K/DnXHDjF/V9t5mxeIfVC/Zh2dytCA7xK/HlFygoPNzPdokLoFhVCVm4Bi3am8GPccdYcPMWmI2fYdOQM43/aRee6lejbLIJu9UM0ruwPvt5whOd/2InVBl3rBfPRHc00iUKuiJvFzBv9GxEa4MV/f9vPh8sOcCIzl9dva4SbAzRHXbbnBOPn7wLgiZ51ublJuMGJRERKnv6Ci8sbFF2FhTtS+CEuiWdurFeiTWx+jEvi8TnbKCiy0aZGIJ/eGU2At3uJPZ9IWefn5c7A6CoMjK5CSkYu87cd54e4JHYdz2Tp7lSW7k6lnKcbvRqGcluzCNrUCMLiwuPLbDYb/1myjw+WHQBgUHRlhym2pOwwmUw80r0OIf5ePPfDDmZvOsbJrDw+Htrc0A9/dh3PYNw3W7Ha7M1kH+hc07AsIiKlSUW7uLwOtSsRHuDF8YxclsSf4KbGJfOp/WcrD/Hawt0A9GkcxnuDmqjLrchVCA3w4r6ONbivYw32n8jih7gkfth6nKT0c8zdfIy5m48R4u/JLU3CubVpBA3C/V1qCsOF0ZGzz4+x/NcNtXmkW22X+m8gxeuO1lWp5OfJuG+28Pvek9z+2Qa+GB5NUDnPUs+SnHGOkdNiyckvol2tIF69raGObRFxGfroXVyexWxiQAv76KNZJdCQzmq18cqC+IsF+8h2kXw4pJkKdpHrUDvEjyd61mPVk12YMzqGO1pXJcDbnROZeXy2yt7Arsd/VvLx7wdcooFdTn4ho77azOxNxzCb4LXbGvJo9zoqauS6dY8K4Zv72lDex51tR9MZMGkdiadL93fqbF4hI6dt4kRmHrWDy/HJ0Ba4a/eIiLgQveKJAANa2LvIrz5wimNniu/NSF5hEQ/NimPKanvDnGdvrMfzN9XH7MLbd0WKk9lsomX1QF6/rREb/30Dk+9swY2NQvFwM7M/9Sxv/7qXDm/9zqBJ6/h6wxHSc5yvgd3ps3nc/tkGlu2xj46cNKwFQ1trdKQUnxbVKjB3dFsiynuTcCqbfhPXsjMpo1Seu7DIyoPfbGF3ciYVy3nyxYiWOq1MRFyOinYRoGqQD21rBmGzwdzNx4rlMTNzCxjxRSzztx3HzWzi/cFNGdWxpla+REqIp5uFHg1C+WRoCzY91423+jembc0gTCbYeDiNf8/bScvXlnLfl5tYuCOZ3IIioyNft8TTOQyYtI5tR9Mp7+PON/e1podGR0oJqBVcju8faEv9MH9Onc1j8KfrWLnvZIk+p81mY/z8eH7fexIvdzOfD4+mSqAmIIiI61HRLnLe4PMz2+dsOobVen3jbU5k5jJo0jrWHTqNr4eFqXe3pG+ziOKIKSJXwN/LnUEtq/DNfW1Y+3RXnr2xHvXD/CkosrEk/gQPfL2Flq8u5cm521h78NR1/84bYWeSfXRkwqlsIsp7M3d0jEZfSYkK8fdi1v1taFsziOz8IkZOi2Xe1uL5oPtypqxO4Kv1RzCZ4P3BzWhapXyJPZeIiCNTIzqR83o2CMXPy42k9HOsPXia9rUrXtPjHEjNYvgXsSSln6NiOU+m3d2ShhEBxZxWRK5UWIA3ozrWZFTHmuxNsTew+3FrEsczcpm96RizNx0j1N+LW5vaG9jVD/Nz+B0xq/afZPRXm8nOL6JeqB/TR7YixF+jI6Xk+Xu5M+3uVjw+Zxs/bTvOI7O2cSIzj/s71ijW35tfd6Vc7AXzbO/69GqoHSQi4rq00i5ynpe7hb5N7avhszZdW0O6zUfSGDBpHUnp54is6Mu8B9qqYBdxIHVD/XiqVz1WP9WVWaPacHurKvh7uZGSmcunKw9x4wer6PX+Kj5ZfoCk9HNGx72seVuPcffUWLLzi4ipEcTs0TEq2KVUebiZeX9wU+7rEAnAG7/sYfz8eIqKacfK9mPpPPTtVmw2GNq6Kveefx4REVelol3k/7mwRf7XXSlX3bBq8a4U7vhsA+k5BTStUp7vxrTVuXciDspsNtG6RhAT+jUm9rluTBrWgl4NQvGwmNl7Iou3Fu2l3RvLGPzpOmZuTCQjp8DoyNhsNiatOMgjs7ZRaLVxc5Nwpo1sib+XmnJJ6TObTfy7TxTP9akPwLS1h3lw5pbr7hVx7EwO90zfRG6BlU51KjH+lgYOv/NFRKSkaXu8yP/TMCKAqDB/4pMz+THuOMPbVr+i7/t6wxGe/2EnVhvcUC+YD+9oho+Hfr1EygJPNwu9GobSq2EoGTkF/LIzmR/iklh/KI0NCfbLiz/uoku9StzWLILOdYPxci/dkY1Wq42XF8Qzbe1hAO5tH8mzN2oShRjv3g41CPb34rHZcSzckcLpsxuZfFf0NXV4z8wt4J5pmziZlUe9UD8+uqMZbhrtJiKilXaRPxoUfeUz2202G+8t3su/59kL9sHRVfj0zhYq2EXKqAAfd4a0qsq3o2JY+3RXnu5dj3qhfuQXWfl11wlGz9hCy9eW8vR321l38HSpNLDLLSjiwZlbLxbs/76xPs/dFKWCXRzGLU3CmX53K8p5urEhIY1Bk9aRnHF1p5cUFFkZ+/UW9p7IItjPPtrNT7tIREQAFe0if9K3WQQebmbikzP/dg5tYZGVp77bzgfLDgDwrxtq80b/RloVEHES4eW9Gd2pJose7sgvD3Xg/k41CAvwIiu3kG9jj3L7Z+tp/+Yy3vhlD3tSMkskQ8a5AoZ/sZGfdyTjbjHx3yFNua9jjRJ5LpHr0bZWRWbfH0Ownyd7T2TR75O17DuRdUXfa7PZeP6HnazafwpvdwtfjGhJeHnvEk4sIlJ2qLoQ+YPyPh70PD/nePZfNKTLyS9k1Febmb3pGGYTvH5bIx7tXkfn3Yk4qfph/jzTuz5rnurKzPvaMDi6Cn5ebhzPyGXSioP0en8Vvd5fyaQVB696hfGvpGTYR0duSEijnKcb0+5uxa1NNTpSHFdUuD/fjWlLjUq+JGfkMmDiWmIPp/3j93268hDfxh7FbIIPb2+mBq4iIn+gol3kMgZH2xvS/bA16U9NdU6fzeP2zzawbE8qnm5mPr0zmjtaVzUipoiUMrPZREzNIN4c0JjYf3dj4tDm9IgKwd1iYk9KFm/8soe2byxjyOR1zIpNJOPctTWw238ii36frGHviSwq+Xky6/42tKt1bWMoRUpTlUAfvhvdluZVy5OZW8jQzzewaGfyX95/4Y5k3vhlDwAv3BRFt6iQ0ooqIlJm6MRbkctoWzOIiPLeJKWf45Plh8g+ZSIoIY2ICuUYOT2WhFPZlPdxZ8rwaFpUCzQ6rogYwMvdQu9GYfRuFEZ6Tj4Ld6TwQ1wSGxPSWH/Ifnn+x13cUC+Yvs0i6Fy3Ep5uf25gV2S1sTEhjdSsXIL9vDCZYNSXm8jMLaRGJV+m391KkyikTKng68HX97bhwZlbWbr7BGO+3sLLtzTgzpjqlxzvGecKeHVBPAAj2lZnRDuNdhMRuRxDi/aVK1fy9ttvs3nzZpKTk5k3bx59+/a9ePuIESOYPn36Jd/Ts2dPFi1adPHrtLQ0HnzwQebPn4/ZbKZ///7897//pVy5cqX1Y4gTMptNNKtanqT0c0xcmQBY+HL/JswmsNogorw300e2olawjjMRsZ9Wc0frqtzRuirHzuTw07bjzNuSxP7Us/yyM4Vfdqbg7+VGn8bh9G0aTsvqgZjNJhbtTGb8/HiSM3L/9JjNqpZnyvCWBPp6GPATiVwfbw8Lk4Y15/kfdzFzYyLP/7iLNQdPEXc0g5Q/HO+NI/x5/qYog5KKiDg+Q4v27OxsmjRpwsiRI+nXr99l79OrVy+mTp168WtPT89Lbh86dCjJycksWbKEgoIC7r77bkaNGsU333xTotnFuS3amcyC7X/eznehUfSDXWupYBeRy6pcwYcHOtdiTKeaF8dH/hiXxInMPGZuTGTmxkQiynvTMMKfX3ed+MvHGdG2ugp2KdPcLGZev60hYQFevLdkH4t2Xv5435GUyZL4FHo1DCvlhCIiZYOhRXvv3r3p3bv3397H09OT0NDQy962e/duFi1aRGxsLNHR0QB8+OGH3HjjjbzzzjuEh4cXe2ZxfkVWG+Pnx//l7Sbgv7/tZ2B0FSwauSQif8FkMtEgPIAG4QE81aseGw6dZt7WJBbtTCEp/RxJ6X/dsM4EvPHLHm5qHK7XGSnTTCYTY7vUYsrqhL/t8TB+fjzdo0J1vIuIXIbDn9O+fPlygoODqVChAl27duXVV18lKCgIgHXr1lG+fPmLBTtAt27dMJvNbNiwgdtuu+2yj5mXl0deXt7FrzMz7aN6CgoKKCi4tqZB4jw2JKRddqvqBTYgOSOXdQdSaR2p89nFuVx4DdRrYfFrWS2AltUCeKFPXSavSuDD3w/95X31OlM6dLyXjg0JaX9bsOt4Lx063sVVlKVj/UozOnTR3qtXL/r160dkZCQHDx7k2WefpXfv3qxbtw6LxUJKSgrBwcGXfI+bmxuBgYGkpKT85eNOmDCB8ePH/+n6xYsX4+OjZj+ubvMpE/DnZlF/tHjVBk7vtpV8IBEDLFmyxOgITi1DrzMORcd7ydLfVcei411cRVk41nNycq7ofg5dtA8ZMuTivzdq1IjGjRtTs2ZNli9fzg033HDNj/vMM8/w6KOPXvw6MzOTKlWq0KNHD/z9/a8rs5R9QQlpfLl/0z/er0eH1loREKdTUFDAkiVL6N69O+7u7kbHcVp6nXEMOt5Lh453x6DjXVxFWTrWL+z4/icOXbT/UY0aNahYsSIHDhzghhtuIDQ0lNTU1EvuU1hYSFpa2l+eBw/28+T/2NAOwN3d3eH/x0rJi6kVTFiAFykZuVzu834TEBrgRUytYJ17J05Lr4clS68zjkXHe8nS8e5YdLyLqygLx/qV5jOXcI5idezYMU6fPk1YmL27aExMDOnp6WzevPnifZYtW4bVaqV169ZGxZQyzmI28eLN9tEzf3zrcOHrF2+O0hsLEblmep0RV6LjXUTk+hhatJ89e5a4uDji4uIASEhIIC4ujsTERM6ePcsTTzzB+vXrOXz4ML/99hu33nortWrVomfPngDUr1+fXr16cd9997Fx40bWrFnDuHHjGDJkiDrHy3Xp1TCMicOaExrgdcn1oQFeTBzWXGNpROS66XVGXImOdxGRa2fo9vhNmzbRpUuXi19fOM98+PDhTJw4ke3btzN9+nTS09MJDw+nR48evPLKK5dsbf/6668ZN24cN9xwA2azmf79+/PBBx+U+s8izqdXwzC6R4Wy7kAqi1dtoEeH1tq6JyLF6sLrzMaENFKzcgn286JVZKBeZ8Qp6XgXEbk2hhbtnTt3xmb76y6hv/766z8+RmBgIN98801xxhK5yGI20ToykNO7bbTWGwsRKQEWs4mYmkFGxxApFTreRUSuXpk6p11ERERERETElahoFxEREREREXFQKtpFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEREREREQclIp2EREREREREQelol1ERERERETEQbkZHcAR2Gw2ADIzMw1OIo6ooKCAnJwcMjMzcXd3NzqOSInS8S6uRMe7uBId7+IqytKxfqH+vFCP/hUV7UBWVhYAVapUMTiJiIiIiIiIuJKsrCwCAgL+8naT7Z/KehdgtVo5fvw4fn5+mEwmo+OIg8nMzKRKlSocPXoUf39/o+OIlCgd7+JKdLyLK9HxLq6iLB3rNpuNrKwswsPDMZv/+sx1rbQDZrOZypUrGx1DHJy/v7/D/+KLFBcd7+JKdLyLK9HxLq6irBzrf7fCfoEa0YmIiIiIiIg4KBXtIiIiIiIiIg5KRbvIP/D09OTFF1/E09PT6CgiJU7Hu7gSHe/iSnS8i6twxmNdjehEREREREREHJRW2kVEREREREQclIp2EREREREREQelol1ERERERETEQaloFxEREREREXFQKtpFLmPChAm0bNkSPz8/goOD6du3L3v37jU6lkipeOONNzCZTDz88MNGRxEpEUlJSQwbNoygoCC8vb1p1KgRmzZtMjqWSLErKiri+eefJzIyEm9vb2rWrMkrr7yC+lCLM1i5ciU333wz4eHhmEwmfvjhh0tut9lsvPDCC4SFheHt7U23bt3Yv3+/MWGvk4p2kctYsWIFY8eOZf369SxZsoSCggJ69OhBdna20dFESlRsbCyffvopjRs3NjqKSIk4c+YM7dq1w93dnV9++YX4+HjeffddKlSoYHQ0kWL35ptvMnHiRD766CN2797Nm2++yVtvvcWHH35odDSR65adnU2TJk34+OOPL3v7W2+9xQcffMCkSZPYsGEDvr6+9OzZk9zc3FJOev008k3kCpw8eZLg4GBWrFhBx44djY4jUiLOnj1L8+bN+eSTT3j11Vdp2rQp77//vtGxRIrV008/zZo1a1i1apXRUURK3E033URISAhTpky5eF3//v3x9vZmxowZBiYTKV4mk4l58+bRt29fwL7KHh4ezmOPPcbjjz8OQEZGBiEhIUybNo0hQ4YYmPbqaaVd5ApkZGQAEBgYaHASkZIzduxY+vTpQ7du3YyOIlJifvrpJ6Kjoxk4cCDBwcE0a9aMzz77zOhYIiWibdu2/Pbbb+zbtw+Abdu2sXr1anr37m1wMpGSlZCQQEpKyiXvaQICAmjdujXr1q0zMNm1cTM6gIijs1qtPPzww7Rr146GDRsaHUekRHz77bds2bKF2NhYo6OIlKhDhw4xceJEHn30UZ599lliY2P517/+hYeHB8OHDzc6nkixevrpp8nMzKRevXpYLBaKiop47bXXGDp0qNHRREpUSkoKACEhIZdcHxIScvG2skRFu8g/GDt2LDt37mT16tVGRxEpEUePHuWhhx5iyZIleHl5GR1HpERZrVaio6N5/fXXAWjWrBk7d+5k0qRJKtrF6cyePZuvv/6ab775hgYNGhAXF8fDDz9MeHi4jneRMkTb40X+xrhx41iwYAG///47lStXNjqOSInYvHkzqampNG/eHDc3N9zc3FixYgUffPABbm5uFBUVGR1RpNiEhYURFRV1yXX169cnMTHRoEQiJeeJJ57g6aefZsiQITRq1Ig777yTRx55hAkTJhgdTaREhYaGAnDixIlLrj9x4sTF28oSFe0il2Gz2Rg3bhzz5s1j2bJlREZGGh1JpMTccMMN7Nixg7i4uIuX6Ohohg4dSlxcHBaLxeiIIsWmXbt2fxrhuW/fPqpVq2ZQIpGSk5OTg9l86dt9i8WC1Wo1KJFI6YiMjCQ0NJTffvvt4nWZmZls2LCBmJgYA5NdG22PF7mMsWPH8s033/Djjz/i5+d38dyXgIAAvL29DU4nUrz8/Pz+1K/B19eXoKAg9XEQp/PII4/Qtm1bXn/9dQYNGsTGjRuZPHkykydPNjqaSLG7+eabee2116hatSoNGjRg69atvPfee4wcOdLoaCLX7ezZsxw4cODi1wkJCcTFxREYGEjVqlV5+OGHefXVV6lduzaRkZE8//zzhIeHX+wwX5Zo5JvIZZhMpsteP3XqVEaMGFG6YUQM0LlzZ418E6e1YMECnnnmGfbv309kZCSPPvoo9913n9GxRIpdVlYWzz//PPPmzSM1NZXw8HBuv/12XnjhBTw8PIyOJ3Jdli9fTpcuXf50/fDhw5k2bRo2m40XX3yRyZMnk56eTvv27fnkk0+oU6eOAWmvj4p2EREREREREQelc9pFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEROSyDh8+jMlkIi4ursSeY8SIEfTt27fEHl9ERKSsU9EuIiLipEaMGIHJZPrTpVevXlf0/VWqVCE5OZmGDRuWcFIRERH5K25GBxAREZGS06tXL6ZOnXrJdZ6enlf0vRaLhdDQ0JKIJSIiIldIK+0iIiJOzNPTk9DQ0EsuFSpUAMBkMjFx4kR69+6Nt7c3NWrUYO7cuRe/94/b48+cOcPQoUOpVKkS3t7e1K5d+5IPBHbs2EHXrl3x9vYmKCiIUaNGcfbs2Yu3FxUV8eijj1K+fHmCgoJ48sknsdlsl+S1Wq1MmDCByMhIvL29adKkySWZREREXI2KdhERERf2/PPP079/f7Zt28bQoUMZMmQIu3fv/sv7xsfH88svv7B7924mTpxIxYoVAcjOzqZnz55UqFCB2NhY5syZw9KlSxk3btzF73/33XeZNm0aX3zxBatXryYtLY158+Zd8hwTJkzgyy+/ZNKkSezatYtHHnmEYcOGsWLFipL7jyAiIuLATLY/fsQtIiIiTmHEiBHMmDEDLy+vS65/9tlnefbZZzGZTIwePZqJEydevK1NmzY0b96cTz75hMOHDxMZGcnWrVtp2rQpt9xyCxUrVuSLL77403N99tlnPPXUUxw9ehRfX18AFi5cyM0338zx48cJCQkhPDycRx55hCeeeAKAwsJCIiMjadGiBT/88AN5eXkEBgaydOlSYmJiLj72vffeS05ODt98801J/GcSERFxaDqnXURExIl16dLlkqIcIDAw8OK////i+MLXf9UtfsyYMfTv358tW7bQo0cP+vbtS9u2bQHYvXs3TZo0uViwA7Rr1w6r1crevXvx8vIiOTmZ1q1bX7zdzc2N6Ojoi1vkDxw4QE5ODt27d7/kefPz82nWrNnV//AiIiJOQEW7iIiIE/P19aVWrVrF8li9e/fmyJEjLFy4kCVLlnDDDTcwduxY3nnnnWJ5/Avnv//8889ERERcctuVNs8TERFxNjqnXURExIWtX7/+T1/Xr1//L+9fqVIlhg8fzowZM3j//feZPHkyAPXr12fbtm1kZ2dfvO+aNWswm83UrVuXgIAAwsLC2LBhw8XbCwsL2bx588Wvo6Ki8PT0JDExkVq1al1yqVKlSnH9yCIiImWKVtpFREScWF5eHikpKZdc5+bmdrGB3Jw5c4iOjqZ9+/Z8/fXXbNy4kSlTplz2sV544QVatGhBgwYNyMvLY8GCBRcL/KFDh/Liiy8yfPhwXnrpJU6ePMmDDz7InXfeSUhICAAPPfQQb7zxBrVr16ZevXq89957pKenX3x8Pz8/Hn/8cR555BGsVivt27cnIyODNWvW4O/vz/Dhw0vgv5CIiIhjU9EuIiLixBYtWkRYWNgl19WtW5c9e/YAMH78eL799lseeOABwsLCmDlzJlFRUZd9LA8PD5555hkOHz6Mt7c3HTp04NtvvwXAx8eHX3/9lYceeoiWLVvi4+ND//79ee+99y5+/2OPPUZycjLDhw/HbDYzcuRIbrvtNjIyMi7e55VXXqFSpUpMmDCBQ4cOUb58eZo3b86zzz5b3P9pREREygR1jxcREXFRJpOJefPm0bdvX6OjiIiIyF/QOe0iIiIiIiIiDkpFu4iIiIiIiIiD0jntIiIiLkpnyImIiDg+rbSLiIiIiIiIOCgV7SIiIiIiIiIOSkW7iIiIiIiIiINS0S4iIiIiIiLioFS0i4iIiIiIiDgoFe0iIiIiIiIiDkpFu4iIiIiIiIiDUtEuIiIiIiIi4qD+DxJejuvm+1wFAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def evaluate_ppo_agent(env,\n",
" actor_critic,\n",
" num_episodes=10,\n",
" output_dir='eval_gifs'):\n",
" if not os.path.exists(output_dir):\n",
" os.makedirs(output_dir)\n",
" \n",
" eval_episode_rwds=[] \n",
" for episode in range(num_episodes):\n",
" obs=env.reset()\n",
" episode_rwds_ppo=np.zeros((2,))\n",
" frames_paths=[]\n",
" done=False\n",
" timestep=0\n",
" while not done:\n",
" with torch.no_grad():\n",
" obs_tensor=torch.tensor(obs,\n",
" dtype=torch.float32).unsqueeze(0)\n",
" policy_logits,_=actor_critic(obs_tensor)\n",
" action1=Categorical(logits=policy_logits).sample().item()\n",
" action2=Categorical(logits=policy_logits).sample().item()\n",
" next_obs,rewards,done,_=env.step([action1,\n",
" action2])\n",
" episode_rwds_ppo+=rewards \n",
" obs=next_obs\n",
" frame_path=os.path.join(output_dir,\n",
" f\"episode_{episode+1}_frame_{timestep}.png\")\n",
" env.render(save_path=frame_path) \n",
" frames_paths.append(frame_path) \n",
" timestep+=1\n",
" eval_episode_rwds.append(episode_rwds_ppo) \n",
" \n",
" frames=[imageio.imread(path) for path in frames_paths]\n",
" gif_path=os.path.join(output_dir,f\"episode_{episode+1}.gif\")\n",
" imageio.mimsave(gif_path,frames,fps=10) \n",
" for path in frames_paths:\n",
" os.remove(path)\n",
" print(f\"Episode {episode+1} evaluated, GIF saved to {gif_path}.\")\n",
"\n",
" eval_episode_rwds=np.array(eval_episode_rwds) \n",
" plt.figure(figsize=(12,6))\n",
" for agent_index in range(2):\n",
" plt.plot(range(1,num_episodes+1),eval_episode_rwds[:,agent_index],marker='o',label=f'Agent {agent_index+1}')\n",
" plt.title('Total Rewards per Episode for Each Agent')\n",
" plt.xlabel('Episode')\n",
" plt.ylabel('Total Reward')\n",
" plt.legend()\n",
" plt.grid(True)\n",
" plt.savefig(os.path.join(output_dir,'rewards_plot.png'))\n",
" plt.show()\n",
"\n",
"evaluate_ppo_agent(env,actor_critic,num_episodes=10)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|