{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Proximal Policy Optimization" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import gym\n", "from gym import spaces\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.patches import Rectangle\n", "\n", "import os\n", "import random\n", "import imageio\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "from torch.distributions import Categorical" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "class RoverGridEnv(gym.Env):\n", " metadata={'render.modes': ['human']} \n", " def __init__(self,max_ts=20): \n", " super(RoverGridEnv,self).__init__()\n", " self.max_ts=max_ts # Note: The Max_Timestamps is set to 20 by default.\n", " self.grid_size=(15,15) \n", " self.action_space=spaces.Discrete(5) \n", " self.observation_space=spaces.MultiDiscrete([15,15,15,15,15,15])\n", " self.rover_positions=np.array([[6,4],[10,4]])\n", " self.operation_desks=np.array([[6,3],[10,3]])\n", " self.rooms=np.array([[4,7],[4,10],[4,13],[8,7],[8,10],[8,13],[12,7],[12,10],[12,13]])\n", " self.human_position=np.array([8,9])\n", " self.targets=np.array([[5,10],[9,13]])\n", " self.actions=[(0,-1),(0,1),(-1,0),(1,0),(0,0)] # Down,Up,Left,Right,Wait\n", " self.rover_done=[False,False] \n", " self.reset()\n", " \n", " def seed(self,seed=None):\n", " np.random.seed(seed)\n", " random.seed(seed)\n", " \n", " def reset(self):\n", " self.current_step=0\n", " self.rover_positions=np.array([[6,4],[10,4]])\n", " self.rover_done=[False,False]\n", " self.human_position=np.array([7,8])\n", " self.current_step=0\n", " return self._get_obs()\n", " \n", " def _get_obs(self):\n", " return np.concatenate((self.rover_positions.flatten(),self.human_position))\n", " \n", " def step(self,actions):\n", " rewards=np.zeros(2)\n", " done=[False,False]\n", " info={'message': ''} \n", " for i,action in enumerate(actions):\n", " if self.rover_done[i]:\n", " done[i]=True \n", " continue\n", " prev_distance=np.linalg.norm(self.targets[i]-self.rover_positions[i])\n", " if self._is_human_adjacent(self.rover_positions[i]):\n", " rewards[i] -= 5\n", " else:\n", " delta=np.array(self.actions[action])\n", " new_position=self.rover_positions[i]+delta\n", " if self._out_of_bounds(new_position):\n", " rewards[i] -= 15\n", " continue\n", " if self._collision(new_position,i):\n", " rewards[i] -= 15\n", " continue\n", " self.rover_positions[i]=new_position\n", " new_distance=np.linalg.norm(self.targets[i]-new_position)\n", " if new_distance < prev_distance:\n", " rewards[i]+=30 \n", " else:\n", " rewards[i] -= 20 \n", " if np.array_equal(new_position,self.targets[i]):\n", " rewards[i]+=100\n", " self.rover_done[i]=True \n", " done[i]=True\n", "\n", " # move human randomly\n", " self._move_human()\n", " self.current_step+=1\n", " all_done=all(done) or self.current_step >= self.max_ts\n", " if all_done and not all(done): # if the maximum number of steps is reached but not all targets were reached\n", " info['message']='Maximum number of timestamps reached'\n", " return self._get_obs(),rewards,all_done,info\n", "\n", " def _is_human_adjacent(self,position):\n", " for delta in [(1,1),(1,-1),(-1,1),(-1,-1)]:\n", " adjacent_position=position+np.array(delta)\n", " if np.array_equal(adjacent_position,self.human_position):\n", " return True\n", " return False\n", "\n", " def _out_of_bounds(self,position):\n", " return not (0 <= position[0] < self.grid_size[0] and 0 <= position[1] < self.grid_size[1])\n", " \n", " def _collision(self,new_position,rover_index):\n", " if any(np.array_equal(new_position,pos) for pos in np.delete(self.rover_positions,rover_index,axis=0)):\n", " return True # Collision with the other rover\n", " if any(np.array_equal(new_position,pos) for pos in self.rooms):\n", " return True # Collision with a room\n", " if any(np.array_equal(new_position,pos) for pos in self.operation_desks):\n", " return True # Collision with an operation desk\n", " if np.array_equal(new_position,self.human_position):\n", " return True # Collision with the human\n", " return False\n", " \n", " def _move_human(self):\n", " valid_moves=[move for move in self.actions if not self._out_of_bounds(self.human_position+np.array(move))]\n", " self.human_position+=np.array(valid_moves[np.random.choice(len(valid_moves))])\n", " \n", " def render(self,mode='human',save_path=None):\n", " fig,ax=plt.subplots(figsize=(7,7))\n", " ax.set_xlim(0,self.grid_size[0])\n", " ax.set_ylim(0,self.grid_size[1])\n", " ax.set_xticks(np.arange(0,15,1))\n", " ax.set_yticks(np.arange(0,15,1))\n", " ax.grid(which='both')\n", "\n", " # draw elements\n", " for pos in self.rover_positions:\n", " ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='blue'))\n", " for pos in self.operation_desks:\n", " ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='darkgreen'))\n", " for pos in self.rooms:\n", " ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='black'))\n", " ax.add_patch(Rectangle((self.human_position[0]-0.5,self.human_position[1]-0.5),1,1,color='purple'))\n", " for pos in self.targets:\n", " ax.add_patch(Rectangle((pos[0]-0.5,pos[1]-0.5),1,1,color='yellow',alpha=0.5))\n", "\n", " if save_path is not None:\n", " plt.savefig(save_path)\n", " plt.close()\n", " \n", " def close(self):\n", " plt.close()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initial Setup\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJGCAYAAABGPbGbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9MklEQVR4nO3df3RU5YH/8c8kmUwmQCJk+JFoBlAEKmpEUYv4pVAJnCxFabeixmIKbXd7ilWalrW0iyRVitizLLZyoLiK3bZBu61QyzmWRqukHOW3odC1EbpIbIjQVMlAfoyXzP3+QZMSEyZPMndmLun7dQ4n59658zwfZx4vn9wZZjy2bdsCAABAVCnJDgAAAHAxoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYSEt2gI+KRCI6fvy4Bg0aJI/Hk+w4AACgn7NtW6dPn1ZeXp5SUi58Pcl1pen48ePKz89PdgwAAPAP5t1339Vll112wdtdV5oGDRokSTp69KiGDBmS5DTnWJal3/zmN5o5c6a8Xm+y45CHPP0qj+S+TOQhT3/KI7kvk9vyhEIh5efnd3SQC3FdaWp/SW7QoEHKyspKcppzLMtSZmamsrKyXPHkkoc8/SmP5L5M5CFPf8ojuS+T2/K06+ltQbwRHAAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwAClCQAAwECvS1NVVZXmzJmjvLw8eTwebdmy5YLHfvnLX5bH49GaNWtiiAgAAJB8vS5NTU1NKigo0Nq1a6Met3nzZu3cuVN5eXl9DgcAAOAWab29Q1FRkYqKiqIeU1dXp69+9avatm2bZs+e3edwAAAAbtHr0tSTSCSi+fPna8mSJZowYUKPx4fDYYXD4Y7tUCgkSbIsS5ZlOR2vT9pzkKd75ImOPD1zWybyREee6NyWR3JfJrfm6YnHtm27r5N4PB5t3rxZc+fO7di3cuVKvfrqq9q2bZs8Ho9GjRqlxYsXa/Hixd2OUVZWpvLy8i77KyoqlJmZ2ddoAAAARpqbm1VcXKzGxkZlZWVd8DhHrzTt27dPTzzxhPbv3y+Px2N0n6VLl6q0tLRjOxQKKT8/X9OnT1dOTo6T8frMsixVVlaqsLBQXq832XHIQ55+lUdyXybykKc/5ZHcl8ltedpf5eqJo6Xpd7/7nU6ePKlgMNixr62tTV//+te1Zs0avfPOO13u4/P55PP5uuz3er2ueCDP57ZM5ImOPNG5LY/kvkzkiY480bktj+S+TG7JY5rB0dI0f/58zZgxo9O+WbNmaf78+VqwYIGTUwEAACRUr0vTmTNndOTIkY7to0ePqrq6WkOGDFEwGOzykprX69WIESM0bty42NMCAAAkSa9L0969ezV9+vSO7fb3I5WUlOjZZ591LBgAAICb9Lo0TZs2Tb35B3fdvY8JAADgYsN3zwEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABjo9deoAPFUW1urhoaGmMaIRCKSpAMHDiglJbbfCwKBgILBYExjILHctoaGDk1Xfn5OzwdG1fa3nyckpcY4Vqak7BjH6L/ctn4kzkNuQmmCa9TW1mrcuHFqbW2NaRy/369NmzZp6tSpamlpiWmsjIwM1dTUcMK6SLhtDWVlSWVlqfrSl+Zq4MCBMSRKkzRHUpmkszGMI0kBSctEcerKbeunHech96A0wTUaGhpiPlk5rbW1VQ0NDZysLhJuW0OZmdLgwW1qaZEGDozlalP71aUh+vtVp75oltTwt5+Upo9y2/ppx3nIPShNABBnkYhf0qAYRmh/iWegpEiMaWK/8gH8o+KN4AAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAZ6XZqqqqo0Z84c5eXlyePxaMuWLZ1uLysr0/jx4zVgwAANHjxYM2bM0K5du5zKCwAAkBS9Lk1NTU0qKCjQ2rVru7197NixevLJJ3Xw4EHt2LFDo0aN0syZM/WXv/wl5rAAAADJktbbOxQVFamoqOiCtxcXF3faXr16tZ5++mn9/ve/12233db7hAAAAC7Q69LUGx9++KE2bNig7OxsFRQUdHtMOBxWOBzu2A6FQpIky7JkWVY84xlrz0Ge7jmVJxKJyO/3x5ynfQwnxpLO5Yrlv62/Pl9O6q9rKCPj3M+zZ9NkWX1/C2n7fWMZ45xUnTvtt0liTX+U29bP+TgPxZdpDo9t23ZfJ/F4PNq8ebPmzp3baf/WrVt19913q7m5Wbm5udqyZYtuvPHGbscoKytTeXl5l/0VFRXKzMzsazQAAAAjzc3NKi4uVmNjo7Kysi54XFxKU1NTk+rr69XQ0KCnnnpKv/3tb7Vr1y4NGzasyxjdXWnKz89XfX29cnJy+hrNUZZlqbKyUoWFhfJ6vcmO02/zHDhwQFOnTo05j9/v1zPPPKOFCxeqpaUl5vGqqqoueKXURH99vpzUX9fQ8OHS8uVSYeFdGjZsdJ/HsawUVVZeo8LCg/J6I30eRzoj6X1JZZKGx5DHXWuov66f83Eeiq9QKKRAINBjaYrLy3MDBgzQmDFjNGbMGH384x/XlVdeqaefflpLly7tcqzP55PP5+uy3+v1uuKBPJ/bMvW3PCkpKY6dYCSppaXFkfFSUlIceZz72/MVD/1tDbW2nvuZlnY2xrJzjtcbiXGcNklnde5lOtb0R7lt/ZyP81D8c5hIyOc0RSKRTleTAAAALja9vtJ05swZHTlypGP76NGjqq6u1pAhQ5STk6MVK1bo9ttvV25urhoaGrR27VrV1dXpzjvvdDQ4AABAIvW6NO3du1fTp0/v2C4tLZUklZSUaP369frjH/+oH/3oR2poaFBOTo5uvPFG/e53v9OECROcSw0AAJBgvS5N06ZNU7T3jr/wwgsxBQIAAHAjvnsOAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAQK+/RgUA0DspKS2STscwQurffp6R1BbDOM0x3BcApQmuEQgElJGRodbW1mRH6ZCRkaFAIJDsGDDktjXU3Cx98EGq/H5J+msMI7Wfqt+XdDbGVAFJmTGO0T+5bf204zzkHpQmuEYwGFRNTY0aGhpiGicSiaiurk5VVVVKSYntFehAIKBgMBjTGEgcN66hoUPTNXBgTkxjnLu6tE9Smf5+1amvMiVlxzhG/+TG9SNxHnITShNcJRgMxnxysCxLdXV1KigokNfrdSgZLhb9cw1Zf/s5XJIb8vRf/XP9wCm8ERwAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMAApQkAAMBAr0tTVVWV5syZo7y8PHk8Hm3ZsqXjNsuy9NBDD+maa67RgAEDlJeXp/vuu0/Hjx93MjMAAEDC9bo0NTU1qaCgQGvXru1yW3Nzs/bv369ly5Zp//79euGFF1RTU6Pbb7/dkbAAAADJktbbOxQVFamoqKjb27Kzs1VZWdlp35NPPqmbbrpJtbW1MX9zNAAAQLL0ujT1VmNjozwejy655JJubw+HwwqHwx3boVBI0rmX+izLinc8I+05yNM98kRHnp65LRN5oiNPdG7LI7kvk1vz9MRj27bd10k8Ho82b96suXPndnt7a2urpkyZovHjx+unP/1pt8eUlZWpvLy8y/6KigplZmb2NRoAAICR5uZmFRcXq7GxUVlZWRc8Lm6lybIs/fM//7P+/Oc/67XXXrtgiO6uNOXn56u+vl45OTl9jeYoy7JUWVmpwsJCeb3eZMchD3n6VR7JfZnIQ57+lEdyXya35QmFQgoEAj2Wpri8PGdZlubNm6djx47pt7/9bdQAPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phkcL03thenw4cN69dVXXXO1CAAAIBa9Lk1nzpzRkSNHOraPHj2q6upqDRkyRLm5ufrsZz+r/fv3a+vWrWpra9N7770nSRoyZIjS09OdSw4AAJBAvS5Ne/fu1fTp0zu2S0tLJUklJSUqKyvTiy++KEm67rrrOt3v1Vdf1bRp0/qeFAAAIIl6XZqmTZumaO8dj+F95QAAAK7Fd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAY6HVpqqqq0pw5c5SXlyePx6MtW7Z0uv2FF17QzJkzlZOTI4/Ho+rqaoeiAgAAJE+vS1NTU5MKCgq0du3aC95+6623atWqVTGHAwAAcIu03t6hqKhIRUVFF7x9/vz5kqR33nmnz6EAAADcptelyWnhcFjhcLhjOxQKSZIsy5JlWcmK1Ul7DvJ0jzzRkadnbstEnujIE53b8kjuy+TWPD3x2LZt93USj8ejzZs3a+7cuV1ue+eddzR69Gi9+eabuu666y44RllZmcrLy7vsr6ioUGZmZl+jAQAAGGlublZxcbEaGxuVlZV1weOSfqVp6dKlKi0t7dgOhULKz8/X9OnTlZOTk8Rkf2dZliorK1VYWCiv15vsOOQhT7/KI7kvE3nI05/ySO7L5LY87a9y9STppcnn88nn83XZ7/V6XfFAns9tmcgTHXmic1seyX2ZyBMdeaJzWx7JfZncksc0A5/TBAAAYKDXV5rOnDmjI0eOdGwfPXpU1dXVGjJkiILBoN5//33V1tbq+PHjkqSamhpJ0ogRIzRixAiHYgMAACRWr6807d27VxMnTtTEiRMlSaWlpZo4caIefvhhSdKLL76oiRMnavbs2ZKku+++WxMnTtT69esdjA0AAJBYvb7SNG3aNEX7B3ef//zn9fnPfz6WTAAAAK7De5oAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAM9PprVIB4qq2tVUNDQ0xjRCIRSdKBAweUkhLb7wVDh6YrPz8npjGktr/9PCEpNcaxMiVlxzhG/+a2NRQIBBQMBmMaA4njtvUjsYbchNIE16itrdW4cePU2toa0zh+v1+bNm3S1KlT1dLS0udxsrKksrJUfelLczVw4MAYEqVJmiOpTNLZGMaRpICkZaI4dc9ta0iSMjIyVFNTw196FwE3rh+JNeQmlCa4RkNDQ8wnKydlZkqDB7eppUUaODCWq03tV5eG6O9XnfqiWVLD335SmrrjtjUkSa2trWpoaOAvvIuAG9ePxBpyE0oT0INIxC9pUAwjtF+eHygpEmOa2H9rBQD0DW8EBwAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMEBpAgAAMNDr0lRVVaU5c+YoLy9PHo9HW7Zs6XS7bdt6+OGHlZubK7/frxkzZujw4cNO5QUAAEiKXpempqYmFRQUaO3atd3e/vjjj+v73/++1q9fr127dmnAgAGaNWuWK785GgAAwFRab+9QVFSkoqKibm+zbVtr1qzRv//7v+uOO+6QJP33f/+3hg8fri1btujuu++OLS0AAECS9Lo0RXP06FG99957mjFjRse+7Oxs3XzzzXrjjTe6LU3hcFjhcLhjOxQKSZIsy5JlWU7G67P2HOTpnlN5IpGI/H5/zHnax4h1rIyMcz/Pnk2TZfX97X/t941ljHNSde5/2TZJfX+s3bZ+pP67htpFIpGY/tvc9pz11zxuXT8SayjeTHN4bNu2+zqJx+PR5s2bNXfuXEnS66+/rilTpuj48ePKzc3tOG7evHnyeDx6/vnnu4xRVlam8vLyLvsrKiqUmZnZ12gAAABGmpubVVxcrMbGRmVlZV3wOEevNPXF0qVLVVpa2rEdCoWUn5+v6dOnKycnJ4nJ/s6yLFVWVqqwsFBerzfZcfptngMHDmjq1Kkx5/H7/XrmmWe0cOFCtbS09Hmc4cOl5culwsK7NGzY6D6PY1kpqqy8RoWFB+X1Rvo8jnRG0vuSyiQNjyGPu9aP1H/XULuqqioVFBT0+f5ue876ax63rh+JNRRv7a9y9cTR0jRixAhJ0okTJzpdaTpx4oSuu+66bu/j8/nk8/m67Pd6va54IM/ntkz9LU9KSopjJxhJamlpiWm89n+7kJZ2Nsayc47XG4lxnDZJZ3XuZbrYn3e3rR+p/62hdikpKY481m57zvpbHreuH4k1lIgcJhz9nKbRo0drxIgReuWVVzr2hUIh7dq1S5MnT3ZyKgAAgITq9ZWmM2fO6MiRIx3bR48eVXV1tYYMGaJgMKjFixfr0Ucf1ZVXXqnRo0dr2bJlysvL63jfEwAAwMWo16Vp7969mj59esd2+/uRSkpK9Oyzz+rf/u3f1NTUpH/5l3/RqVOndOutt+rXv/61Mtr/KRIAAMBFqNeladq0aYr2D+48Ho++853v6Dvf+U5MwQAAANyE754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAw0OuvUQH+0aSktEg6HcMIqX/7eUZSWwzjNMdwXwBArChNcI1AIKCMjAy1trYmO4okqblZ+uCDVPn9kvTXGEZq/9/sfUlnY0wVkJQZ4xj9l9vWkCRlZGQoEAgkOwYMuHH9SKwhN6E0wTWCwaBqamrU0NAQ0ziRSER1dXWqqqpSSkpsr0APHZqugQNzYhrj3NWlfZLK9PerTn2VKSk7xjH6LzeuoUAgoGAwGNMYSAw3rh+JNeQmlCa4SjAYjPnkYFmW6urqVFBQIK/X61CyWFh/+zlckhvy9G/9cw0hUVg/iIY3ggMAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIS2k6ffq0Fi9erJEjR8rv9+uWW27Rnj174jEVAABAQsSlNH3xi19UZWWlfvzjH+vgwYOaOXOmZsyYobq6unhMBwAAEHeOl6aWlhb94he/0OOPP66pU6dqzJgxKisr05gxY7Ru3TqnpwMAAEiINKcHPHv2rNra2pSRkdFpv9/v144dO7ocHw6HFQ6HO7ZDoZAkybIsWZbldLw+ac9Bnu6RJzry9MxtmcgTHXmic1seyX2Z3JqnJx7btm2nJ7/llluUnp6uiooKDR8+XJs2bVJJSYnGjBmjmpqaTseWlZWpvLy8yxgVFRXKzMx0OhoAAEAnzc3NKi4uVmNjo7Kysi54XFxK05/+9CctXLhQVVVVSk1N1fXXX6+xY8dq3759euuttzod292Vpvz8fNXX1ysnJ8fpaH1iWZYqKytVWFgor9eb7DjkIU+/yiO5LxN5yNOf8kjuy+S2PKFQSIFAoMfS5PjLc5J0xRVXaPv27WpqalIoFFJubq7uuusuXX755V2O9fl88vl8XfZ7vV5XPJDnc1sm8kRHnujclkdyXybyREee6NyWR3JfJrfkMc0Q189pGjBggHJzc/XBBx9o27ZtuuOOO+I5HQAAQNzE5UrTtm3bZNu2xo0bpyNHjmjJkiUaP368FixYEI/pAAAA4i4uV5oaGxu1aNEijR8/Xvfdd59uvfVWbdu2zRWX4AAAAPoiLlea5s2bp3nz5sVjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMxOVrVAD842isbVRzQ3NMY7RF2iRJJw6cUGpKakxjZQYylR3MjmkMAOgOpQlAnzXWNurJcU/qbOvZmMZJ8afo2k3XauPUjYq0RGIaKy0jTffX3E9xAuA4Xp4D0GfNDc0xFyannW09G/OVLwDoDqUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAAKUJAADAgOOlqa2tTcuWLdPo0aPl9/t1xRVX6JFHHpFt205PBQAAkDBpTg+4atUqrVu3Tj/60Y80YcIE7d27VwsWLFB2drYeeOABp6cDAABICMdL0+uvv6477rhDs2fPliSNGjVKmzZt0u7du52eCgAAIGEcL0233HKLNmzYoLfffltjx47VgQMHtGPHDq1evbrb48PhsMLhcMd2KBSSJFmWJcuynI7XJ+05yNM98kTXn/O0RdqU4o/9Vf72MZwYSzqXK5b/vv78nDmBPNG5LY/kvkxuzdMTj+3wm40ikYi+9a1v6fHHH1dqaqra2tq0YsUKLV26tNvjy8rKVF5e3mV/RUWFMjMznYwGAADQRXNzs4qLi9XY2KisrKwLHud4aXruuee0ZMkSfe9739OECRNUXV2txYsXa/Xq1SopKelyfHdXmvLz81VfX6+cnBwno/WZZVmqrKxUYWGhvF5vsuOQhzyuyXPiwAltnLox5kwp/hRd/czVOrTwkCItkZjHW1C1QMMLhvf5/v35OSPPP14eyX2Z3JYnFAopEAj0WJocf3luyZIl+uY3v6m7775bknTNNdfo2LFjWrlyZbelyefzyefzddnv9Xpd8UCez22ZyBMdeaJzIk9qSqojJaddpCXiyHipKamOPNb98TlzEnmic1seyX2Z3JLHNIPjHznQ3NyslJTOw6ampioSce7ECgAAkGiOX2maM2eOVqxYoWAwqAkTJujNN9/U6tWrtXDhQqenAgAASBjHS9MPfvADLVu2TF/5yld08uRJ5eXl6V//9V/18MMPOz0VAABAwjhemgYNGqQ1a9ZozZo1Tg8NAACQNHz3HAAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAHHv0YFiEVtba0aGhpiGiMSiUiSDhw4oJSU2H4vCAQCCgaDMY2BxHvrrbdUr/o+35819I/LbecgiTXkJpQmuEZtba3GjRun1tbWmMbx+/3atGmTpk6dqpaWlpjGysjIUE1NDSesC8gMZCotI01nW88mO0qHszqrz3zuM2pUY5/HYA39Y3LjOUhiDbkJpQmu0dDQEPPJymmtra1qaGjgZHUB2cFs3V9zv5obmmMapy3Spn11+7SgaoFSU1L7PM5bb70Vc2FyGmvo4uHGc5DEGnITShOAmGQHs5UdzI5pDMuypDppeMFweb3ePo9Tr3pXFSYA/QtvBAcAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGkaNWqUPB5Plz+LFi1yeioAAICEcfwLe/fs2aO2traO7UOHDqmwsFB33nmn01MBAAAkjOOlaejQoZ22H3vsMV1xxRX6xCc+4fRUAAAACeN4aTrfhx9+qJ/85CcqLS2Vx+Pp9phwOKxwONyxHQqFJEmWZcmyrHjGM9aegzzdcypPJBKR3++POU/7GE6MJZ3LFct/W399vpzEGorObc9Zf83j1vUjsYbizTSHx7ZtO14hfvazn6m4uFi1tbXKy8vr9piysjKVl5d32V9RUaHMzMx4RQMAAJAkNTc3q7i4WI2NjcrKyrrgcXEtTbNmzVJ6erp+9atfXfCY7q405efnq76+Xjk5OfGK1iuWZamyslKFhYXyer3JjtNv8xw4cEBTp06NOY/f79czzzyjhQsXqqWlJebxqqqqVFBQ0Of799fny0msoejc9pz11zxuXT8SayjeQqGQAoFAj6Upbi/PHTt2TC+//LJeeOGFqMf5fD75fL4u+71eryseyPO5LVN/y5OSkuLYCUaSWlpaHBkvJSXFkce5vz1f8cAais5tz1l/y+PW9SOxhhKRw0TcPqdp48aNGjZsmGbPnh2vKQAAABImLqUpEolo48aNKikpUVpaXN9rDgAAkBBxKU0vv/yyamtrtXDhwngMDwAAkHBxuQw0c+ZMxfH95QAAAAnHd88BAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDQBAAAYoDTBNQKBgDIyMpIdo5OMjAwFAoFkx4Ah1hBi4cb1I7GG3CQuX9gL9EUwGFRNTY0aGhpiGicSiaiurk5VVVVKSYnt94JAIKBgMBjTGEgc1hBi4cb1I7GG3ITSBFcJBoMxnxwsy1JdXZ0KCgrk9XodSoaLBWsIsWD9IBpengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADAQl9JUV1enz33uc8rJyZHf79c111yjvXv3xmMqAACAhHD8C3s/+OADTZkyRdOnT9dLL72koUOH6vDhwxo8eLDTUwEAACSM46Vp1apVys/P18aNGzv2jR492ulpAAAAEsrx0vTiiy9q1qxZuvPOO7V9+3Zdeuml+spXvqIvfelL3R4fDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu2bScnzsjIkCSVlpbqzjvv1J49e/Tggw9q/fr1Kikp6XJ8WVmZysvLu+yvqKhQZmamk9EAAAC6aG5uVnFxsRobG5WVlXXB4xwvTenp6Zo0aZJef/31jn0PPPCA9uzZozfeeKPL8d1dacrPz1d9fb1ycnKcjNZnlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PJebm6urrrqq076Pfexj+sUvftHt8T6fTz6fr8t+r9frigfyfG7LRJ7oyBOd2/JI7stEnujIE53b8kjuy+SWPKYZHP/IgSlTpqimpqbTvrffflsjR450eioAAICEcbw0fe1rX9POnTv13e9+V0eOHFFFRYU2bNigRYsWOT0VAABAwjhemm688UZt3rxZmzZt0tVXX61HHnlEa9as0b333uv0VAAAAAnj+HuaJOlTn/qUPvWpT8VjaAAAgKTgu+cAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMUJoAAAAMOF6aysrK5PF4Ov0ZP36809MAAAAkVFo8Bp0wYYJefvnlv0+SFpdpAAAAEiYubSYtLU0jRoyIx9AAAABJEZfSdPjwYeXl5SkjI0OTJ0/WypUrFQwGuz02HA4rHA53bIdCIUmSZVmyLCse8XqtPQd5ukee6MjTM7dlIk905InObXkk92Vya56eeGzbtp2c+KWXXtKZM2c0btw41dfXq7y8XHV1dTp06JAGDRrU5fiysjKVl5d32V9RUaHMzEwnowEAAHTR3Nys4uJiNTY2Kisr64LHOV6aPurUqVMaOXKkVq9erS984Qtdbu/uSlN+fr7q6+uVk5MTz2jGLMtSZWWlCgsL5fV6kx2HPOTpV3kk92UiD3n6Ux7JfZnclicUCikQCPRYmuL+Du1LLrlEY8eO1ZEjR7q93efzyefzddnv9Xpd8UCez22ZyBMdeaJzWx7JfZnIEx15onNbHsl9mdySxzRD3D+n6cyZM/rTn/6k3NzceE8FAAAQN46Xpm984xvavn273nnnHb3++uv69Kc/rdTUVN1zzz1OTwUAAJAwjr889+c//1n33HOP/vrXv2ro0KG69dZbtXPnTg0dOtTpqQAAABLG8dL03HPPOT0kAABA0vHdcwAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYc/xoVAPFTWys1NMQ2RiRy7ueBA1KKA782BQJSMBj7OEgMt60h1g8uJpQm4CJRWyuNGye1tsY2jt8vbdokTZ0qtbTEnisjQ6qp4S++i4Eb1xDrBxcTXp4DLhINDbH/ZRcPra2xX7lAYrhxDbF+cDGhNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABigNAEAABiIe2l67LHH5PF4tHjx4nhPBQAAEDdxLU179uzRD3/4Q1177bXxnAYAACDu4laazpw5o3vvvVdPPfWUBg8eHK9pAAAAEiItXgMvWrRIs2fP1owZM/Too49e8LhwOKxwONyxHQqFJEmWZcmyrHjF65X2HOTpHnmicypPJCL5/bHn8futTj+dEIlIsfzn9dfnzCn9fQ2xfuLPbZncmqcnHtu2bacnf+6557RixQrt2bNHGRkZmjZtmq677jqtWbOmy7FlZWUqLy/vsr+iokKZmZlORwMAAOikublZxcXFamxsVFZW1gWPc7w0vfvuu5o0aZIqKys73ssUrTR1d6UpPz9f9fX1ysnJcTJan1mWpcrKShUWFsrr9SY7Dnn+QfMcOCBNnRp7Hr/f0jPPVGrhwkK1tDjz+FRVSQUFfb9/f33O3JbHrWuI9RN/bsvktjyhUEiBQKDH0uT4y3P79u3TyZMndf3113fsa2trU1VVlZ588kmFw2GlpqZ23Obz+eTz+bqM4/V6XfFAns9tmcgTXX/Lk5IitbQ4l6elxetYaUpJkZx4qPvbc+a0/rqGWD+J47ZMbsljmsHx0nTbbbfp4MGDnfYtWLBA48eP10MPPdSpMAEAAFwsHC9NgwYN0tVXX91p34ABA5STk9NlPwAAwMWCTwQHAAAwELePHDjfa6+9lohpAAAA4oYrTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYoTQAAAAYS8jUqABwyoFbKaIhtjIzIuZ9DDkitDvze1BqQFIx9HCSG29YQ6wcXEUoTcJEIe2uleeOk1NbYBkrzS9okzZkqnW2JPVhbhsLeGvEXn/u5cg2xfnAR4eU54CLhy2qI/S+7eEhtPZcNrufKNcT6wUWE0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGCA0gQAAGDA8dK0bt06XXvttcrKylJWVpYmT56sl156yelpAAAAEsrx0nTZZZfpscce0759+7R371598pOf1B133KE//OEPTk8FAACQMGlODzhnzpxO2ytWrNC6deu0c+dOTZgwocvx4XBY4XC4YzsUCkmSLMuSZVlOx+uT9hzk6R55onMqT6QtIn+aP+Y8/lR/p59OiLRFYvrv66/PmVP6+xpi/cSf2zK5NU9PPLZt2/EK0dbWpv/5n/9RSUmJ3nzzTV111VVdjikrK1N5eXmX/RUVFcrMzIxXNAAAAElSc3OziouL1djYqKysrAseF5fSdPDgQU2ePFmtra0aOHCgKioq9E//9E/dHtvdlab8/HzV19crJyfH6Wh9YlmWKisrVVhYKK/Xm+w45PkHzXPg3QOa+r2pMefxp/r1TOEzWli5UC1tLTGPJ0lVS6pUkF/Q5/v31+fMbXncuoZYP/HntkxuyxMKhRQIBHosTY6/PCdJ48aNU3V1tRobG/Xzn/9cJSUl2r59e7dXmnw+n3w+X5f9Xq/XFQ/k+dyWiTzR9bc8KakpajnrTMmRpJa2FsfGS0lNceSx7m/PmdP66xpi/SSO2zK5JY9phriUpvT0dI0ZM0aSdMMNN2jPnj164okn9MMf/jAe0wEAAMRdQj6nKRKJdHoJDgAA4GLj+JWmpUuXqqioSMFgUKdPn1ZFRYVee+01bdu2zempAAAAEsbx0nTy5Endd999qq+vV3Z2tq699lpt27ZNhYWFTk8FAACQMI6XpqefftrpIQEAAJKO754DAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCAAAwQGkCLhKBgQFlpGUkO0YXGWkZCgwMJDsGDLhxDbF+cDFx/LvnAMRHMCeomkdr1HCmIaZxIm0R1R2sU9WSKqWkxv57U2BgQMGcYMzjIP7cuIZYP7iYUJqAi0gwJxjzXzCWZanuYJ0K8gvk9XodSoaLBWsI6DtengMAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADBAaQIAADDgeGlauXKlbrzxRg0aNEjDhg3T3LlzVVNT4/Q0AAAACeV4adq+fbsWLVqknTt3qrKyUpZlaebMmWpqanJ6KgAAgIRJc3rAX//61522n332WQ0bNkz79u3T1KlTuxwfDocVDoc7tkOhkCTJsixZluV0vD5pz0Ge7pEnOvL0zG2ZyBMdeaJzWx7JfZncmqcnHtu27XgGOXLkiK688kodPHhQV199dZfby8rKVF5e3mV/RUWFMjMz4xkNAABAzc3NKi4uVmNjo7Kysi54XFxLUyQS0e23365Tp05px44d3R7T3ZWm/Px81dfXKycnJ17ResWyLFVWVqqwsFBerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15QqGQAoFAj6XJ8Zfnzrdo0SIdOnTogoVJknw+n3w+X5f9Xq/XFQ/k+dyWiTzRkSc6t+WR3JeJPNGRJzq35ZHcl8kteUwzxK003X///dq6dauqqqp02WWXxWsaAACAhHC8NNm2ra9+9avavHmzXnvtNY0ePdrpKQAAABLO8dK0aNEiVVRU6Je//KUGDRqk9957T5KUnZ0tv9/v9HQAAAAJ4fjnNK1bt06NjY2aNm2acnNzO/48//zzTk8FAACQMHF5eQ4AAKC/4bvnAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADFCaAAAADDhemqqqqjRnzhzl5eXJ4/Foy5YtTk8BAACQcI6XpqamJhUUFGjt2rVODw0AAJA0aU4PWFRUpKKiIuPjw+GwwuFwx3YoFJIkWZYly7Kcjtcn7TnI0z3yREeenrktE3miI090bssjuS+TW/P0xGPbth2vEB6PR5s3b9bcuXMveExZWZnKy8u77K+oqFBmZma8ogEAAEiSmpubVVxcrMbGRmVlZV3wuKSXpu6uNOXn56u+vl45OTnxitYrlmWpsrJShYWF8nq9yY5DHvL0qzyS+zKRhzz9KY/kvkxuyxMKhRQIBHosTY6/PNdbPp9PPp+vy36v1+uKB/J8bstEnujIE53b8kjuy0Se6MgTndvySO7L5JY8phn4yAEAAAADlCYAAAADjr88d+bMGR05cqRj++jRo6qurtaQIUMUDAadng4AACAhHC9Ne/fu1fTp0zu2S0tLJUklJSV69tlnnZ4OAAAgIRwvTdOmTVMc/0EeAABAUvCeJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAAOUJgAAAANxK01r167VqFGjlJGRoZtvvlm7d++O11QAAABxF5fS9Pzzz6u0tFTLly/X/v37VVBQoFmzZunkyZPxmA4AACDu4lKaVq9erS996UtasGCBrrrqKq1fv16ZmZl65pln4jEdAABA3KU5PeCHH36offv2aenSpR37UlJSNGPGDL3xxhtdjg+HwwqHwx3bjY2NkqT333/f6Wh9ZlmWmpub9de//lVerzfZcchDnn6VR3JfJvKQpz/lkdyXyW15Tp8+LUmybTvqcY6XpoaGBrW1tWn48OGd9g8fPlx//OMfuxy/cuVKlZeXd9k/duxYp6MBAABc0OnTp5WdnX3B2x0vTb21dOlSlZaWdmyfOnVKI0eOVG1tbdTgiRQKhZSfn693331XWVlZyY5DHvL0qzyS+zKRhzz9KY/kvkxuy2Pbtk6fPq28vLyoxzlemgKBgFJTU3XixIlO+0+cOKERI0Z0Od7n88nn83XZn52d7YoH8nxZWVmuykSe6MgTndvySO7LRJ7oyBOd2/JI7svkpjwmF2ocfyN4enq6brjhBr3yyisd+yKRiF555RVNnjzZ6ekAAAASIi4vz5WWlqqkpESTJk3STTfdpDVr1qipqUkLFiyIx3QAAABxF5fSdNddd+kvf/mLHn74Yb333nu67rrr9Otf/7rLm8O74/P5tHz58m5fsksWt2UiT3Tkic5teST3ZSJPdOSJzm15JPdlclseUx67p39fBwAAAL57DgAAwASlCQAAwAClCQAAwAClCQAAwAClCQAAwIDrStPatWs1atQoZWRk6Oabb9bu3buTlqWqqkpz5sxRXl6ePB6PtmzZkrQsK1eu1I033qhBgwZp2LBhmjt3rmpqapKWR5LWrVuna6+9tuMTXSdPnqyXXnopqZnaPfbYY/J4PFq8eHHSMpSVlcnj8XT6M378+KTlkaS6ujp97nOfU05Ojvx+v6655hrt3bs3KVlGjRrV5fHxeDxatGhRUvK0tbVp2bJlGj16tPx+v6644go98sgjPX6BZzydPn1aixcv1siRI+X3+3XLLbdoz549CZu/p3Ogbdt6+OGHlZubK7/frxkzZujw4cNJy/PCCy9o5syZysnJkcfjUXV1ddyy9JTHsiw99NBDuuaaazRgwADl5eXpvvvu0/Hjx5OSRzp3Tho/frwGDBigwYMHa8aMGdq1a1fc8phkOt+Xv/xleTwerVmzJq6ZYuGq0vT888+rtLRUy5cv1/79+1VQUKBZs2bp5MmTScnT1NSkgoICrV27Ninzn2/79u1atGiRdu7cqcrKSlmWpZkzZ6qpqSlpmS677DI99thj2rdvn/bu3atPfvKTuuOOO/SHP/whaZkkac+ePfrhD3+oa6+9Nqk5JGnChAmqr6/v+LNjx46kZfnggw80ZcoUeb1evfTSS/rf//1f/cd//IcGDx6clDx79uzp9NhUVlZKku68886k5Fm1apXWrVunJ598Um+99ZZWrVqlxx9/XD/4wQ+SkkeSvvjFL6qyslI//vGPdfDgQc2cOVMzZsxQXV1dQubv6Rz4+OOP6/vf/77Wr1+vXbt2acCAAZo1a5ZaW1uTkqepqUm33nqrVq1aFZf5e5OnublZ+/fv17Jly7R//3698MILqqmp0e23356UPJI0duxYPfnkkzp48KB27NihUaNGaebMmfrLX/6StEztNm/erJ07d/b43W9JZ7vITTfdZC9atKhju62tzc7Ly7NXrlyZxFTnSLI3b96c7BgdTp48aUuyt2/fnuwonQwePNj+r//6r6TNf/r0afvKK6+0Kysr7U984hP2gw8+mLQsy5cvtwsKCpI2/0c99NBD9q233prsGBf04IMP2ldccYUdiUSSMv/s2bPthQsXdtr3mc98xr733nuTkqe5udlOTU21t27d2mn/9ddfb3/7299OeJ6PngMjkYg9YsQI+3vf+17HvlOnTtk+n8/etGlTwvOc7+jRo7Yk+80334x7DpM87Xbv3m1Lso8dO+aKPI2NjbYk++WXX457nmiZ/vznP9uXXnqpfejQIXvkyJH2f/7nfyYkT1+45krThx9+qH379mnGjBkd+1JSUjRjxgy98cYbSUzmTo2NjZKkIUOGJDnJOW1tbXruuefU1NSU1O8YXLRokWbPnt1pHSXT4cOHlZeXp8svv1z33nuvamtrk5blxRdf1KRJk3TnnXdq2LBhmjhxop566qmk5Tnfhx9+qJ/85CdauHChPB5PUjLccssteuWVV/T2229Lkg4cOKAdO3aoqKgoKXnOnj2rtrY2ZWRkdNrv9/uTesWy3dGjR/Xee+91+n8tOztbN998M+fsC2hsbJTH49Ell1yS7Cj68MMPtWHDBmVnZ6ugoCBpOSKRiObPn68lS5ZowoQJScthKi5fo9IXDQ0Namtr6/JVK8OHD9cf//jHJKVyp0gkosWLF2vKlCm6+uqrk5rl4MGDmjx5slpbWzVw4EBt3rxZV111VVKyPPfcc9q/f39C3/MRzc0336xnn31W48aNU319vcrLy/X//t//06FDhzRo0KCE5/m///s/rVu3TqWlpfrWt76lPXv26IEHHlB6erpKSkoSnud8W7Zs0alTp/T5z38+aRm++c1vKhQKafz48UpNTVVbW5tWrFihe++9Nyl5Bg0apMmTJ+uRRx7Rxz72MQ0fPlybNm3SG2+8oTFjxiQl0/nee+89Ser2nN1+G/6utbVVDz30kO655x5lZWUlLcfWrVt19913q7m5Wbm5uaqsrFQgEEhanlWrViktLU0PPPBA0jL0hmtKE8wtWrRIhw4dcsVvm+PGjVN1dbUaGxv185//XCUlJdq+fXvCi9O7776rBx98UJWVlV1+M0+W869QXHvttbr55ps1cuRI/exnP9MXvvCFhOeJRCKaNGmSvvvd70qSJk6cqEOHDmn9+vVJL01PP/20ioqKkvp+hp/97Gf66U9/qoqKCk2YMEHV1dVavHix8vLykvb4/PjHP9bChQt16aWXKjU1Vddff73uuece7du3Lyl50DeWZWnevHmybVvr1q1Lapbp06erurpaDQ0NeuqppzRv3jzt2rVLw4YNS3iWffv26YknntD+/fuTdoW5t1zz8lwgEFBqaqpOnDjRaf+JEyc0YsSIJKVyn/vvv19bt27Vq6++qssuuyzZcZSenq4xY8bohhtu0MqVK1VQUKAnnngi4Tn27dunkydP6vrrr1daWprS0tK0fft2ff/731daWpra2toSnumjLrnkEo0dO1ZHjhxJyvy5ubldyuzHPvaxpL5kKEnHjh3Tyy+/rC9+8YtJzbFkyRJ985vf1N13361rrrlG8+fP19e+9jWtXLkyaZmuuOIKbd++XWfOnNG7776r3bt3y7IsXX755UnL1K79vMw5O7r2wnTs2DFVVlYm9SqTJA0YMEBjxozRxz/+cT399NNKS0vT008/nZQsv/vd73Ty5EkFg8GO8/axY8f09a9/XaNGjUpKpp64pjSlp6frhhtu0CuvvNKxLxKJ6JVXXknqe2TcwrZt3X///dq8ebN++9vfavTo0cmO1K1IJKJwOJzweW+77TYdPHhQ1dXVHX8mTZqke++9V9XV1UpNTU14po86c+aM/vSnPyk3Nzcp80+ZMqXLx1S8/fbbGjlyZFLytNu4caOGDRum2bNnJzVHc3OzUlI6nxJTU1MViUSSlOjvBgwYoNzcXH3wwQfatm2b7rjjjmRH0ujRozVixIhO5+xQKKRdu3Zxzv6b9sJ0+PBhvfzyy8rJyUl2pC6Sdc6WpPnz5+v3v/99p/N2Xl6elixZom3btiUlU09c9fJcaWmpSkpKNGnSJN10001as2aNmpqatGDBgqTkOXPmTKerAkePHlV1dbWGDBmiYDCY0CyLFi1SRUWFfvnLX2rQoEEd7xnIzs6W3+9PaJZ2S5cuVVFRkYLBoE6fPq2Kigq99tprSVnsgwYN6vL+rgEDBignJydp7/v6xje+oTlz5mjkyJE6fvy4li9frtTUVN1zzz1JyfO1r31Nt9xyi7773e9q3rx52r17tzZs2KANGzYkJY907oS9ceNGlZSUKC0tuaejOXPmaMWKFQoGg5owYYLefPNNrV69WgsXLkxapm3btsm2bY0bN05HjhzRkiVLNH78+ISdE3s6By5evFiPPvqorrzySo0ePVrLli1TXl6e5s6dm5Q877//vmprazs+C6n9l4QRI0bE5epXtDy5ubn67Gc/q/3792vr1q1qa2vrOG8PGTJE6enpCc2Tk5OjFStW6Pbbb1dubq4aGhq0du1a1dXVxfVjPnp6zj5aJL1er0aMGKFx48bFLVNMkvyv97r4wQ9+YAeDQTs9Pd2+6aab7J07dyYty6uvvmpL6vKnpKQk4Vm6yyHJ3rhxY8KztFu4cKE9cuRIOz093R46dKh922232b/5zW+Sluejkv2RA3fddZedm5trp6en25deeql911132UeOHElaHtu27V/96lf21Vdfbft8Pnv8+PH2hg0bkppn27ZttiS7pqYmqTls27ZDoZD94IMP2sFg0M7IyLAvv/xy+9vf/rYdDoeTlun555+3L7/8cjs9Pd0eMWKEvWjRIvvUqVMJm7+nc2AkErGXLVtmDx8+3Pb5fPZtt90W1+eypzwbN27s9vbly5cnPE/7xx509+fVV19NeJ6Wlhb705/+tJ2Xl2enp6fbubm59u23327v3r07LllMMnXH7R854LHtJH7cLQAAwEXCNe9pAgAAcDNKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgAFKEwAAgIH/DxGoqVjdvWm8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "env=RoverGridEnv()\n", "print(\"Initial Setup\")\n", "observation=env.reset()\n", "env.render()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# PPO" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "class ActorCritic(nn.Module):\n", " def __init__(self,\n", " input_dim,\n", " n_actions):\n", " super(ActorCritic,self).__init__()\n", " self.fc1=nn.Linear(input_dim,128)\n", " self.fc2=nn.Linear(128,64)\n", " self.actor=nn.Linear(64,n_actions)\n", " self.critic=nn.Linear(64,1)\n", "\n", " def forward(self,x):\n", " x=torch.relu(self.fc1(x))\n", " x=torch.relu(self.fc2(x))\n", " policy_logits=self.actor(x)\n", " value=self.critic(x)\n", " return policy_logits,value\n", "\n", "def compute_advantages(rewards,\n", " values,\n", " next_values,\n", " gamma=0.99,\n", " lambda_=0.95):\n", " deltas=rewards+gamma*next_values-values\n", " advantages=[]\n", " advantage=0\n", " for delta in reversed(deltas):\n", " advantage=delta+gamma*lambda_*advantage\n", " advantages.insert(0,advantage)\n", " return torch.tensor(advantages,dtype=torch.float32)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "def train_ppo(env,\n", " actor_critic,\n", " optimizer,\n", " total_timesteps=10000,\n", " gamma=0.99,\n", " lambda_=0.95,\n", " epsilon=0.2,\n", " epochs=3,\n", " batch_size=64):\n", " \n", " episode_rwds_ppo=[]\n", " for _ in range(total_timesteps // batch_size):\n", " obs=env.reset()\n", " obs_list,action_list,reward_list,value_list,logprob_list=[],[],[],[],[]\n", " total_episode_reward=0\n", " for _ in range(batch_size):\n", " obs_tensor=torch.tensor(obs,\n", " dtype=torch.float32).unsqueeze(0)\n", " policy_logits,value=actor_critic(obs_tensor)\n", " dist=Categorical(logits=policy_logits)\n", " action=dist.sample()\n", " obs_list.append(obs)\n", " action_list.append(action.item())\n", " reward_list.append(0)\n", " value_list.append(value.item())\n", " logprob_list.append(dist.log_prob(action).item())\n", " obs,rewards,done,_=env.step([action.item(),\n", " action.item()])\n", " reward_list[-1]=rewards.sum()\n", " total_episode_reward+=rewards.sum()\n", " if done:\n", " episode_rwds_ppo.append(total_episode_reward)\n", " print(f\"Episode {len(episode_rwds_ppo)} ended with reward: {total_episode_reward}\")\n", " obs=env.reset()\n", " total_episode_reward=0\n", " break\n", " obs_tensor=torch.tensor(np.array(obs_list),\n", " dtype=torch.float32)\n", " action_tensor=torch.tensor(action_list)\n", "\n", " reward_tensor=torch.tensor(reward_list,\n", " dtype=torch.float32)\n", " value_tensor=torch.tensor(value_list,\n", " dtype=torch.float32)\n", " logprob_tensor=torch.tensor(logprob_list,\n", " dtype=torch.float32)\n", " advantages=compute_advantages(reward_tensor,\n", " value_tensor,\n", " torch.cat((value_tensor[1:],\n", " torch.tensor([0])),\n", " axis=0),\n", " gamma,\n", " lambda_)\n", "\n", " for _ in range(epochs):\n", " new_policy_logits,new_values=actor_critic(obs_tensor)\n", " new_dist=Categorical(logits=new_policy_logits)\n", " new_logprobs=new_dist.log_prob(action_tensor)\n", " ratio=torch.exp(new_logprobs-logprob_tensor)\n", " surr1=ratio*advantages\n", " surr2=torch.clamp(ratio,\n", " 1-epsilon,\n", " 1+epsilon)*advantages\n", " policy_loss=-torch.min(surr1,surr2).mean()\n", " value_loss=nn.MSELoss()(new_values.squeeze(),\n", " reward_tensor)\n", " loss=policy_loss+0.5*value_loss\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", " return episode_rwds_ppo" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Episode 1 ended with reward: -370.0\n", "Episode 2 ended with reward: -30.0\n", "Episode 3 ended with reward: -90.0\n", "Episode 4 ended with reward: -285.0\n", "Episode 5 ended with reward: 35.0\n", "Episode 6 ended with reward: 355.0\n", "Episode 7 ended with reward: 190.0\n", "Episode 8 ended with reward: 425.0\n", "Episode 9 ended with reward: 710.0\n", "Episode 10 ended with reward: 455.0\n", "Episode 11 ended with reward: 110.0\n", "Episode 12 ended with reward: 150.0\n", "Episode 13 ended with reward: 140.0\n", "Episode 14 ended with reward: 50.0\n", "Episode 15 ended with reward: 150.0\n", "Episode 16 ended with reward: 60.0\n", "Episode 17 ended with reward: 60.0\n", "Episode 18 ended with reward: 220.0\n", "Episode 19 ended with reward: 160.0\n", "Episode 20 ended with reward: 120.0\n", "Episode 21 ended with reward: 345.0\n", "Episode 22 ended with reward: 50.0\n", "Episode 23 ended with reward: 170.0\n", "Episode 24 ended with reward: 130.0\n", "Episode 25 ended with reward: 115.0\n", "Episode 26 ended with reward: 375.0\n", "Episode 27 ended with reward: 150.0\n", "Episode 28 ended with reward: 110.0\n", "Episode 29 ended with reward: 120.0\n", "Episode 30 ended with reward: 90.0\n", "Episode 31 ended with reward: 120.0\n", "Episode 32 ended with reward: 405.0\n", "Episode 33 ended with reward: 710.0\n", "Episode 34 ended with reward: 85.0\n", "Episode 35 ended with reward: 380.0\n", "Episode 36 ended with reward: 170.0\n", "Episode 37 ended with reward: 105.0\n", "Episode 38 ended with reward: 80.0\n", "Episode 39 ended with reward: -115.0\n", "Episode 40 ended with reward: 380.0\n", "Episode 41 ended with reward: 675.0\n", "Episode 42 ended with reward: 475.0\n", "Episode 43 ended with reward: 220.0\n", "Episode 44 ended with reward: 70.0\n", "Episode 45 ended with reward: 580.0\n", "Episode 46 ended with reward: 400.0\n", "Episode 47 ended with reward: 355.0\n", "Episode 48 ended with reward: 460.0\n", "Episode 49 ended with reward: 420.0\n", "Episode 50 ended with reward: 535.0\n", "Episode 51 ended with reward: 470.0\n", "Episode 52 ended with reward: 745.0\n", "Episode 53 ended with reward: 460.0\n", "Episode 54 ended with reward: 600.0\n", "Episode 55 ended with reward: 750.0\n", "Episode 56 ended with reward: 290.0\n", "Episode 57 ended with reward: 745.0\n", "Episode 58 ended with reward: 500.0\n", "Episode 59 ended with reward: 550.0\n", "Episode 60 ended with reward: 610.0\n", "Episode 61 ended with reward: 465.0\n", "Episode 62 ended with reward: 610.0\n", "Episode 63 ended with reward: 785.0\n", "Episode 64 ended with reward: 710.0\n", "Episode 65 ended with reward: 275.0\n", "Episode 66 ended with reward: 145.0\n", "Episode 67 ended with reward: 300.0\n", "Episode 68 ended with reward: 685.0\n", "Episode 69 ended with reward: 660.0\n", "Episode 70 ended with reward: 665.0\n", "Episode 71 ended with reward: 585.0\n", "Episode 72 ended with reward: 625.0\n", "Episode 73 ended with reward: 615.0\n", "Episode 74 ended with reward: 565.0\n", "Episode 75 ended with reward: 690.0\n", "Episode 76 ended with reward: 700.0\n", "Episode 77 ended with reward: 465.0\n", "Episode 78 ended with reward: 380.0\n", "Episode 79 ended with reward: 395.0\n", "Episode 80 ended with reward: 560.0\n", "Episode 81 ended with reward: 480.0\n", "Episode 82 ended with reward: 515.0\n", "Episode 83 ended with reward: 470.0\n", "Episode 84 ended with reward: 495.0\n", "Episode 85 ended with reward: 510.0\n", "Episode 86 ended with reward: 365.0\n", "Episode 87 ended with reward: 460.0\n", "Episode 88 ended with reward: 480.0\n", "Episode 89 ended with reward: 515.0\n", "Episode 90 ended with reward: 785.0\n", "Episode 91 ended with reward: 715.0\n", "Episode 92 ended with reward: 635.0\n", "Episode 93 ended with reward: 540.0\n", "Episode 94 ended with reward: 745.0\n", "Episode 95 ended with reward: 690.0\n", "Episode 96 ended with reward: 750.0\n", "Episode 97 ended with reward: 530.0\n", "Episode 98 ended with reward: 555.0\n", "Episode 99 ended with reward: 665.0\n", "Episode 100 ended with reward: 445.0\n", "Episode 101 ended with reward: 370.0\n", "Episode 102 ended with reward: 410.0\n", "Episode 103 ended with reward: 120.0\n", "Episode 104 ended with reward: -95.0\n", "Episode 105 ended with reward: -250.0\n", "Episode 106 ended with reward: -170.0\n", "Episode 107 ended with reward: 380.0\n", "Episode 108 ended with reward: 75.0\n", "Episode 109 ended with reward: 265.0\n", "Episode 110 ended with reward: 260.0\n", "Episode 111 ended with reward: 265.0\n", "Episode 112 ended with reward: 325.0\n", "Episode 113 ended with reward: 335.0\n", "Episode 114 ended with reward: 250.0\n", "Episode 115 ended with reward: 400.0\n", "Episode 116 ended with reward: 375.0\n", "Episode 117 ended with reward: 320.0\n", "Episode 118 ended with reward: 370.0\n", "Episode 119 ended with reward: 405.0\n", "Episode 120 ended with reward: 410.0\n", "Episode 121 ended with reward: 510.0\n", "Episode 122 ended with reward: 465.0\n", "Episode 123 ended with reward: 530.0\n", "Episode 124 ended with reward: 465.0\n", "Episode 125 ended with reward: 520.0\n", "Episode 126 ended with reward: 500.0\n", "Episode 127 ended with reward: 490.0\n", "Episode 128 ended with reward: 465.0\n", "Episode 129 ended with reward: 380.0\n", "Episode 130 ended with reward: 515.0\n", "Episode 131 ended with reward: 500.0\n", "Episode 132 ended with reward: 500.0\n", "Episode 133 ended with reward: 430.0\n", "Episode 134 ended with reward: 480.0\n", "Episode 135 ended with reward: 295.0\n", "Episode 136 ended with reward: 465.0\n", "Episode 137 ended with reward: 350.0\n", "Episode 138 ended with reward: 420.0\n", "Episode 139 ended with reward: 420.0\n", "Episode 140 ended with reward: 465.0\n", "Episode 141 ended with reward: 430.0\n", "Episode 142 ended with reward: 385.0\n", "Episode 143 ended with reward: 420.0\n", "Episode 144 ended with reward: 310.0\n", "Episode 145 ended with reward: 445.0\n", "Episode 146 ended with reward: 360.0\n", "Episode 147 ended with reward: 400.0\n", "Episode 148 ended with reward: 470.0\n", "Episode 149 ended with reward: 420.0\n", "Episode 150 ended with reward: 445.0\n", "Episode 151 ended with reward: 455.0\n", "Episode 152 ended with reward: 405.0\n", "Episode 153 ended with reward: 395.0\n", "Episode 154 ended with reward: 445.0\n", "Episode 155 ended with reward: 445.0\n", "Episode 156 ended with reward: 515.0\n", "Episode 157 ended with reward: 435.0\n", "Episode 158 ended with reward: 485.0\n", "Episode 159 ended with reward: 500.0\n", "Episode 160 ended with reward: 420.0\n", "Episode 161 ended with reward: 500.0\n", "Episode 162 ended with reward: 440.0\n", "Episode 163 ended with reward: 405.0\n", "Episode 164 ended with reward: 500.0\n", "Episode 165 ended with reward: 420.0\n", "Episode 166 ended with reward: 450.0\n", "Episode 167 ended with reward: 485.0\n", "Episode 168 ended with reward: 455.0\n", "Episode 169 ended with reward: 465.0\n", "Episode 170 ended with reward: 490.0\n", "Episode 171 ended with reward: 655.0\n", "Episode 172 ended with reward: 565.0\n", "Episode 173 ended with reward: 575.0\n", "Episode 174 ended with reward: 510.0\n", "Episode 175 ended with reward: 680.0\n", "Episode 176 ended with reward: 300.0\n", "Episode 177 ended with reward: 730.0\n", "Episode 178 ended with reward: 375.0\n", "Episode 179 ended with reward: 540.0\n", "Episode 180 ended with reward: 695.0\n", "Episode 181 ended with reward: 350.0\n", "Episode 182 ended with reward: 590.0\n", "Episode 183 ended with reward: 705.0\n", "Episode 184 ended with reward: 210.0\n", "Episode 185 ended with reward: 785.0\n", "Episode 186 ended with reward: 730.0\n", "Episode 187 ended with reward: 610.0\n", "Episode 188 ended with reward: 510.0\n", "Episode 189 ended with reward: 140.0\n", "Episode 190 ended with reward: 565.0\n", "Episode 191 ended with reward: 775.0\n", "Episode 192 ended with reward: 625.0\n", "Episode 193 ended with reward: 620.0\n", "Episode 194 ended with reward: 450.0\n", "Episode 195 ended with reward: 555.0\n", "Episode 196 ended with reward: 570.0\n", "Episode 197 ended with reward: 510.0\n", "Episode 198 ended with reward: 450.0\n", "Episode 199 ended with reward: 450.0\n", "Episode 200 ended with reward: 505.0\n", "Episode 201 ended with reward: 645.0\n", "Episode 202 ended with reward: 740.0\n", "Episode 203 ended with reward: 515.0\n", "Episode 204 ended with reward: 710.0\n", "Episode 205 ended with reward: 290.0\n", "Episode 206 ended with reward: 560.0\n", "Episode 207 ended with reward: 380.0\n", "Episode 208 ended with reward: 200.0\n", "Episode 209 ended with reward: 500.0\n", "Episode 210 ended with reward: 110.0\n", "Episode 211 ended with reward: 320.0\n", "Episode 212 ended with reward: -175.0\n", "Episode 213 ended with reward: 160.0\n", "Episode 214 ended with reward: 490.0\n", "Episode 215 ended with reward: 445.0\n", "Episode 216 ended with reward: 685.0\n", "Episode 217 ended with reward: 470.0\n", "Episode 218 ended with reward: 475.0\n", "Episode 219 ended with reward: 745.0\n", "Episode 220 ended with reward: 800.0\n", "Episode 221 ended with reward: 560.0\n", "Episode 222 ended with reward: 500.0\n", "Episode 223 ended with reward: 570.0\n", "Episode 224 ended with reward: 260.0\n", "Episode 225 ended with reward: 645.0\n", "Episode 226 ended with reward: 110.0\n", "Episode 227 ended with reward: 665.0\n", "Episode 228 ended with reward: 500.0\n", "Episode 229 ended with reward: 515.0\n", "Episode 230 ended with reward: 470.0\n", "Episode 231 ended with reward: 420.0\n", "Episode 232 ended with reward: 470.0\n", "Episode 233 ended with reward: 420.0\n", "Episode 234 ended with reward: 505.0\n", "Episode 235 ended with reward: 415.0\n", "Episode 236 ended with reward: 455.0\n", "Episode 237 ended with reward: 755.0\n", "Episode 238 ended with reward: 525.0\n", "Episode 239 ended with reward: 465.0\n", "Episode 240 ended with reward: 485.0\n", "Episode 241 ended with reward: 610.0\n", "Episode 242 ended with reward: 480.0\n", "Episode 243 ended with reward: 675.0\n", "Episode 244 ended with reward: 335.0\n", "Episode 245 ended with reward: 195.0\n", "Episode 246 ended with reward: 440.0\n", "Episode 247 ended with reward: 370.0\n", "Episode 248 ended with reward: 355.0\n", "Episode 249 ended with reward: 405.0\n", "Episode 250 ended with reward: 365.0\n", "Episode 251 ended with reward: 750.0\n", "Episode 252 ended with reward: 390.0\n", "Episode 253 ended with reward: 585.0\n", "Episode 254 ended with reward: 660.0\n", "Episode 255 ended with reward: 445.0\n", "Episode 256 ended with reward: 685.0\n", "Episode 257 ended with reward: 395.0\n", "Episode 258 ended with reward: 550.0\n", "Episode 259 ended with reward: 725.0\n", "Episode 260 ended with reward: 455.0\n", "Episode 261 ended with reward: 520.0\n", "Episode 262 ended with reward: 535.0\n", "Episode 263 ended with reward: 530.0\n", "Episode 264 ended with reward: 550.0\n", "Episode 265 ended with reward: 620.0\n", "Episode 266 ended with reward: 515.0\n", "Episode 267 ended with reward: 465.0\n", "Episode 268 ended with reward: 425.0\n", "Episode 269 ended with reward: 535.0\n", "Episode 270 ended with reward: 565.0\n", "Episode 271 ended with reward: 725.0\n", "Episode 272 ended with reward: 505.0\n", "Episode 273 ended with reward: 560.0\n", "Episode 274 ended with reward: 270.0\n", "Episode 275 ended with reward: 175.0\n", "Episode 276 ended with reward: 490.0\n", "Episode 277 ended with reward: 355.0\n", "Episode 278 ended with reward: 505.0\n", "Episode 279 ended with reward: 480.0\n", "Episode 280 ended with reward: 500.0\n", "Episode 281 ended with reward: 520.0\n", "Episode 282 ended with reward: 465.0\n", "Episode 283 ended with reward: 465.0\n", "Episode 284 ended with reward: 485.0\n", "Episode 285 ended with reward: 530.0\n", "Episode 286 ended with reward: 465.0\n", "Episode 287 ended with reward: 275.0\n", "Episode 288 ended with reward: 410.0\n", "Episode 289 ended with reward: 355.0\n", "Episode 290 ended with reward: 455.0\n", "Episode 291 ended with reward: 345.0\n", "Episode 292 ended with reward: 265.0\n", "Episode 293 ended with reward: 500.0\n", "Episode 294 ended with reward: 530.0\n", "Episode 295 ended with reward: 500.0\n", "Episode 296 ended with reward: 515.0\n", "Episode 297 ended with reward: 500.0\n", "Episode 298 ended with reward: 500.0\n", "Episode 299 ended with reward: 480.0\n", "Episode 300 ended with reward: 500.0\n", "Episode 301 ended with reward: 460.0\n", "Episode 302 ended with reward: 390.0\n", "Episode 303 ended with reward: 485.0\n", "Episode 304 ended with reward: 440.0\n", "Episode 305 ended with reward: 330.0\n", "Episode 306 ended with reward: 365.0\n", "Episode 307 ended with reward: 440.0\n", "Episode 308 ended with reward: 360.0\n", "Episode 309 ended with reward: 500.0\n", "Episode 310 ended with reward: 450.0\n", "Episode 311 ended with reward: 315.0\n", "Episode 312 ended with reward: 420.0\n", "Episode 313 ended with reward: 500.0\n", "Episode 314 ended with reward: 340.0\n", "Episode 315 ended with reward: 565.0\n", "Episode 316 ended with reward: 560.0\n", "Episode 317 ended with reward: 515.0\n", "Episode 318 ended with reward: 520.0\n", "Episode 319 ended with reward: 500.0\n", "Episode 320 ended with reward: 595.0\n", "Episode 321 ended with reward: 780.0\n", "Episode 322 ended with reward: 500.0\n", "Episode 323 ended with reward: 530.0\n", "Episode 324 ended with reward: 470.0\n", "Episode 325 ended with reward: 320.0\n", "Episode 326 ended with reward: 460.0\n", "Episode 327 ended with reward: 475.0\n", "Episode 328 ended with reward: 555.0\n", "Episode 329 ended with reward: 695.0\n", "Episode 330 ended with reward: 515.0\n", "Episode 331 ended with reward: 615.0\n", "Episode 332 ended with reward: 500.0\n", "Episode 333 ended with reward: 510.0\n", "Episode 334 ended with reward: 575.0\n", "Episode 335 ended with reward: 300.0\n", "Episode 336 ended with reward: 445.0\n", "Episode 337 ended with reward: 535.0\n", "Episode 338 ended with reward: 400.0\n", "Episode 339 ended with reward: 455.0\n", "Episode 340 ended with reward: 565.0\n", "Episode 341 ended with reward: 570.0\n", "Episode 342 ended with reward: 260.0\n", "Episode 343 ended with reward: 260.0\n", "Episode 344 ended with reward: 570.0\n", "Episode 345 ended with reward: 510.0\n", "Episode 346 ended with reward: 555.0\n", "Episode 347 ended with reward: 515.0\n", "Episode 348 ended with reward: 230.0\n", "Episode 349 ended with reward: 525.0\n", "Episode 350 ended with reward: 360.0\n", "Episode 351 ended with reward: 130.0\n", "Episode 352 ended with reward: 505.0\n", "Episode 353 ended with reward: 520.0\n", "Episode 354 ended with reward: 290.0\n", "Episode 355 ended with reward: 760.0\n", "Episode 356 ended with reward: 470.0\n", "Episode 357 ended with reward: 615.0\n", "Episode 358 ended with reward: 150.0\n", "Episode 359 ended with reward: 505.0\n", "Episode 360 ended with reward: 140.0\n", "Episode 361 ended with reward: 770.0\n", "Episode 362 ended with reward: 760.0\n", "Episode 363 ended with reward: 570.0\n", "Episode 364 ended with reward: 270.0\n", "Episode 365 ended with reward: 575.0\n", "Episode 366 ended with reward: 365.0\n", "Episode 367 ended with reward: 500.0\n", "Episode 368 ended with reward: 555.0\n", "Episode 369 ended with reward: 140.0\n", "Episode 370 ended with reward: 725.0\n", "Episode 371 ended with reward: 585.0\n", "Episode 372 ended with reward: 310.0\n", "Episode 373 ended with reward: 500.0\n", "Episode 374 ended with reward: 515.0\n", "Episode 375 ended with reward: 535.0\n", "Episode 376 ended with reward: 415.0\n", "Episode 377 ended with reward: 150.0\n", "Episode 378 ended with reward: 735.0\n", "Episode 379 ended with reward: 480.0\n", "Episode 380 ended with reward: 505.0\n", "Episode 381 ended with reward: 595.0\n", "Episode 382 ended with reward: 495.0\n", "Episode 383 ended with reward: 150.0\n", "Episode 384 ended with reward: 475.0\n", "Episode 385 ended with reward: 200.0\n", "Episode 386 ended with reward: 295.0\n", "Episode 387 ended with reward: 305.0\n", "Episode 388 ended with reward: 695.0\n", "Episode 389 ended with reward: 610.0\n", "Episode 390 ended with reward: 220.0\n", "Episode 391 ended with reward: 595.0\n", "Episode 392 ended with reward: 565.0\n", "Episode 393 ended with reward: 110.0\n", "Episode 394 ended with reward: 730.0\n", "Episode 395 ended with reward: 355.0\n", "Episode 396 ended with reward: 760.0\n", "Episode 397 ended with reward: 790.0\n", "Episode 398 ended with reward: 680.0\n", "Episode 399 ended with reward: 575.0\n", "Episode 400 ended with reward: 760.0\n", "Episode 401 ended with reward: 450.0\n", "Episode 402 ended with reward: 625.0\n", "Episode 403 ended with reward: 345.0\n", "Episode 404 ended with reward: 485.0\n", "Episode 405 ended with reward: 525.0\n", "Episode 406 ended with reward: 670.0\n", "Episode 407 ended with reward: 565.0\n", "Episode 408 ended with reward: 405.0\n", "Episode 409 ended with reward: 50.0\n", "Episode 410 ended with reward: 410.0\n", "Episode 411 ended with reward: 300.0\n", "Episode 412 ended with reward: 415.0\n", "Episode 413 ended with reward: 485.0\n", "Episode 414 ended with reward: 735.0\n", "Episode 415 ended with reward: 630.0\n", "Episode 416 ended with reward: 530.0\n", "Episode 417 ended with reward: 500.0\n", "Episode 418 ended with reward: 595.0\n", "Episode 419 ended with reward: 500.0\n", "Episode 420 ended with reward: 315.0\n", "Episode 421 ended with reward: 515.0\n", "Episode 422 ended with reward: 445.0\n", "Episode 423 ended with reward: 395.0\n", "Episode 424 ended with reward: 500.0\n", "Episode 425 ended with reward: 430.0\n", "Episode 426 ended with reward: 365.0\n", "Episode 427 ended with reward: 560.0\n", "Episode 428 ended with reward: 435.0\n", "Episode 429 ended with reward: 465.0\n", "Episode 430 ended with reward: 500.0\n", "Episode 431 ended with reward: 485.0\n", "Episode 432 ended with reward: 500.0\n", "Episode 433 ended with reward: 520.0\n", "Episode 434 ended with reward: 485.0\n", "Episode 435 ended with reward: 455.0\n", "Episode 436 ended with reward: 460.0\n", "Episode 437 ended with reward: 330.0\n", "Episode 438 ended with reward: 360.0\n", "Episode 439 ended with reward: 455.0\n", "Episode 440 ended with reward: 485.0\n", "Episode 441 ended with reward: 340.0\n", "Episode 442 ended with reward: 460.0\n", "Episode 443 ended with reward: 500.0\n", "Episode 444 ended with reward: 320.0\n", "Episode 445 ended with reward: 490.0\n", "Episode 446 ended with reward: 455.0\n", "Episode 447 ended with reward: 480.0\n", "Episode 448 ended with reward: 455.0\n", "Episode 449 ended with reward: 500.0\n", "Episode 450 ended with reward: 415.0\n", "Episode 451 ended with reward: 515.0\n", "Episode 452 ended with reward: 550.0\n", "Episode 453 ended with reward: 720.0\n", "Episode 454 ended with reward: 570.0\n", "Episode 455 ended with reward: 500.0\n", "Episode 456 ended with reward: 535.0\n", "Episode 457 ended with reward: 725.0\n", "Episode 458 ended with reward: 530.0\n", "Episode 459 ended with reward: 760.0\n", "Episode 460 ended with reward: 130.0\n", "Episode 461 ended with reward: 595.0\n", "Episode 462 ended with reward: 735.0\n", "Episode 463 ended with reward: 730.0\n", "Episode 464 ended with reward: 615.0\n", "Episode 465 ended with reward: 500.0\n", "Episode 466 ended with reward: 725.0\n", "Episode 467 ended with reward: 720.0\n", "Episode 468 ended with reward: 465.0\n", "Episode 469 ended with reward: 465.0\n", "Episode 470 ended with reward: 760.0\n", "Episode 471 ended with reward: 255.0\n", "Episode 472 ended with reward: 125.0\n", "Episode 473 ended with reward: 500.0\n", "Episode 474 ended with reward: 705.0\n", "Episode 475 ended with reward: 500.0\n", "Episode 476 ended with reward: 485.0\n", "Episode 477 ended with reward: 500.0\n", "Episode 478 ended with reward: 500.0\n", "Episode 479 ended with reward: 470.0\n", "Episode 480 ended with reward: 635.0\n", "Episode 481 ended with reward: 440.0\n", "Episode 482 ended with reward: 275.0\n", "Episode 483 ended with reward: 305.0\n", "Episode 484 ended with reward: 600.0\n", "Episode 485 ended with reward: 465.0\n", "Episode 486 ended with reward: 370.0\n", "Episode 487 ended with reward: 775.0\n", "Episode 488 ended with reward: 300.0\n", "Episode 489 ended with reward: 415.0\n", "Episode 490 ended with reward: 460.0\n", "Episode 491 ended with reward: 620.0\n", "Episode 492 ended with reward: 355.0\n", "Episode 493 ended with reward: 455.0\n", "Episode 494 ended with reward: 365.0\n", "Episode 495 ended with reward: 720.0\n", "Episode 496 ended with reward: 500.0\n", "Episode 497 ended with reward: 120.0\n", "Episode 498 ended with reward: 500.0\n", "Episode 499 ended with reward: 355.0\n", "Episode 500 ended with reward: 605.0\n", "Episode 501 ended with reward: 475.0\n", "Episode 502 ended with reward: 415.0\n", "Episode 503 ended with reward: 700.0\n", "Episode 504 ended with reward: 715.0\n", "Episode 505 ended with reward: 720.0\n", "Episode 506 ended with reward: 335.0\n", "Episode 507 ended with reward: 240.0\n", "Episode 508 ended with reward: 425.0\n", "Episode 509 ended with reward: 705.0\n", "Episode 510 ended with reward: 435.0\n", "Episode 511 ended with reward: 205.0\n", "Episode 512 ended with reward: 485.0\n", "Episode 513 ended with reward: 730.0\n", "Episode 514 ended with reward: 380.0\n", "Episode 515 ended with reward: 470.0\n", "Episode 516 ended with reward: 490.0\n", "Episode 517 ended with reward: 480.0\n", "Episode 518 ended with reward: 440.0\n", "Episode 519 ended with reward: 570.0\n", "Episode 520 ended with reward: 405.0\n", "Episode 521 ended with reward: 430.0\n", "Episode 522 ended with reward: 370.0\n", "Episode 523 ended with reward: 710.0\n", "Episode 524 ended with reward: 420.0\n", "Episode 525 ended with reward: 465.0\n", "Episode 526 ended with reward: 510.0\n", "Episode 527 ended with reward: 685.0\n", "Episode 528 ended with reward: 360.0\n", "Episode 529 ended with reward: 490.0\n", "Episode 530 ended with reward: 465.0\n", "Episode 531 ended with reward: 365.0\n", "Episode 532 ended with reward: 640.0\n", "Episode 533 ended with reward: 575.0\n", "Episode 534 ended with reward: 520.0\n", "Episode 535 ended with reward: 340.0\n", "Episode 536 ended with reward: 440.0\n", "Episode 537 ended with reward: 230.0\n", "Episode 538 ended with reward: 455.0\n", "Episode 539 ended with reward: 530.0\n", "Episode 540 ended with reward: 475.0\n", "Episode 541 ended with reward: 435.0\n", "Episode 542 ended with reward: 385.0\n", "Episode 543 ended with reward: 405.0\n", "Episode 544 ended with reward: 745.0\n", "Episode 545 ended with reward: 500.0\n", "Episode 546 ended with reward: 395.0\n", "Episode 547 ended with reward: 230.0\n", "Episode 548 ended with reward: 400.0\n", "Episode 549 ended with reward: 490.0\n", "Episode 550 ended with reward: 465.0\n", "Episode 551 ended with reward: 725.0\n", "Episode 552 ended with reward: 630.0\n", "Episode 553 ended with reward: 150.0\n", "Episode 554 ended with reward: 470.0\n", "Episode 555 ended with reward: 535.0\n", "Episode 556 ended with reward: 640.0\n", "Episode 557 ended with reward: 280.0\n", "Episode 558 ended with reward: 405.0\n", "Episode 559 ended with reward: 215.0\n", "Episode 560 ended with reward: 140.0\n", "Episode 561 ended with reward: 410.0\n", "Episode 562 ended with reward: 550.0\n", "Episode 563 ended with reward: 780.0\n", "Episode 564 ended with reward: 465.0\n", "Episode 565 ended with reward: 500.0\n", "Episode 566 ended with reward: 315.0\n", "Episode 567 ended with reward: 650.0\n", "Episode 568 ended with reward: 735.0\n", "Episode 569 ended with reward: 470.0\n", "Episode 570 ended with reward: 500.0\n", "Episode 571 ended with reward: 500.0\n", "Episode 572 ended with reward: 745.0\n", "Episode 573 ended with reward: 605.0\n", "Episode 574 ended with reward: 515.0\n", "Episode 575 ended with reward: 220.0\n", "Episode 576 ended with reward: 710.0\n", "Episode 577 ended with reward: 780.0\n", "Episode 578 ended with reward: 320.0\n", "Episode 579 ended with reward: 500.0\n", "Episode 580 ended with reward: 380.0\n", "Episode 581 ended with reward: 330.0\n", "Episode 582 ended with reward: 675.0\n", "Episode 583 ended with reward: 465.0\n", "Episode 584 ended with reward: 275.0\n", "Episode 585 ended with reward: 630.0\n", "Episode 586 ended with reward: 515.0\n", "Episode 587 ended with reward: 285.0\n", "Episode 588 ended with reward: 575.0\n", "Episode 589 ended with reward: 690.0\n", "Episode 590 ended with reward: 685.0\n", "Episode 591 ended with reward: 575.0\n", "Episode 592 ended with reward: 720.0\n", "Episode 593 ended with reward: 610.0\n", "Episode 594 ended with reward: 285.0\n", "Episode 595 ended with reward: 405.0\n", "Episode 596 ended with reward: 680.0\n", "Episode 597 ended with reward: 310.0\n", "Episode 598 ended with reward: 340.0\n", "Episode 599 ended with reward: 195.0\n", "Episode 600 ended with reward: -145.0\n", "Episode 601 ended with reward: 285.0\n", "Episode 602 ended with reward: 695.0\n", "Episode 603 ended with reward: 775.0\n", "Episode 604 ended with reward: 430.0\n", "Episode 605 ended with reward: 560.0\n", "Episode 606 ended with reward: 555.0\n", "Episode 607 ended with reward: 655.0\n", "Episode 608 ended with reward: 775.0\n", "Episode 609 ended with reward: 725.0\n", "Episode 610 ended with reward: 500.0\n", "Episode 611 ended with reward: 235.0\n", "Episode 612 ended with reward: 735.0\n", "Episode 613 ended with reward: 440.0\n", "Episode 614 ended with reward: 650.0\n", "Episode 615 ended with reward: 310.0\n", "Episode 616 ended with reward: 330.0\n", "Episode 617 ended with reward: 430.0\n", "Episode 618 ended with reward: 540.0\n", "Episode 619 ended with reward: 460.0\n", "Episode 620 ended with reward: 405.0\n", "Episode 621 ended with reward: 500.0\n", "Episode 622 ended with reward: 500.0\n", "Episode 623 ended with reward: 580.0\n", "Episode 624 ended with reward: 725.0\n", "Episode 625 ended with reward: 525.0\n", "Episode 626 ended with reward: 140.0\n", "Episode 627 ended with reward: 605.0\n", "Episode 628 ended with reward: 480.0\n", "Episode 629 ended with reward: 450.0\n", "Episode 630 ended with reward: 715.0\n", "Episode 631 ended with reward: 500.0\n", "Episode 632 ended with reward: 500.0\n", "Episode 633 ended with reward: 550.0\n", "Episode 634 ended with reward: 325.0\n", "Episode 635 ended with reward: 465.0\n", "Episode 636 ended with reward: 310.0\n", "Episode 637 ended with reward: 720.0\n", "Episode 638 ended with reward: 675.0\n", "Episode 639 ended with reward: 435.0\n", "Episode 640 ended with reward: 575.0\n", "Episode 641 ended with reward: 340.0\n", "Episode 642 ended with reward: 620.0\n", "Episode 643 ended with reward: 685.0\n", "Episode 644 ended with reward: 485.0\n", "Episode 645 ended with reward: 285.0\n", "Episode 646 ended with reward: 100.0\n", "Episode 647 ended with reward: 565.0\n", "Episode 648 ended with reward: 220.0\n", "Episode 649 ended with reward: 535.0\n", "Episode 650 ended with reward: 555.0\n", "Episode 651 ended with reward: 500.0\n", "Episode 652 ended with reward: 525.0\n", "Episode 653 ended with reward: 435.0\n", "Episode 654 ended with reward: 500.0\n", "Episode 655 ended with reward: 355.0\n", "Episode 656 ended with reward: 545.0\n", "Episode 657 ended with reward: 750.0\n", "Episode 658 ended with reward: 745.0\n", "Episode 659 ended with reward: 220.0\n", "Episode 660 ended with reward: 500.0\n", "Episode 661 ended with reward: 480.0\n", "Episode 662 ended with reward: 470.0\n", "Episode 663 ended with reward: 100.0\n", "Episode 664 ended with reward: 370.0\n", "Episode 665 ended with reward: 390.0\n", "Episode 666 ended with reward: 500.0\n", "Episode 667 ended with reward: 365.0\n", "Episode 668 ended with reward: 465.0\n", "Episode 669 ended with reward: 495.0\n", "Episode 670 ended with reward: 745.0\n", "Episode 671 ended with reward: 515.0\n", "Episode 672 ended with reward: 745.0\n", "Episode 673 ended with reward: 510.0\n", "Episode 674 ended with reward: 745.0\n", "Episode 675 ended with reward: 760.0\n", "Episode 676 ended with reward: 705.0\n", "Episode 677 ended with reward: 605.0\n", "Episode 678 ended with reward: 715.0\n", "Episode 679 ended with reward: 735.0\n", "Episode 680 ended with reward: 700.0\n", "Episode 681 ended with reward: 390.0\n", "Episode 682 ended with reward: 630.0\n", "Episode 683 ended with reward: 690.0\n", "Episode 684 ended with reward: 735.0\n", "Episode 685 ended with reward: 255.0\n", "Episode 686 ended with reward: 425.0\n", "Episode 687 ended with reward: 185.0\n", "Episode 688 ended with reward: 500.0\n", "Episode 689 ended with reward: 370.0\n", "Episode 690 ended with reward: 465.0\n", "Episode 691 ended with reward: 515.0\n", "Episode 692 ended with reward: 750.0\n", "Episode 693 ended with reward: 500.0\n", "Episode 694 ended with reward: 425.0\n", "Episode 695 ended with reward: 500.0\n", "Episode 696 ended with reward: 470.0\n", "Episode 697 ended with reward: 465.0\n", "Episode 698 ended with reward: 610.0\n", "Episode 699 ended with reward: 470.0\n", "Episode 700 ended with reward: 650.0\n", "Episode 701 ended with reward: 440.0\n", "Episode 702 ended with reward: 465.0\n", "Episode 703 ended with reward: 520.0\n", "Episode 704 ended with reward: 675.0\n", "Episode 705 ended with reward: 690.0\n", "Episode 706 ended with reward: 450.0\n", "Episode 707 ended with reward: 550.0\n", "Episode 708 ended with reward: 410.0\n", "Episode 709 ended with reward: 640.0\n", "Episode 710 ended with reward: 780.0\n", "Episode 711 ended with reward: 630.0\n", "Episode 712 ended with reward: 140.0\n", "Episode 713 ended with reward: 640.0\n", "Episode 714 ended with reward: 730.0\n", "Episode 715 ended with reward: 430.0\n", "Episode 716 ended with reward: 425.0\n", "Episode 717 ended with reward: 500.0\n", "Episode 718 ended with reward: 710.0\n", "Episode 719 ended with reward: 370.0\n", "Episode 720 ended with reward: 470.0\n", "Episode 721 ended with reward: 395.0\n", "Episode 722 ended with reward: 480.0\n", "Episode 723 ended with reward: 445.0\n", "Episode 724 ended with reward: 640.0\n", "Episode 725 ended with reward: 515.0\n", "Episode 726 ended with reward: 280.0\n", "Episode 727 ended with reward: 560.0\n", "Episode 728 ended with reward: 515.0\n", "Episode 729 ended with reward: 730.0\n", "Episode 730 ended with reward: 685.0\n", "Episode 731 ended with reward: 480.0\n", "Episode 732 ended with reward: 505.0\n", "Episode 733 ended with reward: 185.0\n", "Episode 734 ended with reward: 675.0\n", "Episode 735 ended with reward: 330.0\n", "Episode 736 ended with reward: 400.0\n", "Episode 737 ended with reward: 405.0\n", "Episode 738 ended with reward: 490.0\n", "Episode 739 ended with reward: 60.0\n", "Episode 740 ended with reward: 465.0\n", "Episode 741 ended with reward: 670.0\n", "Episode 742 ended with reward: 550.0\n", "Episode 743 ended with reward: 710.0\n", "Episode 744 ended with reward: 220.0\n", "Episode 745 ended with reward: 560.0\n", "Episode 746 ended with reward: 520.0\n", "Episode 747 ended with reward: 320.0\n", "Episode 748 ended with reward: 540.0\n", "Episode 749 ended with reward: 485.0\n", "Episode 750 ended with reward: 230.0\n", "Episode 751 ended with reward: 585.0\n", "Episode 752 ended with reward: 655.0\n", "Episode 753 ended with reward: 740.0\n", "Episode 754 ended with reward: 395.0\n", "Episode 755 ended with reward: 440.0\n", "Episode 756 ended with reward: 730.0\n", "Episode 757 ended with reward: 790.0\n", "Episode 758 ended with reward: 715.0\n", "Episode 759 ended with reward: 390.0\n", "Episode 760 ended with reward: 735.0\n", "Episode 761 ended with reward: 485.0\n", "Episode 762 ended with reward: 290.0\n", "Episode 763 ended with reward: 445.0\n", "Episode 764 ended with reward: 555.0\n", "Episode 765 ended with reward: 445.0\n", "Episode 766 ended with reward: 345.0\n", "Episode 767 ended with reward: 440.0\n", "Episode 768 ended with reward: 515.0\n", "Episode 769 ended with reward: 500.0\n", "Episode 770 ended with reward: 515.0\n", "Episode 771 ended with reward: 500.0\n", "Episode 772 ended with reward: 595.0\n", "Episode 773 ended with reward: 485.0\n", "Episode 774 ended with reward: 680.0\n", "Episode 775 ended with reward: 455.0\n", "Episode 776 ended with reward: 505.0\n", "Episode 777 ended with reward: 490.0\n", "Episode 778 ended with reward: 500.0\n", "Episode 779 ended with reward: 475.0\n", "Episode 780 ended with reward: 470.0\n", "Episode 781 ended with reward: 470.0\n" ] } ], "source": [ "env=RoverGridEnv()\n", "input_dim=env.observation_space.shape[0]\n", "n_actions=env.action_space.n\n", "actor_critic=ActorCritic(input_dim,\n", " n_actions)\n", "optimizer=optim.Adam(actor_critic.parameters(),\n", " lr=1e-3)\n", "episode_rwds_ppo=train_ppo(env,\n", " actor_critic,\n", " optimizer,\n", " total_timesteps=50000)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHHCAYAAACr0swBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/F0lEQVR4nOydd3gU1frHv7Mlm0ISQgmh996LYOhICQT1YsEfigJexCuiUqxYwcZVEbGj1yuWa+8NgdAUJFTpvfeETkJCks3u/P7Y7O6ZmTNts5vdJO/neXjIzpw5c86ZM+e8877veY8giqIIgiAIgiAIQoIl3AUgCIIgCIKIREhIIgiCIAiC4EBCEkEQBEEQBAcSkgiCIAiCIDiQkEQQBEEQBMGBhCSCIAiCIAgOJCQRBEEQBEFwICGJIAiCIAiCAwlJBEEQBEEQHEhIIohKxIoVKyAIAlasWBHuokQEgiBgxowZ4S5GRDJu3Dg0atSoTO9J/ZOINEhIIogQIwiCoX9GJoYXX3wRP/74Y8jL/NFHH0nKZrPZULduXYwbNw4nTpwI+f3LG/L2io6ORosWLXDfffchOzs75PefMWOGZt/KysoKeRkIoiJiC3cBCKKi8+mnn0p+f/LJJ8jIyFAcb926tW5eL774Im6++WaMGDEimEVU5dlnn0Xjxo1RUFCANWvW4KOPPsKqVauwfft2REdHl0kZyhNse61atQrvvvsuFixYgO3btyM2Njbk93/33XdRpUoVxfGqVauazus///kP3G53EEpFEOUXEpIIIsTcfvvtkt9r1qxBRkaG4ngkMmzYMHTr1g0AcNddd6FGjRp46aWX8PPPP+OWW24Jc+n0ycvLQ1xcXJndT95e1atXx5w5c/DTTz/h1ltvLVXe+fn5uoLWzTffjBo1apTqPl7sdntQ8iGI8gyZ2wgiAsjLy8ODDz6I+vXrw+FwoGXLlpg9ezZEUfSlEQQBeXl5+Pjjj31mlHHjxgEAjhw5gnvvvRctW7ZETEwMqlevjpEjR+Lw4cNBLWefPn0AAAcOHJAc3717N26++WZUq1YN0dHR6NatG37++Wff+YsXL8JqteKNN97wHTt79iwsFguqV68uqefEiRORkpLi+71y5UqMHDkSDRo0gMPhQP369TF16lRcuXJFUoZx48ahSpUqOHDgANLT0xEfH4/Ro0cDAAoLCzF16lTUrFkT8fHxuP7663H8+HFF/XJzczFlyhQ0atQIDocDycnJGDx4MP7++++A2uuaa64BABw6dMh37H//+x+6du2KmJgYVKtWDaNGjcKxY8ck1/Xv3x/t2rXDxo0b0bdvX8TGxuLxxx8PqAwsXp+fr776Co8//jhSUlIQFxeH66+/XlEGnk/Sl19+ia5duyI+Ph4JCQlo3749Xn/9dUmagwcPYuTIkahWrRpiY2Nx9dVX47ffflOU5fjx4xgxYgTi4uKQnJyMqVOnorCwkFvutWvXYujQoUhMTERsbCz69euHv/76q3SNQRAGIE0SQYQZURRx/fXXY/ny5Rg/fjw6deqERYsW4eGHH8aJEyfw2muvAfCY7e666y50794dd999NwCgadOmAID169dj9erVGDVqFOrVq4fDhw/j3XffRf/+/bFz586gmXq8QldSUpLv2I4dO9CrVy/UrVsXjz32GOLi4vD1119jxIgR+O6773DDDTegatWqaNeuHf7880888MADAIBVq1ZBEAScP38eO3fuRNu2bQF4hCKvMAYA33zzDfLz8zFx4kRUr14d69atw5tvvonjx4/jm2++kZSvuLgYaWlp6N27N2bPnu2r91133YX//e9/uO2229CzZ08sW7YMw4cPV9Tvnnvuwbfffov77rsPbdq0wblz57Bq1Srs2rULXbp0Md1eXmGyevXqAIAXXngBTz31FG655RbcddddOHPmDN5880307dsXmzZtkpjFzp07h2HDhmHUqFG4/fbbUatWLd37nT9/XnHMZrMpzG0vvPACBEHAo48+itOnT2Pu3LkYNGgQNm/ejJiYGG7eGRkZuPXWWzFw4EC89NJLAIBdu3bhr7/+wuTJkwEA2dnZ6NmzJ/Lz8/HAAw+gevXq+Pjjj3H99dfj22+/xQ033AAAuHLlCgYOHIijR4/igQceQJ06dfDpp59i2bJlivsuW7YMw4YNQ9euXfHMM8/AYrFg/vz5uOaaa7By5Up0795dt10IImBEgiDKlEmTJonsq/fjjz+KAMTnn39eku7mm28WBUEQ9+/f7zsWFxcnjh07VpFnfn6+4lhmZqYIQPzkk098x5YvXy4CEJcvX65Zxvnz54sAxCVLlohnzpwRjx07Jn777bdizZo1RYfDIR47dsyXduDAgWL79u3FgoIC3zG32y327NlTbN68uaTetWrV8v2eNm2a2LdvXzE5OVl89913RVEUxXPnzomCIIivv/66Zt1mzZolCoIgHjlyxHds7NixIgDxsccek6TdvHmzCEC89957Jcdvu+02EYD4zDPP+I4lJiaKkyZN0mwbHrz2+vLLL8Xq1auLMTEx4vHjx8XDhw+LVqtVfOGFFyTXbtu2TbTZbJLj/fr1EwGI8+bNM3T/Z555RgTA/deyZUtfOu/zr1u3rpiTk+M7/vXXX4sAJO0+duxYsWHDhr7fkydPFhMSEsTi4mLVckyZMkUEIK5cudJ3LDc3V2zcuLHYqFEj0eVyiaIoinPnzhUBiF9//bUvXV5entisWTNJ/3S73WLz5s3FtLQ00e12+9Lm5+eLjRs3FgcPHmyofQgiUMjcRhBhZsGCBbBarT4Ni5cHH3wQoiji999/182D/fp3Op04d+4cmjVrhqpVqwZsKgKAQYMGoWbNmqhfvz5uvvlmxMXF4eeff0a9evUAeDQXy5Ytwy233ILc3FycPXsWZ8+exblz55CWloZ9+/b5VsP16dMH2dnZ2LNnDwCPxqhv377o06cPVq5cCcCjXRJFUaJJYuuWl5eHs2fPomfPnhBFEZs2bVKUeeLEiZLfCxYsAABF+06ZMkVxbdWqVbF27VqcPHnSbFMBkLbXqFGjUKVKFfzwww+oW7cuvv/+e7jdbtxyyy2+djp79ixSUlLQvHlzLF++XJKXw+HAnXfeaer+3333HTIyMiT/5s+fr0g3ZswYxMfH+37ffPPNqF27tq+teFStWhV5eXnIyMhQTbNgwQJ0794dvXv39h2rUqUK7r77bhw+fBg7d+70patduzZuvvlmX7rY2FifhtTL5s2bsW/fPtx22204d+6cr83y8vIwcOBA/Pnnn+RcToQUMrcRRJg5cuQI6tSpI5m0AP9qtyNHjujmceXKFcyaNQvz58/HiRMnJD4+ly5dCrhsb7/9Nlq0aIFLly7hww8/xJ9//gmHw+E7v3//foiiiKeeegpPPfUUN4/Tp0+jbt26PsFn5cqVqFevHjZt2oTnn38eNWvWxOzZs33nEhIS0LFjR9/1R48exdNPP42ff/4ZFy5ckOQtr5vNZvMJcF6OHDkCi8XiM016admypaKsL7/8MsaOHYv69euja9euSE9Px5gxY9CkSRO9pgLgby+bzYZatWqhZcuWsFg836L79u2DKIpo3rw591q5o3TdunURFRVl6L5e+vbta8hxW14GQRDQrFkzTR+2e++9F19//TWGDRuGunXrYsiQIbjlllswdOhQX5ojR46gR48eimvZvtyuXTscOXIEzZo1gyAIknTyZ7Jv3z4AwNixY1XLdenSJYn5lyCCCQlJBFEBuP/++zF//nxMmTIFqampSExMhCAIGDVqVKm+tLt37+5brTVixAj07t0bt912G/bs2YMqVar48n7ooYeQlpbGzaNZs2YAgDp16qBx48b4888/0ahRI4iiiNTUVNSsWROTJ0/GkSNHsHLlSvTs2dMnWLhcLgwePBjnz5/Ho48+ilatWiEuLg4nTpzAuHHjFHVzOBy+awPhlltuQZ8+ffDDDz9g8eLFeOWVV/DSSy/h+++/x7Bhw0y1lxy32w1BEPD777/DarUqzsuX7qv5BoWL5ORkbN68GYsWLcLvv/+O33//HfPnz8eYMWPw8ccfh+Se3uf7yiuvoFOnTtw0vJAHBBEsSEgiiDDTsGFDLFmyBLm5uRJt0u7du33nvci/vL18++23GDt2LF599VXfsYKCAly8eDFo5bRarZg1axYGDBiAt956C4899phPw2K32zFo0CDdPPr06YM///wTjRs3RqdOnRAfH4+OHTsiMTERCxcuxN9//42ZM2f60m/btg179+7Fxx9/jDFjxviOa5l85DRs2BButxsHDhyQaCq8Zj85tWvXxr333ot7770Xp0+fRpcuXfDCCy8YEpK0aNq0KURRROPGjdGiRYtS5VVavBoaL6IoYv/+/ejQoYPmdVFRUbjuuutw3XXXwe12495778V7772Hp556Cs2aNUPDhg257Srvyw0bNsT27dshiqKkT8uv9Wr/EhISDPUvggg25JNEEGEmPT0dLpcLb731luT4a6+9BkEQJJNzXFwcV/CxWq0SExsAvPnmm3C5XEEta//+/dG9e3fMnTsXBQUFSE5ORv/+/fHee+/h1KlTivRnzpyR/O7Tpw8OHz6Mr776ymd+s1gs6NmzJ+bMmQOn0ynxR/JqXNi6iaKoWHauhbf92PADADB37lzJb5fLpTDfJScno06dOqpL081w4403wmq1YubMmYpnJYoizp07V+p7GOWTTz5Bbm6u7/e3336LU6dOaQqC8vJZLBafUOVtn/T0dKxbtw6ZmZm+dHl5eXj//ffRqFEjtGnTxpfu5MmT+Pbbb33p8vPz8f7770vu0bVrVzRt2hSzZ8/G5cuXFWWS9y+CCDakSSKIMHPddddhwIABeOKJJ3D48GF07NgRixcvxk8//YQpU6ZIfGm6du2KJUuWYM6cOT7zVY8ePXDttdfi008/RWJiItq0aYPMzEwsWbLEt/Q8mDz88MMYOXIkPvroI9xzzz14++230bt3b7Rv3x4TJkxAkyZNkJ2djczMTBw/fhxbtmzxXesVgPbs2YMXX3zRd7xv3774/fff4XA4cNVVV/mOt2rVCk2bNsVDDz2EEydOICEhAd99953CN0mLTp064dZbb8U777yDS5cuoWfPnli6dCn2798vSZebm4t69erh5ptvRseOHVGlShUsWbIE69evl2joAqVp06Z4/vnnMX36dBw+fBgjRoxAfHw8Dh06hB9++AF33303HnrooVLd49tvv+WanwYPHiwJIVCtWjX07t0bd955J7KzszF37lw0a9YMEyZMUM37rrvuwvnz53HNNdegXr16OHLkCN5880106tTJ53P02GOP4YsvvsCwYcPwwAMPoFq1avj4449x6NAhfPfddz5T6IQJE/DWW29hzJgx2LhxI2rXro1PP/1UEarCYrHggw8+wLBhw9C2bVvceeedqFu3Lk6cOIHly5cjISEBv/zyS6najCA0CcOKOoKo1MhDAIiiZ5n01KlTxTp16oh2u11s3ry5+Morr0iWPYuiKO7evVvs27evGBMTIwLwhQO4cOGCeOedd4o1atQQq1SpIqalpYm7d+8WGzZsKAkZYDYEwPr16xXnXC6X2LRpU7Fp06a+5eAHDhwQx4wZI6akpIh2u12sW7eueO2114rffvut4vrk5GQRgJidne07tmrVKhGA2KdPH0X6nTt3ioMGDRKrVKki1qhRQ5wwYYK4ZcsWEYA4f/58X7qxY8eKcXFx3PpcuXJFfOCBB8Tq1auLcXFx4nXXXSceO3ZMEgKgsLBQfPjhh8WOHTuK8fHxYlxcnNixY0fxnXfe0WwrvfaS891334m9e/cW4+LixLi4OLFVq1bipEmTxD179vjS9OvXT2zbtq1uXl60QgCwz9v7/L/44gtx+vTpYnJyshgTEyMOHz5cEk5BFJUhAL799ltxyJAhYnJyshgVFSU2aNBA/Ne//iWeOnVKct2BAwfEm2++WaxataoYHR0tdu/eXfz1118VZT5y5Ih4/fXXi7GxsWKNGjXEyZMniwsXLuT2z02bNok33nijWL16ddHhcIgNGzYUb7nlFnHp0qWG24ggAkEQRZnelyAIgqiQrFixAgMGDMA333wjWX5PEAQf8kkiCIIgCILgQEISQRAEQRAEBxKSCIIgCIIgOJBPEkEQBEEQBAfSJBEEQRAEQXAgIYkgCIIgCIIDBZM0idvtxsmTJxEfH6+6RQRBEARBEJGFKIrIzc1FnTp1DO/xSEKSSU6ePIn69euHuxgEQRAEQQTAsWPHUK9ePUNpSUgyiXcD0mPHjiEhISGoeTudTixevBhDhgyB3W4Pat6RRGWoZ2WoI0D1rGhQPSsOlaGOgLl65uTkoH79+pKNxPUgIckkXhNbQkJCSISk2NhYJCQkVPhOXdHrWRnqCFA9KxpUz4pDZagjEFg9zbjKkOM2QRAEQRAEBxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIgCIIgCA4kJBEEQRAEQXAgIYkgCIIgCIJDuRGSXC4XnnrqKTRu3BgxMTFo2rQpnnvuObD784qiiKeffhq1a9dGTEwMBg0ahH379knyOX/+PEaPHo2EhARUrVoV48ePx+XLl8u6OgRBEARBRDjlRkh66aWX8O677+Ktt97Crl278NJLL+Hll1/Gm2++6Uvz8ssv44033sC8efOwdu1axMXFIS0tDQUFBb40o0ePxo4dO5CRkYFff/0Vf/75J+6+++5wVIkgCIIgiAim3ASTXL16Nf7xj39g+PDhAIBGjRrhiy++wLp16wB4tEhz587Fk08+iX/84x8AgE8++QS1atXCjz/+iFGjRmHXrl1YuHAh1q9fj27dugEA3nzzTaSnp2P27NmoU6dOeCpHEARBEETEUW6EpJ49e+L999/H3r170aJFC2zZsgWrVq3CnDlzAACHDh1CVlYWBg0a5LsmMTERPXr0QGZmJkaNGoXMzExUrVrVJyABwKBBg2CxWLB27VrccMMNivsWFhaisLDQ9zsnJweAJ8qn0+kMah29+QU730ijMtSzMtQRoHpWNKieFYfKUEfAXD0DaYtyIyQ99thjyMnJQatWrWC1WuFyufDCCy9g9OjRAICsrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI2NLXW9eGRkZIQk30ijMtSzMtQRoHpWNKieFYfKUEfAWD3z8/NN51tuhKSvv/4an332GT7//HO0bdsWmzdvxpQpU1CnTh2MHTs2ZPedPn06pk2b5vvt3SBvyJAhIdm7LSMjA4MHD67we+1U9HpWhjoCVM+KBtWz4lAZ6giYq6fXEmSGciMkPfzww3jssccwatQoAED79u1x5MgRzJo1C2PHjkVKSgoAIDs7G7Vr1/Zdl52djU6dOgEAUlJScPr0aUm+xcXFOH/+vO96OQ6HAw6HQ3HcbreHrOOFMu9IojLUk62jyy2i2O2Gw2YNc6mCT2V4lgDVs6JRGepZGeoIGKtnIO1Qbla35efnw2KRFtdqtcLtdgMAGjdujJSUFCxdutR3PicnB2vXrkVqaioAIDU1FRcvXsTGjRt9aZYtWwa3240ePXqUQS2Iyszg1/5Al2czUOB0hbsoBEEQhAHKjSbpuuuuwwsvvIAGDRqgbdu22LRpE+bMmYN//vOfAABBEDBlyhQ8//zzaN68ORo3boynnnoKderUwYgRIwAArVu3xtChQzFhwgTMmzcPTqcT9913H0aNGkUr24iQc/BMHgBgT1YuOtavGt7CEARBELqUGyHpzTffxFNPPYV7770Xp0+fRp06dfCvf/0LTz/9tC/NI488gry8PNx99924ePEievfujYULFyI6OtqX5rPPPsN9992HgQMHwmKx4KabbsIbb7wRjioRYeaPvWfwzYZjeH5EO1SNjSqz+1oEoczuRRAEQQROuRGS4uPjMXfuXMydO1c1jSAIePbZZ/Hss8+qpqlWrRo+//zzEJSQKG+M/dATY6uKw4Z/39QhpPdiI8OTjEQQBFE+KDc+SQQRKk5dKtBPVEpcbhKSCIIgyhskJBGVnrIQWhgZCQJISiIIgigPkJBEECGg2OUGY2GDm8xtBEEQ5Q4SkggiyFwuLEaf2X9i/l7/68UKSeS4TRAEUT4gIYkoV3ySeRg3v7sal65E7n5EC7dn4ezlImw5zwpJ/vMkIxFEZPL4D9tw/xebJAstiMoNCUlEueLpn3Zgw5EL+M+fB4OWZ7BlFrdbOcCyjtsWEpIIIuIodrnx+dqj+GXLSRw+Z36PL6JiQkISUS7JL4rcqNUuzleo9MuUpCSCiDTYb5tilzt8BSEiChKSCCLIFOtokgiCiDxYv0F6XQkvJCQR5ZJg+vUIQXYSkpvbzl4u5ApORMXgcmEx8gqLw10MIkCKit24kFekuhqVqNyUm4jbROVCFEXDwouZtDyCbfxitUY7TuZgxLtr0LhGHJOCBuCKgtPlRrtnFgEA9r8wDDYrfXeWN655dQWOX7iCZQ/28x0jzS/hhd5oIuKY98cBXPXCUhw5l6eaxivYvL18P7q/uBTHzkeOoyX7Ffr1xuMAgENn/XWhj9SKw/m8It/fuQWkTSqPHL9wBQDw594zvmP0jhJeSEgiIo5//74bZy8X4sUFu3TTvrJoD87kFuKVRXvKoGTGYL9CeR+kNP6WDfuyczHq/UysPXgu3EUhygFuMrcRHEhIIiIWM+NUaYa0YMctYle38eKt0PhbNkz4ZAPWHDyP/3t/TbiLQpQDpI7b9JISHkhIIioEkRT8zeXS0yRFTlkrMlk56hsXZ+zMxsYj50t9jwjqdkQpodVtBA8SkoiIZdOxi+UyXolL54uUJtayQW0j4WPn8zHhkw246d1MLNmZHbSVaZGifShwuvD30QvcoKaEOmRuI3iQkERELGdyC/HKYr6vkdxEFklDGjs58cZaGn/Dy4mLV3x/3/XJBjz14/aA82K1gpJJ1i3icpjCAtz3+Sbc+M5qvPvHgbDcv7zCvpfOcvhxRoQGEpKIiOa9P4K3/Yg6wXVK0vVJiiiRruJi1Ndsya7sgO8hddL3/33Hh2vR7plFOH6h7Fddeusz/6/DZX7v8gz7/CgEAOGFhCSiXKKIi2RwTBNFEXd9vB7//Gh98AtVAvsRyvVJKsPxd8Ph8+j172XI2Bm4IKDG4bN5uGbOSvyVHZnbrBgtVU5BccCaA7fkWfsf7F/7PSvqft5yMqB8ibKH1QDrBX8VRRETPtmAMR+uiyh/SJaV+85i5t9WrDlYet87PaZ+tRk3v7u6QmrgSEgiKhUX851Ysus0lu0+zT3/zE/b8dayfaW6h4uZOc36JC3dlY27P9kgib9TGm77z1qcuHgFEz7ZEJT8WJ76aTuOXbiCrw9ag553WaMVk0sLl46zr9wv6oXfdmL2oj1YuD0L//p0Ay7lOzXzv5BXhH99uiEgIZc2UjaHdO82bcHncmExMnZm48+9ZzQXCISTf37yN84XCrhjfvDffTk/bDqBDUcuYPWBihdug4QkokJg1ITF23zWy77sXHyceQSzF++VHC8sdmFOxl5sOnrB2D2YjymuT5JGWcd/vAGLd2bj37/rx4gyQhFTmCPn8vDKIk8MKh6ncwrw8sLdhgNzFjhDs8lwboETsxftwZ6sXMW583lFeGXRbklwTjXk2saL+UWYvWgPDp5RXnvyYmATnWRFFEdKYgWVrEsF+M/KQ3hr+X7c87+NWLQjG68t2au4hmX24j1YtCM7ICE32KEtyiMfrjqExTuyDKVln+UbS/dpOr6z5jhLkBpaFEW8s2I/Vu47o5+4hDO5habeWR7bT1zCnMV7cCUIm4afZPz9KgokJBERTbAHep5mx3uPAqdfoGBV6B+vPow3lu7DDe+sNn2PQB23s3P4gkxpuPGd1Xh7+QFM+3oL9/y9n/2Nd1YcwG0fGIsrFCq3jRcX7MZby/cjbe6finOPfLsFby8/gH+8tUo3H3nXeeqnHXhr+X48/sM2RdpAq+JW8Uny4p1Aj53Pxw+bTijOqwmsXs7kBt4PgjV5l1e2Hb+EZ3/dibs/3cg9f9kJ/LzllO83+85vO3EJCzWEq6W7/JroYLXz0l2n8fLCPbjjv+sMX/PAF5vwzooDuOW9zIDve+2bq/DGsv14M0ANOttupy5FplatNNDebUREoyZQBDosGXUfcLlF2Kyeu/A0D3rXeuGa20zlFjzOlZjwNhzm+yhsOOLRlB07b+xrMFTOrVuOXVQ9t+6Qp+w5RrYAkXWSv4+oawID9SvRNbeVlKHPy8u51+vtOViaCbhyi0hAto4Z7P3dVhzZ4BeY5c9Pzel+58kcPPiN/0ND3ncOn81DzXgH4hzmptdAnPzXHPKYt4IhnOw6lRPQdew4kHWJNEkEUa4xGv+Enfyi7eZ8bthriziOjEYm5GCLHw6b/1UP1pdvpMeSkddSq90DrQk7QfCERj0hyHu2sNjFLZ+VHIsCRu+ZHrksbVt5f/a+J0XF0nd432mpGZh97LtO5aD/7BXo98oKU2UF9PsKj0h4BdnxLisEGvBwQ0ISUT4JcO7gTmScdOyqJVbAMAJrglm6W+lfYGRcC/aKGfarNljTbqiEJK25ojR31Lw2wIzZJuA9Mz0ZRxA8pri2Ty/imgFLI88GMulWJMz2T3lqq0XApqMX0OLJ3zGHiddms0jHA1ZI8C4I0TOjcu8fZokn0P7CjqnOYlrdRhARidHxhZeONzYUM1KSw6QmSX/5sKnsgkKcw1+HYM2dkb7aVz7oa02agcaukmiSeP5uOtdbBAH/WXkQxW4RX6w7xj0fKLxLC5wujP9oPWb+skNy/N+/78b/vZep0JqUZ8wKHXJHbYsg4NlfdwIA3li233dcrt1jr7NVQs1fRY8pRT5JRERTFo7b3HTMXBFt939LFLvcsFm1vy30t4MwYG4L8rgTF8VoklQaVRBMbiocCbp+DRShtDSKG2hVJD5JHPnCojNpCtAWqktjbuM95neW78fSEm3HM9e19R2fVxKde9ke4yurIh2zc7d8srdYBG4eckGIHVPsOmODFuVV88e2WzmtgiakSSIqBEYnOaMDJ6tJirb5tTB5BpbJaoUZAIyVNdhRuWOj9DVJZrUWkf4FqfBJ0kgbqJDEW93mNrM8XJBuiKw4XYpJh3fvVfvPal7z2dqj2HupYsx0Zp+pwtwmCNwPHqtV2j7se2C3Voy2MwNb/wj/bgoIEpKIcona5qV68H2SPHlJtiUQ2YnOn9bIZqh6woMxnyQDiXRgNwdmfZLUJm4jLSqKIlbtO4uTF68otHJHzuX5Vp9FAuyXud5SepFJ98feM4a1ZLxNUdm+oy8jCXDyVFDM+UDhXcnKYzwBYM2hC3h7Z/kPDgqY90mSp7dZBG4edplPEptGT8vsZW92ruYqTpZdp3Kw9bixtKUh0J6mZ3Iu75C5jYhotN45NviZ4WCSGgIMa/Zg5y12YjEiJOkNzkZ2Zw+GU3Reob99JJoklfQe4Un7vusPX8Dt/10LAGhcI05yzruiZ9GUvmiZEm+6vL7yaY3WJpqFzWbgqysQZVOf/L1C0YDZK3C5sBivj+qEf3Sqq3sPabgH5TE9TZIgaEd3Lo2Li575ptgtIqoC+9BI45WJivawCiJcosCkkV4vQsRRTpBGeZOxrzNriuPd03t8yGueGGBbnh6CxFg7AH6/d7tFDHt9JQDg76cGo1pclDJRmJGanCuekESaJKLccvWspaav0RKS2EGVNbex24wYMrcFQZMUDApd/rKyvi2qk6eB+XLbiUu+v9UEue1MmnDCVjOnoNhQCIDLJULwCoO+OZKI2yV/s/tX6TWplk+S2y2WzidJ57y3vJHuW6aGmQmZV8Uo2ewnf2/nLtmHXE48Lrm2RGpu82daqOIEf5n50Lp0RXtbGlbLuC9bGYE+EmCF/IqoSSIhiSi36A0wPLQ0NC4VTRI7iQXF3GbEJykIYw27UonNT90nST/P2onRvr8vquw7Vtqil8bEpIUZnySjgoO0z4iKYxZB0OwPgopP0qdrjqDjzMXYcrwUAqdOM3r7td5qzEhkx8lL6PjsYny46pBqGp4Ay6IQkmRp1AI0yptLzXGbFyMNkL43NhUfJm//YwWQUO8RF6j/m97WPOUdEpKIiMboi2smkrbaPdhzEk0SM1BdDopPkoHVbbop9HEy5ZYISSrpjQgnMUw4hECE1LJFWh9twUfU+KWOdCL2/C8ROgRo7owuQOAKKU/9uB25hcUBR0EG9E193n6tt5lrJPL4D9uRW1DsW6LPg/3Q4b2SUTLrq5YDvTRfUfbb/zcr9KiFU2CFJMnKMLYsHAFWL4J4uGDLSJokgogQAv3q0fpqVttOhH3xjWzqqjvWGvLcNpBGB3ZyZuujNnka0SQZ8ZUKqfmGKeOTP25DboG6oKYIAaCRbcCr29h+wtEkiaKoLSQJUoG8NHy38bgk6CH3cXJMyjzH8VA8ww9WHtTU/JjBSF9la8DrtzZZHloO9ADw3h8H8EnmYcVHEDs+sLdRFZKuFGmWi82TXXyRdalso1l/s+EY5mRob8AMSIXGSI+dFgjkuE1UKjTNbSL/Zdfbi01xj2CsbguClMQO0hLlRilCABjRpof0W5LJ/H9rjiI2yobH01tzkyq3JTGUrSLtr1tPoloMf6hk+4nPRCKbNJw6S/yDFUqB3U9MDRdHqONpkoyWKa+wGF9vOIZh7WojhTHFyrmQV4Tnf9sFABjVvT5io0o39ehqydwi/rfmiO8399nLstCr86zfdwMA3r6ti+S43EHci1lNkiTPkkvZvnQmgCje5pA2yMPfbgUADGqdjA71qqpeJV3wQpokgogIgrFc1ZdXSWZuFXObfNIL5B4sZeaTJCmsvibJiHYu0mIjHTlnfPNhzYjbKqf2n87FfZ9vwm3/Xc89z1vdVizT4GlrkoSQmbt4z5nnZFvMKZ/R5/z4D9sw85edmPjZRs10rBOzltCoR26BE+sOndd9/7/ecAybmSX2Rj5ujPpmFbmk2mQ3pw8A6o7bFxkztVq5vOMPW6ZwbfmhZ1bnhQA4demK7gKO7Scu4XxekWaaSIA0SUSFwLAPSQAhANwmv5SC6ZMkiiIu5DsDWvrrVNEkqWEk4q8hM0wp53wzplStuDSKfDQ1SfyTvCXgkuuY9vCaUST9SBQ1t/oQEDrB01v/3AInYuxW2KwWqd9dibDi5Nyfd4zHT5tPAgA2Hb2InAInom1WROnsdVgaU97IeZnYnaW/yuvvIxckv3nCiLx78IRFHoVOaTperCxAXZN0Kd8vGEj91/wl8mmSXPyPtVBx6tIVRNussDPPUM9Xkbd4IXXWMgDAHw/3R8PqcYprDp3Nw7VvrgIAHHgxPaI3ci5XmqQTJ07g9ttvR/Xq1RETE4P27dtjw4YNvvOiKOLpp59G7dq1ERMTg0GDBmHfvn2SPM6fP4/Ro0cjISEBVatWxfjx43H58uWyrgoRJrQcCw1pkgwM8EGJuF2S6KmftqPLcxlYXrKVhBnYL3aJT5LKW2/MJ8l0MUKKXaPQ8sE9EJ8kdt7k1Z191vd9vgmncwoUk4YZn6RgmisEQcCRc3no/dJyX2wryVe/z9wWuCaJpcOMxRgwewX3HNv/SqNJMiIgAcp3kFcd+TM3qtGT+yWqmePlGicvFwyY27zlZ9sqWL5raqzafwaps5ah83MZaPfMIsPXSUy4skbdpqJNOsxogJfuyjZZ0rKl3AhJFy5cQK9evWC32/H7779j586dePXVV5GUlORL8/LLL+ONN97AvHnzsHbtWsTFxSEtLQ0FBf5VAaNHj8aOHTuQkZGBX3/9FX/++SfuvvvucFSJCCJGP041HbdVlgzzJhYtghJxu+T//605CgCYzTjkGoUdpNn2UTe3GfFJMqIFC95Er6d1MBrhWC8vhU9Syf9sjKycIuCaOSvx7xLfFM956ZXLdp+WmbR0fJJkq9smfrYR/3j7L41aGEcA8MzPO3DpihNrDnoioRdLPgSUE7HvnAGtCk+gO3HxCjet2srRUCEvG+/Zy0thVFMjN6NJfZLU03k5cs6vnWSbgi2jt414mr9QUeAM7LlojY9qYyE70pxU6TORQrkRkl566SXUr18f8+fPR/fu3dG4cWMMGTIETZs2BeDpYHPnzsWTTz6Jf/zjH+jQoQM++eQTnDx5Ej/++CMAYNeuXVi4cCE++OAD9OjRA71798abb76JL7/8EidPngxj7QizBBzTg/PSLtiWhd1ZObKXHczf5oSkKzoBJ42tENP+rcXcJXvx8DdbZI7b/gzUI27r561W9lCtaJNP4PK78PbK+v7v4xj/0XrkF0nDNWhrkviTKtsPlp+y4NiFK77NYD3pZPkggNVtTB0X7cg2vF2FEQ6dlfpscTVJHKHFiMBwhdGosM+hsFjZ/4tDONnvzsrBHf9di7+P+k1s8uI/9t02xTOWpzGqPdMSkvTMbUt2ZmMJozlxiSJ2nvSUf9PRi/58Si5l+45WPwqU//x5UDeN3ljLM7d5UXvWLo6wDgAzft6BZ39RD+sQDsqNT9LPP/+MtLQ0jBw5En/88Qfq1q2Le++9FxMmTAAAHDp0CFlZWRg0aJDvmsTERPTo0QOZmZkYNWoUMjMzUbVqVXTr1s2XZtCgQbBYLFi7di1uuOEGxX0LCwtRWOhfVZCT44lb4nQ64XQGN06MN79g5xtpmK2nNx07yLlkA4Youg3lV+Tkxzm6/YO1eDSthe93YZH/+RYxg/6ZnCt47pftuLFzHbSopdx6Y9GObOzRiYxbXFysW1a3rD5utxur9mZj1f5zuH9AU02/j7lLPCbmKGbicskmQr37e88XFrvxxrL96N+iJq5qlASnSvsVMfkVF7sU+ecXFeOt5QdxXYfaaF1be8sS9jkXFBZBEP0BbeRaKgunLtO+5q/y0hJO5WUW3SKcTifyClj/EX96X9+QtYfL5cKVIv81RcXFyC9Ud04V3W7DvjBFRUUSbd9Pm0/i4hUnxqY25AqpgiCClSGX7Twl0fQUFBXB6XSioFDZF64U6o9v+Uz4BYfNCqfL0xYXLhegusyH7grTBlcKi+B02jXzNsOY/67D6dxCrDl4DjtnDAYAFMtMXQt3ZGHXyYtonlwFgOf5yWUip4p5TM4VWXsVOf3vs7PY3x/yC5RtKHdwLypy4p+fb8L5PGm6wqIiOJ1WFBT5jztd2mOc1rltx87jx80nMbFfEyTGeNq+sNiNFxbsUr3Gi954VVgkNR+yaQud/GvZev28+QQKiopxe4/6+Gj1YQDA7T3qon5SrG7ZAHPzSSBza7kRkg4ePIh3330X06ZNw+OPP47169fjgQceQFRUFMaOHYusrCwAQK1atSTX1apVy3cuKysLycnJkvM2mw3VqlXzpZEza9YszJw5U3F88eLFiI019hDNkpGREZJ8Iw31ejLdUhSxYMECAN4vP8+5ffsPgFWEZmdn+9JpseWcAEC5h9fZy0XYtHmL71zmmrU4v9szih4+YvHd660Vni+v//51BK+nKgWGyZn6r9T69RuQv19twvZcf/HCpZL6eH7n5Obi9g89/nerth3AgDpuNEtQu4Pnmg17jvjKffbsWd/f+Xl53LYqKrTCq2fynl9xSsAPh614f+VhvJ5ajE1n+O23OGOJ775bt21DldNbJef/yhbw9UEr/rPqMOZcXQytzdIvXWTKsXAR2NX3xcX+cwBw/OgRLFhwiFt/Oa5iF9T0aJs3b4btxCbftSdPncSCBcexPstfX3ZSfe/rBbjkFHDZCbDtsXbTNvxyRYC3rXft2o0rx0XVMh08fASXcgXVcrH8tuB3ibbvoZK+tnn7TrRLUt4j51IOPBYUz0X//ORvyfmVK1fhcBXgcC4U1/65ciV2qq/o9+Rf5L/OIyR77vPboiWoIbv2RJ4/7bIVf6B2wEOnsh1Pl2xe7HT5x4oTJ/3vrJeM5X9iHyOfi7J+fPrseRh5Drv2SceetevW4/I+T+fYfNrfX9Zu2AjnYel77nRJy79q9Wqcz1PWaemy5ageDRxins3ZcxewYMECFLuBv88JaJEgfebKd9p/7rq3MwEAW/ccwu3NPUL5gRxpGjXWrVuHi3vUPzB2X/TXOb+gQDJubdm6FXHZyo+WTcw4vPVEDraeyMHl47t9x75e8AdaJ5nTOBqZN/PztRdi8Cg3QpLb7Ua3bt3w4osvAgA6d+6M7du3Y968eRg7dmzI7jt9+nRMmzbN9zsnJwf169fHkCFDkJCgOksFhNPpREZGBgYPHgy7PXhfWpGGXj0nZy72/S0IAtLT0wF4vlKmrvG8CI0aNwZO+uOgJCfXQnp6Z/2bb8sC9m7lnmrbrj1wwKPq7XrVVejbvAYAYMX324EzSnOst1xqZVcjoX4rpPdtzD3nvT6xaiLS06/2/Y6PjwfyPQsMtl+wYPsFC3Y8M4irUfJeUxwVD8BjbkmqVh245DFHVKlSBenpvRTXvbj9D+Q4CyV12/jbbuDwUd+xK3+fAPbvUFx7zTUDgTV/AADat2+P9G71JOdPrjoMHPQEpktuczV6NK7GrT8A/PfoGhzN82hsBwwchKRYO3Zl5aJx9TjY/l4h2ZOuWdPGSB/aklt/OYLVKlUHMXTs2BHpner4rq1duzbS0zvixKpDwCGPZo69cvY2z9A5vldD4IC/H/5yVDrxNm/REh3qJQI7+Evk69VvgGMHzwFX9P0yBqcNhYN53t6y/nrUil+PKtNXrZqIYpeIrCt8zWaP1J7oVL8qNhy5AGxfrzjXsnZV7nWiKGJXVi4cNiuw0eM/5WQ2iu16dW+0rSMdG7efyAG2rgEApPbqjTa1Axs79d4vb7/99eJm4Lx0scNVPVJxVSOPD6vT6cQzG5dJzscnJgK5+hHO69RvAJw67vvdpWtXDGzl+fjO23gcX5SMIW3bd0R65zooKnZjb/ZltKkdj07H12HzMb8zc/ceVwM7NkBOn3790Kh6HNYeOg9s95yvkpCA9PRUvLPiID5bux9JsXYAfs3I4LSh2JPluY/FInDbKseagPT0ngCA+auPADv0fR27dLsK1WKjULtqNC7lO9GkpnS1WuzeM8CuTQAAmz0K6ekDfPdu3aYt0ns0UORZvOUUsHeb5FiDlu2BXZ62q96kDdJTG+qWDTA3b3otQWYoN0JS7dq10aZNG8mx1q1b47vvvgMApKSkAPBoFGrXru1Lk52djU6dOvnSnD4tfXGKi4tx/vx53/VyHA4HHA6H4rjdbg+ZIBPKvCMJo/X0phHYjUMFqXBgsQjG2kxtaZfsnGCx+PJTs9IE+oxmZ+xDarOa6NowSSOVtD68IghWK+x29Vc4i9l7ipUNrCptZWHUFN7zCTF+s4nVaoPFotQiAYDV5i+HxWJV5B/NBA88m1cMu90OURRxxelSBBZkhRHBYsXi3Wdx3+eb0LFeomLFmoV5TrpofJharNIye58/uwsNz2Xl6AXtrSIEwQJR0/VTMByl2Gq1wW7ntz8Pi8UCu6DhNF7ynERBWT6B8wy9LNqRhX99uhHx0f7nxr4jBS7OuyF5t9Tz1sKIT47vneVphARpX1HuwWa0HPJs/fURmPfDVfIOT/t2E37ZchIPp7VU+HoJKu+TYLF58hSY/Nye+v2x7ywA6So5AHj8x534cfNJPDi4Be4f2Jybr5V5XwqKjVV46tdbkcNs9LvykQGoX82vChQkZRSl45ag8n5y+hzbD4+cv2K6jxiZTwLpd+XGcbtXr17Ys0cq9e7duxcNG3qkzcaNGyMlJQVLl/p3hs/JycHatWuRmpoKAEhNTcXFixexcaP/q27ZsmVwu93o0aNHGdSCMAv7GrPjS6B7BGn5pby80N+/2PE4FPFJFu/km3e9GIqlxEnCOk7mMQ7krBOpmiMm73C03T9EnM8vUt9GQaeN2PPnSgLIPf3TDrR5epFifzLW2dPpFvHlumMAgC3HLyl8b8wsJ9dqU0W1Sn6zzt9GlpHLcYvqG50Cnr5l1GFYuv2F/jUCoBl/xrfBLacNtdr1h79PAAByC/j+aZc5xyVBEQN03M7XWRDBatl47SN/DvJmN+pQLnfcFnUct3/Z4tFCv7vigOIeqhG3fdHbGcftkr/VSvljScwqdmGBHLY/aMXvYsmRPU/5sn5pXDDptWr14y4WYPfIVOlb4aDcCElTp07FmjVr8OKLL2L//v34/PPP8f7772PSpEkAPGaZKVOm4Pnnn8fPP/+Mbdu2YcyYMahTpw5GjBgBwKN5Gjp0KCZMmIB169bhr7/+wn333YdRo0ahTp06YawdYQR2kgt09ZfWxygbWZZ1dDayGs0segOykfrxyqVWVomQpOJ3wQsBwE4I2TkFqsIpOxbyhBF2Yjyf5zHpfVqybcTrS6SxzKQrodyaGgQzK360ZBG1U+zEzBeSdIRDndVtblE0LIS7XOqTEQ9B0N6+Q2t1m5bgxgrOPLybQK87dB4DZq/An3vPSPq7UUd1OXqrRmOZHWt5/VQunAUeAkAeJ4nJU1RPV+RyKwQ1tfep2CVi/l+HMG7+eskxI1gEQTXe1rYTl3Dzu6s9TuABPodY2c7AauFSeL+98NqaLU+g4QhCQbkRkq666ir88MMP+OKLL9CuXTs899xzmDt3LkaPHu1L88gjj+D+++/H3XffjauuugqXL1/GwoULER3t9yL87LPP0KpVKwwcOBDp6eno3bs33n///XBUiTAJO54EuuRcvspLPZ3/71DEJ+ENHqJEUyA9xxWIOFVRG3SdLgOaJM7xy4y96XRuoerkrBYrxgs7Mcq3IsiRbVJbLFn2rK1pCdazUYQAKBGbWCGJdyc9AVovBIDLLRrvkwFokrTSeduVGydJU0jSNvnllvSZO/67FofO5mHMh+tUg7Pq4XaLeOy7rfh0zRFFSAc5rNmW12fkwpm8aQINAaD2XOSammKXW9Ff1YQZtyhipmwpvLf8eo/eE6BUPdGGIxewat9Z1ThOesQ5pOZxrWC73nP5RcW4/4tNWLDtlOe4Tp/jhZEIF+XGJwkArr32Wlx77bWq5wVBwLPPPotnn31WNU21atXw+eefh6J4RIhh3z/5GGB02DX68cQO6kYGz4NnLvu2aDCbvxeJECg/x8mDJxCpzbfsF6zaxM4TkvIL/YPV8QtXVCddiZDEOc8OgOcu6whJslg+WltkfLXhGB5Ka4ma8Uq/QTlmgkl6YSdmnjym1zNcbhHOEt+Pq5tUQ9s6ifjvqkNMniY0SRpmDTW0kmltcKsW8PFMbiG+XH9M855eUwk7Cb/3hz8ejxkNxrLdpz33W38Mv97fWzMtq+Hg9fFdp3KwJzsXd/VpAoeFY24zKKzKtyWRmNuYTOVCklv01z3KakGRy606tvCEBO97oPforRZBd8wqLFZqtYwiHya0tm3yluODlYfwy5aT+GXLSRz+93Bun5+7ZK/v70jSJJUrIYmofLAvpFrQNjMY9WVauD0LqU2r48SFK5KNMtUY+vpKwzZ+QGXndS1NQRDNbWoDqEWyd5QIi0XAZUZI+HnzCaQkxnCvlWTJKQM7ASk0SVekGgKJT5JLP47QlK824bO7rtZMA+hMLiJfk3fFyQqXnMt0upNb9D/X+Gg77LII4W4zPklskEoDnwVuUbvOPp8kHf8Qlvu/+Jt7nOVySRwhm8UfTXzV/rO6efM4l+ePUafrk8SYAXnyzhvL9nvKsu8spgxsGrBPUoHC3CZizcFzSIqNkrR3IafferV2DptHSFJ7XzN2KrchMtpPLILg819Swy2KAW+YKy+HPIo7u+m0N+3Zy4XSazhtwwpGpEkiiABgX0354GLU/GZ0b6zft2fhz71nJM7PWpgRkAC+iUNrEOSaemTpj53PVzWFOF3akz0gFZJcoggLBOQx5rb1hy8AuMC9Vm0ndC/sBHQhn69JOnouH8kJDsmkvf/0Zd3J66/95wB4+sBBWYRpFq0uIoIvrEjMJ5xHrCessz5HNougiBDucpvQJOmYNHn31or6490Owkxf9G5vooX3XYiyWVDMeX/UNDYX84tQ4HQjJdHvHsGWTc/cJvF70hASNhy5UBJzTNo6Rh3K5Zqko+fzfQFMn7rWvwKbNyZ430OH3YrcwmLVZ89zvva9wzoP32IRJP5rPIrdYsCaJJcoQhRFHDqbh4bV4xTjUL9XVvjTlpyT+8bp9flATYGhgIQkotwg0SQF+A6Z2bjTqIAUWDl0zG1yRRJXa+T/e9PRC7jhndVoWJ0fpY8dsNUmEHYcc7lF2K1Sc5sWWs6bHudrVjskPZ9zxYltxy/hurdWoXXtBMkAOuWrzZK0vKdnK1mx81rGXp+2wAjxDhvqVYvFrlM5EEW+lpE9VORSihx6ApzbLfqiw1stAmyyEBRu0bgmyfsM3W7RsJCk5bj9zM87cH3HOtyvermJs9jlNrxPnrecHq2Z9hYlXkRRRO+XlqOo2I21jw9EUknEbla412vrolI6/hr1DZNrOQ4zgjn7nvImem9be53fzYxH3vrrXWHR8UkCPM/I7IedF7cb+HL9MUz/fhtu7FwX3RqpxzzzlkPeDfWepXwT4XBSbhy3icqJmhUnYHNbCJbzB+JEzvOzkWgKZEMh7w5seu8yeXbzTBaJT5LK2MiOY97BjXXc1sKt8mwKi13o98oKfPjXIX+5ZXV3i57YO4DHb0RrAOU9d++yZjMCEgA8O6It6lb1mA9FyDcbLfmfaXnevKvnX+OSaZIcspVhLhPmtgGzV+CDlQfR+bkMzPxFGdBTcW+3vsZp3+nL/L7IPINtxy+h3YxFeHu5sfb19jW1rXN4z3f/6cu4XFiMIpcbnZ/L8Gm5pJsF60/8XgIx13ifE28/QBYtLQd7jq9J8pvbAHPjmFGfKYsg6KbNLyoOeHWbSxR9/kPfbzqh+VyKXW7c9O5qzP/rsDQPnfJFkiaJhCSi3CCNRyI7V/L/j5tO4Pq3VuH4BY+wsGDbKQx7fSX2n/ZEHQ40vpIWRgUJFvbrfcnObKS/vhI7mPgjhkIAMI1wXmbCkuOUmSJ+2HQc17+1SrKXF6t1GDkvE3OX7NU1cfjKoqJJ2nT0omJneN4AXjfJ7+uk9RXJEyjkfj5Gcdisvi9cI5qkwgCEJFH0l9lqsSBGZg41a/J4/rdduHTFqes8DXgETnlMGzlRNgtXk8Q+oxm/7ECB041XFulHZwb8E1yUynPhtdmaQ1Iz3vy/DuF0boFkbzE97YPT5caKPadx7ZsrsTf7sqGysnjjPumt3pNrqdjQGez78u3G41h94KwkrddXyHsPl9vYxtKA5x0WRX0tokUQ8N3G45ppnv5pB5bsUvo9GcHldkuEGPk+miwX8p3YeERpotdajAFEluM2CUlERMOOH0ZCAEz5ajO2Hr+EWQt2AwDu/exv7DqVg7s/8QQQDYUmybt3lBnYAf+uTzZg56kcvPj7bt8xeSl5jrqsYHJRR0hicbmBqV9twdbjl/D0j9t9x1mV+K5TOZi7ZB8uGzS3SXaXZ8rFG/95Y2o1ZkNULVMB75xWwEQtHDaLr3xynyRve0vNbco89L54WZ8jm0VQxBgK1OQRLOxWQXc5tl5cJDneOjnUNEmcZ3jsvFQDahEEvLlUqrnS0w4VFbsxbv56zxYopSDeoe2FIi8H+x7myd6X2/6zVvLbm9SnSXKL3Phkarjcoq7TvsUCz3YmIcLllvplacmuauOS/uo7MrcRhGnMrG6TayO8Dr1GHbfNwBsIbDoT99Ldp5FXWCwL8uhHEbeHU2x2oJFvUaAF23ZnmFUnvKYxqkmSmEJLMtp09AI+X6fcVEzPH8vofbzomUfUiLJZJJokXt9gJ6QCzritpwlifY6sVkGhpQi3kKS2EsorOP2w6ThXE6AF67jNg6u5ks20dqtFoXHU0y4Eqy2rROsJSfJy+TuGXsBLLz5Nko5zvRwjTv5WQQhJAFwvLrcoEWK0TGfn8vhCkp4GNpLMbeS4TZQb2Ndeb7CIslnw594zkmPFLndIthgp4uyBZGWWP6vxyqI9uKVbfd/vZCbWj1s2afPGvL/2n0VijB3VqzhwQWUw4sVMYSepK0UunM4pwMGzeVwhQW/Ztb+8rLnN8/8N76zmpvW2i0VgBbPAn0vgmiSrL/q4CKkGbF/2ZezOypFqktzK++gN9vLVbUpzW+gmMyO43KJqnKRDZ/Mw9SvlDu566Pkk8VfTSdvRIgBxsj399LQLgW53IqeKjiZJLoyxwlse56OC9w56NUkut9e53ljZiw047VsE/ThJpcEtitItojRegUA1SUXFbl8YknBDmiSi3KC1gko+cPy+PQtjPlwnOXbxijMkX1i8F15PkwR4VOJXmK9Q1rfJyNLwp37agcGv/QlAuazeC88vhM32itOFnv9ehlHvr9FcPq+HmrmNh1cYY4Wb0jwW+YoxozgYTRJkq8wOns3D0LkrJc+Hh572wu32CwBWC0+TpJ6/CStMwGTnFHCFj2K3iDMBmJEB+eo2JdxtUGQdILewWCFw6GkXAl3SLicmyvgmwoBUk8T7qOCNBX6fJJFvk1bByJYughAatwIvyq1HtH2S5Hii0OuXL1jPs7SQJokoP0i+XswPAufzikIyePDMFUb8DDz+IP5rpXvHiZLJRM0HyxuYUa1aUTaLYqJn8y1wunSFMb0IvnZBVJjbtFb8FTNCktPgsmYtbAGa2xx2xtwGfp/S22hTb7CXr26TT8BaE0FijB0XTZhRA2H8xxvQs2l1xfFil4gA/eH9oQpU+oC8v4mcMAjy1VCAMj5RqDC7EIAV3vI4iziirBZJGqtF8IVTcLnNmds8ztvaaYxE3C4N8udqdD9Mf3pjW/EUOF26TvRlAQlJRETDChvsq6nQJBnI69zlopCsbpObK6wWwZAWwG61SCZZdnsOuSYp0DGP5zzLjk9GzGlxUVbFTuAsgiDVBLhEUVMD4/PRYRrJrBnUYfNPPEExt4l8IUlP3a+rSRJF33J63uo2rYm/ahkISQCw+sA5xbFitxiwX4hX8FMzRbLvy+mcAlz75ipDix/KypnXIgimBA2JTxKn38uFeJtFgPeQXiwrOcVut4E4SaEVksxokng4XXwTr5xI8UsicxsR0UiX/WubdNgJS75TNVCiSQrJZrXSl9kqCIa+Du1WQTKR5DKCSLHMV8TINhQ8eH4hrCZJz5wEKDe0lCNCHuhTVGw1wuJ9dqxwY8bpNspqwQdju/l+GzFt8nDYLD5Tx65TObjlvUxFGj1Hf13Hbb3VbTqapHDx31WHFSuzjOJ9lk6Orx4gNRm9tmSf4dWhZTVpOl1u7vihBisk8TRJcs1UlNXiE75dbtGUWbXYJer2SU+cpNAJSfK8zX54Fhn0DS0rzaEeJCQR5Qb2XeR9KbEDFE9lfj6vMCSaJLnJxWIx5k/i0ST5B4IciblNumeZ1lz8FLOMXw5PSGKbzkhz6AlJnn3P/D9dblGxaa0keYlTeqBCkly4DPSrmQ0B8OX6Yzh1qUCRxkjkYi3cjIbKwvFJ0tIUJYRRSMoO0B8JAHZn5eLFBbsUe5x5eWPZfox6PxM/bznpCxrppU/zGqr5lpUmyeUWTQlJrPDG08zKxyKbVfBpUQNZ3aYnmFss/j7Xr3bwBQ25kPb2cuUWKlo4XW5DgTHV+k9ZQ+Y2otzAaivk6lpRFCWOz7yvrXN5RSEJASB/4S2CYEiFLje3sUUrdknNbVqrqD5dc0T1nFpAPzPE6UwYbigdt3M4vggsn2QelvgrmIn+a7dZ0LRmFd/vQB08HXarru9Yac0WeqvbtEiIDp+QVFre//Og5vk1B89jzcHzaFGriuR44xpxWLnvLPeasgowWOwSS1bWGRMU9Ry35SEq7FaL7wPB7TZpbnMptxOpGis1y3rMbSWm6BA4/5f2Q7PYqLmNNEkEYQ49TRI7QPF24L6Y7ywbnySDg57NIqgKB4XFbkm+gcaACTQaNYuuJglKc1uujsPzjF92SoRCc5okCxpWj8Mz17UxfS1LlNWi+xVvdCsINTxxktRXt2kRqEN6eUKuvWtRKx4pCdHctGbNbfWrxegn4uB0u02tcLsiEZKU/V6+5x0rJBWbXN3mdCk1Sbd1b4Bh7VJ8vy2C4BvnbAbyHpva0Pd3dSaoqxql/dBctf+sITN/kSsyNEkkJBHlBomQxBF2WE0SO3F6VfhFLrem2cos+UWeYJByk4zFqOO2zaKqBSlyuSXmhUBVz8EIMxIbpeOTJEq1YC5R9G0LYxQz2iB7SaV6NSt5rgELkPrPqbSapLxCl08DYjMpJBkVtsszcmHaZhHQv2VNbtpCk5ue1k/ib/ash1+TpKReklLwYjVcctO7zSIoPlTsVkGiSTLTx3ILnMiX+T3F2K0Y0CrZ9zuvsJhZHKGfdxojYLWoFa+bnhfb66Yu9XSv8/LQN1tUtYWS+6j4tJU1JCQREY10dZt6nCSA/xV3Z69GuLqJZ4mzy2Vs6alROj2bgWGv/6mIXWK1CDDkui1q70fFCn2BKsCCEYwtzqE9scsdt/+35iie+kl/A1YWM1oCb5/wmhKNCknt6iYo8tHXJJVuoP5j7xn8vOUkAE+/UFuJxzOLRkIgvbLGYhFUNWhmNUlm/IpYnC51TdLwDrVN5WW1CIiSr26zWnwmNjZEhBbejZj/7/01yJOZ9KLtVkk/3nf6sm+jayOKZPb9aZZcRSOlB7kfmdHrzBIpcZJISCIihr+PXkCvfy9TPe/WMbfxJkubRfCtfvpqwzF8vUF740czFBW7ceBMntJxWzDmuF1Y7Nb0xZHvAxUIZvwd1HDYLPjf+B6SY1c3qYakWI/PjIjSLzk245PkXfHodUo3OpgG0hbBXA2ptQrPwdkfLVSapEGtawUln/4ta6J5chXUSnDoJzYIT/PixazjdoyGBlSrzMUqjtt2q4CuDZJMlcHlFhUCF2tuc7m1A0R2b1wN/+zVGA2rq2vF+rWsqepbp2exHd6hNno3q4Grm1TDuJ6NDO3T5xXAWGpU4ZvpEmPsaFozTjdPHk4KAUAQUu75dKNix3g2BAD7N29S5m9+agk4jo5R5Mt+XQadMYtc2kLS5cLSx8gJRtWtFgG9m9dAx/pVfce6N66OjGn9fL9LG8n83RXGV8h47+QVkpwGlkUD/ACfeo7buZwl3Xoc/vdwvHxzB8Vxa8nkP5AxjXjhmeGsIfJJ+mBsN/Rqpgwg+fldPfDiiDaG8xnWLgUZ0/rhh3t7Ba1sVk0hydykqbbB7l+PXYOhbdUFRZdb5G5NEm23So5r7Rk4ukcDAMpQHt7rfD5JLrdqDLQXb2iPr/+Viqeva4MejZXPC/B8rGiZyLTe/+s61sHbt3WBzWrBl3enYsb1bQ1pL4+eV0bmV9P+bXlmCJ68Vr9PybW8QORokmh1GxEx6KmdtTRJasEAtb5Mg4U8qqxRX8yiYpfmQKDn/GyEYGiSvHmw46BFkOYdjvGMDW9gZEDljeOhEp95WiCvJumDsd2waEc27vnfRt853hd8KH2SeP3CYbeY85kq2Q6mloqjdSDYLBZVjZvWaicbZ69ENSHGZhE0Y1A5XW7Ec1YWOmxWxEqEJAucKs7FrCZK7k9otfhXv/L67Ru3dkZa21pw2Px59GhSjXufKYNaAFDvx1pytp3TzkbGi6PnlZok3nXeQ0bimLWtnYjtJ3Ikx8K9+bMX0iQREYP+bu7+QXBPdq7iLE/IslnV/UCChTwmkFs0JiUVyVawyeEFpjNLMIQkb/ux7WiR+fME09dLD6/SivXjMSIkcdsiRF2Dt52ct/0EQVCYIKJtHE1SCPstb+Jy2KymQhTYOP1Ci8Y19M0u7JYdcrQWL/B8iNT29LNaBPRorG42K3aJqBKt1B84bBZUYfzztD6+WGHzisyHyCoIPl8hr78aS4zdKhGQAKATo8X1kjG1r8/fslVtvjZJa3Ub77kZEcx5oRh4be3NyUiebSNYk0RCEhExcF805gXTs6jwJmrWJylUyKNLG5SRdM1tWluBGCXAvV+leZQ8A1bIkGuSQhnhV47XgZ/doPb8ZekGv7xnzo7VXoHcWGx08/AEMrZMzWvF4/qOdZjycBy3Q6hJ4k2QDpvF1NJ3s0Jcvxb8VWssNo6jsxctTRJPuFMrn80ioHujapjQki90FbvdSOAJSXaLJByG1kedzWLxnZcLFZ5tTzzPmxdMlCd78TR8zRkzW9s6ibinX1NlXhqPiCeMBrpYgFdm79htJM+2dThCEmmSCEIKLzo0i5bbSxEnyBrgMQmofZkGC7kmybPVgAGfpGK35tdSVo4yArRZAplo5ct5vZMN63dgsQgSSTCUe0WpIQiCb5n3bf9ZIznHEzrYZ1KziqPkWHDL9P29PQHw210+aae19S+95vl0hDZOkjLvKJtybzktWKHvl/t6474BzfDyTUpfLC9GVptpaZK0fJL4miQVZ+aS4+2qiVxBx+ni+yRFWS2ScBha45FF8GsHC2ShCwRBW7uipgHLmNpX/YYABrdR+rppySe89gn0e9LKKbPXh5QnrH4wphumDmqBmde3xeujOqFtnURFmkgRksgniYgY9MxtWs7B6w6dx7pD5xXHy0STJBeSDG41oGdu4y21NUsgQtLj6a1QvUqUL2qyd5CTapIEyYBalkIS2w2aJ1fB0fP5OCkLShhlsygC1rHlrV2ypNpo61Rx2CQhGdToUrL6iTcxyCc/9qOAlz6UmiTeltA8c9voHg3w2dqj3BzYMrevl4j29TwT3fGLV/DG0n2K9DaLgAcHt8CrGXtVS2XVeF+1VrfxhDs1YcvzHDwTsEdwlm/YKvJ9kuxWSfR5rUmcDWUg/xCyMOY2HmpmvOY6MYz4grlWeuUxo35wnq2B/O3Gu4/oO6fMc2DrZAxqo73K0syK11BCmiQiYtBzsA5kAZVWbJpgoTS3iYa+yIp0QgAER0gyfw3rWOrJg+eTJNXMhNLc5o0Rw6NZLX58Fp5Wkq1TSqLH2dioHMLGimpuICYMdwKSHWRXX/EEg1AqQHnvksfcpowOrYaaEKe2jNxqsWBC3yaa5dIOARBcTRLAf05Ol1vVJ4kVvHhR/b0Igv8+8g8hi0XbBKXvm8mHp4EyEnGbxai5Tb5ljtViwbTBLSTHvH2MJ3jxNO2vj+qEOonRaF3bY3qLFE0SCUlExKArJHG+fvWwWYWABx2j8Fa3GZl99XySTl4MvrlNbx82wDOAsY/C+7c1CJoknhlDj7dHd5H8Zu+kFlWZG5yRKX8dr5BkUJfElrtn0+p4aIh/QqgZ7zHdTRnUnHsvL/JJW0+TxDNhBAve03LYlea2QN4dtp7/YoQim1XQ3UtQKwSA1qTJ1ySp+yR5eXFEW8X5YreIbg2TYLMIkiCJ8pACmpokZv9G3t6OWhqbQFfj8rqLlszD6wNGPyjlmy9bBQEPDGyOnc+m6eb5yT+7c/P8R6e6WD19ILo38mhjyXGbIGToDaCBa5L0u7nWkmA9uD5JBq4rLHZrht43Yt7RQ/7FphVgz4vVIh3EvX9bLFIhiRUwjGqSAmlneVuy/UDNz4WnSRIEf9C7azvU8R0zAiskCYK0T916VX1snTHEtxwbUDF9WNWFJJ4WoDQhAG7qUs90kEeeuU3Ln0/tibNdoWqsP8ig1SLoaipsVvWI21rwnreaJoktw3UdauPRoa0k5+/u2wRxDhu2zUjDggf6+I6rxV0CgJdv7iApg0Xw318ebNbTfzR8koKoSdLKijeeGtU8K4Qkjknen6f/2MT+TdFXx4HfKySSkEQQMuw6uuFAhCSjPkkJMYG75/HKZSjittONxTuzAr6vEeRV19tixHuNRCDyOm4rzG3+a4xokq5qlBTQBKDVlmqOxjyB22oRsHhqP/x6f29fYMxAzG0WQdqnEmLsHPODvibJoatJMlY2HnEO5TJyFlHWaWdc14a7AS8vlo5aHl7YvhDPmK2MvIcWQan51RJOvPAESqOauFzmI+e7ial4sMRsFBNllQg+Wu2ZkhCt1LSqCWmCtr+Z1sfigJJ97Xj723H7nMbebTzNvFq5aiU4MKKTfzWmfPWfP7yF8lq2XEY0yb5I+mRuIwgpaqs6vAQS1dmzuk1/cNbTYpnFiBmnyOX2BYx8bFgrnwkomDSSxaZR27iTRW4O4GqSZH5LepqklIRofDDmKsPq/Gi7BXNu6YiFU/pw2tJ/L7Ul61xNEoBqcVFoVzdRdlRJqxSpkyzbbhZBOvDLBSSALzTKJ3J9n6TA+6THr0z9vLx0LUrqKy9HIKYfNvo5K3QZefaeYJLSexoJS8DzcTFqKqwW59d2dW1YTVV7JhfWxqQ29P0dH22TtLcgqH+c8QRBFi3t3Wv/1wnPj2iHuf/XSXEuGIK22jNqVD0ODar7xxIzmiQ2TyN9wNvnyHGbIGTo+ySZx2bQcZv9SrytZEsBLxYBeIWzzYQWZi0liTF2LHuoP8b3bhy0zSIn9GmM23s0lBwzugybp0liJ3lBEExpksb1aoTEWLvhlYaiCNzYpR5apSQo2pKVldU0SbxJSCsqMMs396QqjklMKRapSSie4+QrN8ECPMdtbQGiNHI76xPDQ/694W1HufYjEHObi8k8waQmieeTxGtfOXoaDC1G92iI8b0b48u7r9ZM591f76u7r8b43o0xfVhr/GdMN0we2Byd6ldVxhHT0CR5/dh4aLVT1dgo3H51Q4kZU+s6TUGZ8wDV2kxuglfTnOoKSQYGRtIkEYQKUTrmtsA0Sca2JWEnwRs710Wf5jV8v2f+ox1apmgvv5VjdlWZrcTU8dS1bXCtbKdxXmA7PXo1q44nhrdRaFRiDai75RMsP+K2fFsS7Wdj0xhEebDPWuuSWBXNGG9y5+7dJvv92LBWuKpRNcUEwpqd2JVLAFA3Sbn6bkjbFIXvhVyjKfFJMijUGUUUoRnfQP601NqxtIse2MncSLwy3kKLKg59Pzbe+2ZUII+J8rx33ujVaniF2h5NquOpa9sgJsqKwW1qYergFhBk5jUt52xBEFBPZcEBoB8vTg2eUKY1pPLeWLX4bhZB+mEgd0/wv9/Ka6UfV+rl8eIgIYkg+HADADJ/B+qTZOSLUr7SSJB9FZpf4W5ucmGja7MDaM14h+oEpoU/Srb0uJHVbR5zkv+3d5CTfxGyWctX8Mjxtq9RnyS2veXmNvZRyJesezH6VS0ftL1p5P4arNO1RRAk++o1ranU/FVx2PDJP7tLBFy5+czISq/SYEbIUtPIaZVB7X0ck9oItROjcVfvxqga6xdwjNSHF0zSyEcCdzVhkEzo9/ZviloJDtw7QBnRWloG/99yQVqeTiusRaBx3YKiSVIV7KRtLNckec/xhCy225szt5V9gFoeFEySiBj04yQFpkkyMujInWjZKwQIimX+XmLsVkXQQsC8ue00E12bHUDrJcXgdE6huczgHwCVq9uM+XdITAccc5tFbm7TGdC8fiZG/WxYzZRWW6ptyGo0OKNcAPP+lnc11k/GIgCHzvh3Qo/T0M6x5VA4bjPxhJI45pPSCEkitGN1yd8ltX4RSBmqxUVh9WPXQBAESb82IrTZLILCWZwX2NEIwYqP9sjQVng4raVuFH2LRGOi/nFmEQSJ8CjHHqAmiXc/sy2gpq33rBL2/5avUtX6+GHfHTMfrFpxscoS0iQREQNPtS+q/G0Um1XQdQj33JudBKVOrxYBaMLZnDMuyooa8crJDTA/OF3d1K/qr8eYbxpXjwtosPdqdthx3WoRNFfosEi1Rp7/WXW+IJgLJukd+Hhj6V29G2teK59cb+vu9xlTNbcxZY0vEWKGtktRpJPPe2rzoF2mSerTwmOOrccxtbFoOa06bFaf0/BdfZRBFstUk6QiJGnl0VplU1XA3zdYB1/exwTvfnIhQe6TNIQTqZk3uQcz0r6RbYbk2mctx22t/OwBOuzzgzZqXaFsMzUhSW6Clztua/UTtjpG+mRUhIUAIE0SETHorm4LIKqz0dVt7IBmsyojTtevFovHhrXCv3/f7TueEGNH1ZgoHIMyMrYZTVLD6rHoz/ivpDCr3EZ1b4DNxy4az6wEb5RfuW+RkeXU3rTyv62cwc5ritTzSaoW5xlUec+4jobpAVC25WQmaKOamYg1tSya2heHz+YhtanS50T+mLz1ktfGJhEQBaS3q43/jY/ibszJoqVJsloEfDexJ1xuNxpzhHA100f1uCicyyvinvOip3RVc9yWw5vUPhjTDTXiHWhYXVlmOaym77KBDZs9HzXSe8rNbTU4Ts+87hfqPRvlyN8PNcdtb5Muf6g/BsxeoTgfqB+YPA4XoP2xxusjau+xRaYZS5JpwrQEUrkGWg+vkOyMEE0SCUlExKAXUTuUq9tYQcoqMyV5R5pUmWNnfLRNVW1u5iu+T/Maki9Lu9WC/43vgcuFTnRvXC2gnbm9y2fZSz1bPmjn5V39xjO3SUxOJX8KggCIogEhyTOx8VdxaZeJPZvapLpE66e2BQZbz2pxUaqCmPyL3ueTJJtBbFapuc1iEdCbce5XwyoTUuXwhCPffZj0TWvG4clr2+DA6csY1LoW+nMmV8X1JvzqtPxn5DSsHqu7jxiPy4V8k7W8HMrVbdJ3jBe7iTfhh3rPRjny9tbSJAHqfkmBahC5miSN9Lw2U+sjHj9Ff26JMXZJn9IqM3vOyLAYaZqkcmtu+/e//w1BEDBlyhTfsYKCAkyaNAnVq1dHlSpVcNNNNyE7O1ty3dGjRzF8+HDExsYiOTkZDz/8MIqLSx/ZmCg9el+/gaxu8/g4GAhGJxEA5I7bnr/lJgmHzapQO3sxM8zxtCu9m9fA0Ha1S84HIiSJJeWQTtJ6K2e84Qd4y3Z5+7l5k+mZ26qXmJXkWj1BUF8qzabh/e35zdeOsWZFM91GUNEksROzGQGYrZvZyY+d9EZd1QADWibjrj5NdE18QMn+gUyzeIVU33mDnxx6S7rN4M3rs7t64P+61feZQVlsHM0vG8cI4GuIeM7dod6zUY7cJ0mtn3jLpfZeGzHt6d3fn5e5PNS09fL9HOOj7YbjH5n9yKsZ70CvZtXRoV6ifuIyoFwKSevXr8d7772HDh2ksWumTp2KX375Bd988w3++OMPnDx5EjfeeKPvvMvlwvDhw1FUVITVq1fj448/xkcffYSnn366rKtAcOC9n5LXK5DVbVaBq4ZWpNNYueU9JTdJWC0Cqqpts2FidNITXAJZCu7zSZKtLImy8s0qbWonoF3dBF+QOomKXMPc5h3Q9TVJUZLr2Hz0xlCewMrCc/ivWzUG/+hUB//Xrb6ms7ra6jZ5X5N8DWsXV/U6s4EZWWGBLafR/sD24tf+ryM61EvEvNu7AjAuOPImOLPCx3P/aIvODapifInvWa9mNfDSzR24HxiehRb+dmqVEo8RnetK0vDM54/IthYBlGarbg2T8OTw1qbKbga5741aO3kfXyAaYi1ioqwY2bWe9F4a6XmCskvDJ4ntdgnRNsNCEju2Gul3XRsm4bO7rsYz1yn31QsH5U5Iunz5MkaPHo3//Oc/SEpK8h2/dOkS/vvf/2LOnDm45ppr0LVrV8yfPx+rV6/GmjVrAACLFy/Gzp078b///Q+dOnXCsGHD8Nxzz+Htt99GUZG2jZ8ILjsuCBj30UackOx0H3xzm9Vi0dXE9G1RU/HCS78KPf/LJ1ubRVBdeaM3/Gn5qsgJZCsPJ88nSRBUt365vlMd/Hp/HzQpWc5ukQmN8mM+Iankt54myWvGk9fVIkgn8xi7ZyuI9+/o6jvGXsGTD7gr2SwCXh/VGS/pBAFVrG5T80mySjWNRmGFTbPPUU0YMiIjiZCayprUrIKf7+vNdV6/sUtdxTF/GZTHzApJd6Q2wg/39uIGQJQjN49/effVSIq1S8yqPM1wSmI0HhnaUlZOabpvJ/bkOsgHC7m5TWt1W6h4ZWRHDG3rf8a8W/VuVgNxUVbcN6C54pzax44gAFeK/I738dF2XVOyF7a+gWxSHm7KnU/SpEmTMHz4cAwaNAjPP/+87/jGjRvhdDoxaNAg37FWrVqhQYMGyMzMxNVXX43MzEy0b98etWr5V0ekpaVh4sSJ2LFjBzp37qy4X2FhIQoL/Uuwc3JyAABOpxNOp76N3Qze/IKdb1mxOysXP2w6iXv6NeYuafbidDrx/m4rgHN49ufteOvWTgCAYhUbtLc9ipwBmEXdLohu/8s9+6Z2+PbvE1hz6AIAYPHkXmhUPRZP/rTTl8aTXmSycMPpdMIG+W7ewPHzeeCjPRhYBMBbKgtEzWceyJDqLHbB6XSimGkzq0WAiguPsgxMm4mip/4C8xnodnvy946NzmLtlUtekzZvLGWfz7UdUvDsda1hs1p85XG5/HUQRWVbRfGEj5Iy6yGK0mfqrZfcJ8nCPHvRbSxvb3m9CCau89zH3y5uk9e6ZXGrXMXFkuvZ8y/d0FZ17JHn4y1XMMYogbe6ylWM4mKmnC4XiosF/DQxFWlv/AXA01flOJ1OiPKyul2KNPK/gznWsr3Q7XarayA4fZiltGVi25U3dkwf2hxNasRJ3jEvxSrvsQAROVf8igRBdEkyd7uK4XQqa+x0OuFmxnWXKzh9R34P9n8jac1QroSkL7/8En///TfWr1+vOJeVlYWoqChUrVpVcrxWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNhY9aippSEjIyMk+YaayZme7rRpzyGMa6HndOdJe+hEFhYsWAAAOHrUArly0+12+87vvigAMLaE3cvqv1YhyeG/37atW3DunOC7z6o//8CuaODEcf+9Vyxfhqws/++tWzbDdmJTiTnQ/8pcOH8OzawiACuqO0ScK/SPGrm5udAUb9xu3/lDB/ZhQeFe1aQ5l6zaeXHIzbuCBQsWwPPx5ylzUWEBDu/ZCV4b7t29Ewsu7vD93nrW39bbtmyG/cQmHGKez6a//4b7iAiXy1O2zN3HNcvofYans6XPuNjlxvbt23z3On7sGBYvOiK59myBvw7nzp7x5eVFLFa2z4F9e7Hgyh7V8ng5dFhanh3bt2PBmW24nCfN8+D+fb4y7t2zGwsu79LNGwBymXyWLc1AtGb3lQ7HmzZt8t1z1y7p89Ebug8fPoJLeYLv3suXLUNVxi3p7Dl/veXtyea9dctmyPvLimXLkKCvFNLlyhXlc8tYtAjnC/1lWJqxGFFWSI4d2L9XUaYFCxZgzwnp+LBh/VpJXZT1DO5YeyXfX5+tWzbj3Fn/OMNy4vgxLFjg7ePK58grpxmymbGL90b+tWol9qu4te0+xh9jT508ibwzANtnipn3btmSJfAH4Za2OTtubi95v0KBkWeZn59vOt9yIyQdO3YMkydPRkZGBqKjg78RqBrTp0/HtGnTfL9zcnJQv359DBkyBAkJ2st/zeJ0OpGRkYHBgwfDbg8sgFo4mZy5GABw1h2H9PQ+qumcTieQuRwA0Kx+baSndwQA/PH9duDMSUlawWJBenoaAKDKvrPArr9Nlal/v76onRiN6euXAQC6dO6MfRuPY1/OeQDAwGsGoE7VGKz/dRf+yj4GABgyaCDW/rYHm895BOfOnTsjvb1HhZ3U6hzGfbQRAJBcsyaeuqMzeu4+g64NqyL1pT98962amIDjebmq5bLbbXCWqK/btG6F9D6NVdP+79R6HMq9YKre1qgopKcPQKHThYfXLQUAVImNQe8erfDZgc2K9J06tEd6N8afYVsWPtm3FQDQtUtnDGuXggPLDmDRiQMAgO7dumJg62TfMz98mS8gjbm6Acb3auhbXbY4dyu2nPd/kIgQ0KFDB3xxwCMANGhQH+npUl+Eo+fz8dymVQCA5JrJSE/vIjk/71AmzmZJ27p1q1ZI76vepl62LtyDFaf8QlnHDu2R3rUeXt2zEijwm4LbtG6FH4/s8+TdujXSezfSzRsAZu/25zN82FDNEAzetvTSrWsXzN+7BQDQtk0bpDMbqsrTymnQsAHysy7j8OWLAICBA69BrQT/uPl51nrsz/H0qfT0dN9x9t0EgK6dO/v6gZchgwcpnKkD4Y+C7fh+k/R9H54+DBeuOPH85hUlv4fCbrXg3OVCzPzb8361bdMKvx3bJ7kuPT0dJ1cdxs9H/R8bvXv2xJs71knSeAnFWPvm/r+QfcWjWe7SuTNObcvC9gunFekaNGiA9PQ2APjPkS1nICzN24a/z50CwDe3XdO/PxpW53/g71u6Hzh+UHG8fv16nr576rivjI//vRSFLs8YNjRtiC+oKlsnb12mrvEca9u2HdK71w+wZnzMPEuvJcgM5UZI2rhxI06fPo0uXfwDpMvlwp9//om33noLixYtQlFRES5evCjRJmVnZyMlxTPBpaSkYN26dZJ8vavfvGnkOBwOOBzKuBx2uz1kgkwo8y4L3CIMl79qnMOfVmUJq/e8RcXpWIvoKDtiHMz+UTabxFchKsrT1jYmb0dUFCyMD4rdZvOVoXMDfxgAq9WCmGgHru0kdZb0VEVb88Pa6R12m2Z7BbITe7FLhN1uh5vx3LZZLagax//AiI6S9rkou03yt91uh51ZMWbXKbOXoe1ro2FN/8eEjSMk2G3M1h1WqyLfKOa31WpRnK/CWdlktynz4WGV9Smb71lLnx/bHkbzBqRG11hHlCl/JpuNvaex9vYiCBaJn0iUYkxhHMpl+QoQIZact9uVbRsdFRWU8WnGP9qhQfU4zF3iF3gcjiikOKLw6siOcNgtiI32jL1xjOZDEJTjgLx/AoAjyq5Iw70uSGMtO67YbTbVOE02Th+Wl6k0sO8Yr7c5ojTqLKiU2WJB9Sr+edBut0v8+aIdUbBzYm3J78N7v4OFkWcZyL3LjeP2wIEDsW3bNmzevNn3r1u3bhg9erTvb7vdjqVLl/qu2bNnD44ePYrUVM+u3qmpqdi2bRtOn/ZL9xkZGUhISECbNm3KvE4VFb2VTgVM5F3J6jDdAHiBhACwyAIBSs/znCgtFmXEbd/1Fv5xOXpFZa/VW90WyJ51XkdqeTBJ+caUXuQrgXhO2rxjckZ0qiP5LQ9vwN8ahP83D955XtRto87F8lRqV0k3uDUu6LBLqs2uZuItHjCDpJyy6zVX/EnKoDxvZLWoERKi7ZgyqAU31tVNXevh2g7+vsSGdGBDgdROjMZr/9eRm39Zx0kSZGNGOBy3Af0NZbUWEKh9kFktAv7Vrymu61gH/xnTjXu+olJuhKT4+Hi0a9dO8i8uLg7Vq1dHu3btkJiYiPHjx2PatGlYvnw5Nm7ciDvvvBOpqam4+uqrAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNImrLSICQ20ZqZcL+X7nOXZZvVYcpNUHzuKfH20wXRarVVAs3xY4gwg7mNgssr3bJIOfvqAASFdxPJHeGs2Sq6BJTX/gQOnqNu3X0BlAUDW1iNvyjSm9yAdH3soVLWET8AR27NVMGmBRPnjyrmOrzz+vLaDEOZQTvuGJSEVolq/CsUm2JTGWNWBuY+TP7+ohK4v/b71bfjium2TrHBFyYUeaw8zr26JZchW8fBNn9R97X047Blv4MLKRKSvEs4Lna//XCTd09mhy5WUNZFVoabDK+qmZAJ0hK4fOeTnjejVCq5R4PDSkBZ5I94dLEATP2PHmrZ0xmLMtjFp0eDnlb21bORKSjPDaa6/h2muvxU033YS+ffsiJSUF33//ve+81WrFr7/+CqvVitTUVNx+++0YM2YMnn322TCWuuKht33IeWZLBVag0rrqtv+sNV0ObxwjuVCkNXl4r5MHhvOnB/dvOexCm//rXh9LpvVD/SS/HwCbv95g7gxgOxZvtFo2Z5vFIolNwwbgUwhJrNbIFydJKTixOGxWDGkjNVsrtuLgae7YtuYM62oCq5cYjknI6EQkv59XYNPe4Nb4LKf3wcDSs1kNdGlQ1V82vYozXNWoGpY91N/3WxRlQThl6RtWj8OSaf1wy1VK/xA2rd7zCgZ6mmdA+g6ybaqlhQx3xG31OEmhLZdFR0jS+ihLjLFj4ZS+uO+a5grNmOI+7HmjbR2IWjzMlGshacWKFZg7d67vd3R0NN5++22cP38eeXl5+P777xW+Rg0bNsSCBQuQn5+PM2fOYPbs2RLbP1F69CaGS1f8miR2gAxAFtCkXZ0Ezg7tsknRF+9HqiFSC2CopUl6YKAn7sjNXetJtGK8uC7soBKl43OktYfRu6O7oEYVdS0oW8SYKCuqMO0h8THQMLdpRdxmsVoEJMbasWhKX8kxSb66vlradeCd52mSDJvbVDRJcuwBapICMRF7kQj3Omm95fY65F7bobakTwccxZnTNcta+JCjZsKUV9HIxtbBRPoBJahqV0JtbruuxExZLynGcFwxHnIttJwog5tll3fKtZBERCYuHfU5uxt4sURIUl5XmvGkS8Mk7nH2Lt53X2FuU/kK14p8PGVgc/xyX2/8+8b2krp4Bxj2vmaCDBZzYtV4qRJtg5aMxU6ODpvUmbc6s0LJiLmtCmcbCcm9Sv5nhRZ53XjzlprWzp+vtqapJ2fjWqNftmqptDRJZgQOI1oSNcz4JHnPL3igDxZO6aMwe5p5jdhHxKtrsCNFm4VtUi2TpNUi+PZbHMYJohls5AJbuMxtqU2rY+GUPvh1Uir3vFEhV6JN5vQDo5tll3cqRy2JMkVPk1Tg9E/63q/C4xfykVeoDBZZGu1scrxyJVdygkMa4E8WORrgOG5ztuOQH/de175eImxWC1g3Iu+gxN6XzV9v9ZqWz4ZV44tVTrRs9Um7uv69keRl4NV5SFu/L4LWAMkKFMoI2xwhSKf4komQkzatbQrevLUzPhzndyg12iZGNUlWq/aEoUZptKNSU5KeBs5zPs5hQ6sUZWgSM2XW+hCIBFIS/e+1oCFgWy0C5t3eFbNHdsQrI/nO3cFErmlVFZLKQMhsleLRovPeUuOaJPZvniapcogPZGcigo7eFhVyTdKhs3kYYGBXc7PEMz43747ugsPn8tGlgVS7xNMkAVA1VehpPbywmiTeoMgek5u65Gg5blssAuolxeLkpQLJ8XjOsnjvKqL5467C5mMXcU2rZHy0+jC3DDxNUtXYKHx2Vw/8feQCunK0dN5LpL5L+qvbdDUmOoO1IAi4rmMdHD3nDxRnXJPEF+LkZjLpBreGsgYQ2KbM8rIYuSev3aQ+TYGVwaiwWRbMv/MqbDl2EUPa1sKTP24HoN13LILH/HtzV2WIjlAgF+b19m5jaVg9FkPbpWB4+9pBLRN3dZthU7R2/9NzE6gokJBEBB09x202BIDLLWLlvjMhKQfrpDxMZfCRb9TqO86uuAL/b60JRM/MEqzVbVaLgFdv6YgnftyOP/f62/GLCVcr0kaX+BAMaJWMAa2Ssf+0PwCjluM2e6pXsxoKU44cm4ZAwd1nTU8Ikiy3Ur8ve2mgmiS1ywJdKWVWRuKZggED5jaew7uJ66V58csQavQ0EwNaJmNAy2TJwg/Juyl/h8tYvpN/TJkJARAXZcP0YaHbfJcleD5JAQhJESR0G6VyiIJEmWLG3FYanw09EjjaFEA6calvIqqmPfKn0RpseBoEtfvqmduKNcxtFkFA/Wqx+OSf3X3HUhKiJaY0Lw6ZuY2NL6Q0twViXvKk04qjw89K4PzFv0arLBJn8wB9kryXyVuczc9Mjy1V/5bIhnrmNsNZmbtvGU5qMZxghDzYurKtqyhpGc/HVrmQpOq4XVYlUjZBWttahp+pRacfmBGS7uzVCE1qxuHGzuqbKUcqpEkigo7e17Pc3BaqMSNeJSYQGwPH++7LyyD9muab2LTGGr25UeqTpN0CRRqaJJ7qXK1c8qB9sUxAQfk1Rnf45t1XS53PN7cp89C7hp8387fhGACC7Kfnt1zIZVcomjGhmTW3qfU7vZfETIR3PdheUpYTOi+oJA+1usoXX1TT2GQ7FEj9+MIXTFJ6L//ft/VogBdvaG/8Wh0Tsxlz2zPXtdVPFKGQJokoc6TmNremtFGa8SRRJbo0V6PD8WfQK4PWYKdncpSY20qhSTIzCTtkS3bZqMtyk57eyhYttNLzzW18IdR3zOB9JYKdUXObRlkkeTPlNqMcKs3CA2n8KL20ymNSv7rAylCWkZTlCwvUUCsSW99tM9J036tgI419ZtEQ5ox/2IQTvQ+lyuK4XTlqSUQUVxhzm56Td2lQiy4tFZL41xrx59CaP3gmR1aDJTW3aY+QWj5JyjhQ6hOq/Eud/RJMkn116/kj8PCmYjVJ8meg52Cse17r/pIyayTUKI/3pyIEAPOMzMQ+MhNMUo60XbSfgd7Eq2euk1ynk2+oMG5u09ckaW27Eirk74zaB0yZmtuMKyMV2Nk94Gh1G0GUHYWMJklP42J2jhnXs5FvxZYRcxsvmCR7XP63Who5er4opnySOHl9dlcPnM4tQIta8YpzahOb/EtdEAR8PqEHcq44UadqjOScXnRtLWxWCz4d3x2FTjeS4tSFL94xfsTtAMxthjVJsufujbgtSycxt5kQ7M2a21Qdt03losSUrCNpx1Le2ARt6ihDF/BQe7bJ8eHdWoptK5tFUNUA88rPe4+DQWkeXxTzYcDTzJKQRBAhQi2YZGlplRKPEZ3r+oQkNR8Hdt7yWds0RhO1U1p+L7y5kT0mXd1mfijr2jDJsHnCSzRnUOvZlL9SzSrxrzDnkwQAfZrX5OfLVRXx8/AdMzgWGw3PIMlbrklSE4jDYG6TLB4o5XwU+Oq20EtJ39/bE99tPI6H01oaSq9WpGtaJeNf/ZqgPWfRQlkQiCbpx0m98M2GY3hoiLG6m0WqFTR3LfvxxhuiHBQCgCBCg3x1W7CGYYsgoEPdRAxrl4JGNeJUJzzJihgDWiI1Yci0uU3FzKenSeIRiK+IfHWbFoGZ2/TT8feA0va9MVpTMz48aun8cZLU05Um9pEZJBNcKd+SQM1tZeGT1KVBkiJ+mRZaK1LLahm92v292KyCaqR8Nl2n+lXRqX7VEJaJ+dtkH2I1RbwxsLJokipHLYmIosCEJsnUF7DgeZnfvb0rHh3aylSZlJMl/29pGvXC6U2k0mCS2q/h/HFXId5hw6DW/ojXWo7JRle3aSExtwVRm8ANrKljJjO6opDVOBktsppPktzgxqYrqz06zWxLokeg5jb5dWNSG5auIEFAEgIggjZMZV9jqyComtwjMYo5D6kmiYQkgigzrpjwSTKD4cGHc0ul2UXyy/T9ePUK1HF7QKtkbHlmCNKYbUG0TH3yYnk3wO2lYlrjobX9ihoPGTCX6AWL1LHGaRKIMKcMQOj5LTf9SIQkU5GSAqe0k6mZDXIl16mUYf64q/DsP9qVqkzBIFKFDLn2VV1IKqsSSQm2ue2WbvUBAJ0bVC1FqSIfMrcRZU6BbHVbsMY8o4MPdyNdTcdttfup35Dns8neli2DkaXKFosQ8NS88pEByCsq9glLRjDruN22Tryh7R/45jb/37w7GY+TVPqO5C3L/13VAPP/OozdWbkl5QrMJ6k0mFndpoepvdtUrivLcABaRKiMJA0BYLGoasnDJeSZvSu7PyPv2berm4g10weiepWyjUdV1pAmiShzrsi2JSmtv4UXoxMJb+hqkSJbXaJjAvIcV7+HnoaMPa2nSfJi1LQgb8+YKKspAQkwb25rkBRrKF+uBkzHuzQQ01mg5ja2LPWSYrjHy8wnSUd41L1eJS8z1wXiwB9qyjIsgRkkEd+tguoYEKHFV8BqktTaPCUxOiCfyvIEaZLKOZfynUiM5S9110tr5lpeXgkxNuRcKUZirB1ncgsl5y8XFqMKE8PnQl4RXKKI+Ggbcq44fceDuS2J0Q9dnrBxbfvaOJNbiC4lqmMj/iBaX9b8OEl+2AHU6CBjdG4OxiDM5mEkenUg+0HxjpVGWaEXSoCHlgaRFRfYo+XTJ8l4BrViRVy6JCiuKy+Te7hQhACINE2SyfvaJSEAgl2a8gMJSeWYr9cfwyPfbcWjQ1thYv+mmmk/X3sUj/+wDU+kt8aEvk3w0+YTmPzlZkwe2BxTB7cwdd+F27Nwz/82+n4/OLgFXs3YK0nT69/LsOrRAYiPtuPgmcsY/NqfEEVRYaoIrpAUuCbJYhEwvndjJi/9fLUGHe5Eyhxj6200BEBZmXkAmZ+QgfRGtWH6q9u0NUlad7Hw5RtN5I9QTTBh/zbjR6flm6KHkVhdWgQ6F49u6sbG4rq4s3fjoApqoSBSTIBA5PskmUXik1ReCh0CKraerILzyHdbAQAvLdytm/bxH7YBAF5YsAsA8OQP2wEAry/dZ/q+M37eIfktF5AA4NIVJ05cvAIA2JudC5dbKSABUF0mGwiGhSQDc5aRLR1KM26wJhujX3hGzTzhGM6sBr27+avX+H9rXaOXt9E2kKdT848K1Cfpy7uvRquUeHx599XGL/Les5TmtkCp6gBeHdkenRskBRSgsyy4/eoGuKZVMtrVCU9MJD1sWkJSORE4HDoRtysLpEkiQoaz2DNIFGnsPeYKouN2KRa3KZBOlvyMS/MVG4hfi9ErwjGglc7c5v+bl4vR2gQy+WitalT728zqtqsaVcPCKX0Np1eLpRWuOaq02qxQ8fwI4xu1lhXsO62lSSovAofEDSCCQi2UNaRJqqAcO5+PWb/vQtalgqDnbfQd9+5e7yxW1xaVZm8rOcZDABhRJTGTg8pbYnawYyfXQEwwZRkTJjHG76umtr0LADStGQcA+EfH2oby5QlT0sjS2ueNYjjitkwEky6b52umym51WwD2w1JdoURvJ3jCD9svbBYLbu3egJuu3IQAYDRJodxjM9IhTVIF5fb/rsWRc/nIPHAOP9/XW3G+NF3e6Fzt3Zi1SGOD1mJXECNuB1HkN2JmKJ25zfw1hh23zWetIMpmwbonBvr+VuPHiVfjy58X4apGSYbylbdZXJQ1oB3u9TBsbjPsk+T/UVZxYSQiUiBtEMSQCMHKryIj1yQNalML/VvWxIo9ZyTpgrWa1yymI24zmqRg+o6WN0hIqqAcOZcPANh6/FLYylBUokHS2sU+mC+f0UHAyB2NOC6bNT+oxUkyimRJuhZBGoOT46N100TbrUg2WCxAOtHe2asR7u7bBKdzCpnz2tcYv4/pSwBom7ie6lyMOq27oX8L/r50wSYQH6tQloE0STpINEmexmpWs4pCSCovsIsxSEgiKh2lGe/0JiCHzYLCYrdfk6RlbtPxSTK151QQrW1GvqDNThrsbQMZdK5plYxHh7bS3cAzkucy1tw2vH1t1E6MkYSPCFrMLKMhAGTPVuqwL9Uq1YgGBrVOLjONSiAb9oayDJHkkxSJsB8+XjNlJDlpm318bJ8jcxtBBBGFkKSlSdKRWMw4yRoPAaCfJzu4qWVbmr2LAtmORRAE3VAPkQ5P+DSjrTAqLBg1vcpzU1tRFo6pThKrKoQmRy0iwXm8vMCP5B85lKYslVmTRI7bhGn0NDHe3eYLvea2YvULijVWvpnFeDBJs/lKM540oCla1orHbT3MbfbJOl6HcsyJZN8RgSMQBRIpW41butVDlwZV0b1RNYPlkf5W096Eo01L2y7BKDLbHpV4gZMheO0Tye+iGUiTRBBBxBtfw1kiAJWVT5JRjJnb1LUbD6e1wsNprczfl/k7mKv65ETysGzlCB5S/6/Slf7lmzuaSh/JmqRAIoiHsgyVd5o0Bm8oiyQZqTRlcQUxnl15gzRJhGn0XrboEk2SVzjSEpKycgrwxbpjQSmXUXnLkOO2ZLIM/kgXiLmtImCR7AWmPFbWk4r8S99IxO2yopQRAIJCMFeMVnR4IToiSEYqlVarMmuS6BWopIQyBIBfk+QRjgo1HLcBYPOxi6rnzAgoRleMGYk3FGpfjFBukhpJX69yeI7Aas7SPIJdNaW5jX+v8GuSAiEYIQAiuDNFGFyfpArSfJX1ow4gIYkIAV5NkpEQAMEkmIKHZDIP0goVtnihNDOGyzRjhEAibocSpblNpQRh90mKAHMbOSVpwt0TsoJISZVZk2TIJ2natGmGM5wzZ07AhSHKjlCGAIi2e2TvIgPmNj3MrG4Lldk8FMNcaB23Q5d3aeFqksK5iao8BICajFQGRVHes3SapGC0ZST3pUiD65NU9sVQpTRliXdUXvdlQzXftGmT5Pfff/+N4uJitGzZEgCwd+9eWK1WdO3aNfglJCIOfXNbiU+Sd+82HXNbae7FYtzcpp8mFPFh2NuG0twWybDbQXn9XcK1kSvvfmrPuqyEBbZXRMLy+9LsT1jZ4PokRZKUGUBRXrm5A37degoT+jYJfnnKCYaEpOXLl/v+njNnDuLj4/Hxxx8jKSkJAHDhwgXceeed6NOnT2hKSZQr5D5JzlIs8zcjTBhNakQ7VdoYNfwbl27vtooAb2+0UJg2jZdH+lvt9uEwYZZWOA9OnKQImuTLIeW9/UZ2q4+R3eqHuxhhxbRP0quvvopZs2b5BCQASEpKwvPPP49XX301qIUjgA9XHcI7K/aHuxgSjK5uKzIQTFIPM6KE0WX1ZjVJoZgfQ+u4HbkDMy+0Qnh9krRWt5W9GVDiLB4Bj5F9NpVTrDdOpDtuR7KvYiRjWkjKycnBmTPKvWjOnDmD3NzcoBSK8FBU7Mazv+7Eywv34HRuQbiLYxifT5KO4/YNnfR3jjcjSxjVzpgNAVCar0G1SSakPkmhy7rUWCXL/ZWr28p6VjF6u7D4JJUykGNwfJJKV4bKBM8nMpLexUgS2MoTpoWkG264AXfeeSe+//57HD9+HMePH8d3332H8ePH48YbbwxFGSst7JdJoTNygnkZ9knS2btt1g3tglyu4IUAYCmdkMS/lsxt/kHblNIuyAO9widJxd4WjgmGtDjli0jXJBGBYVpImjdvHoYNG4bbbrsNDRs2RMOGDXHbbbdh6NCheOedd0JRxkpLICaZ07kFpV6qK4oiTueo56Nn1vL6JOlpkqwWAd0b628fYbQ+wQwmyRLIOOfdBbx17Xj/fctopovkgdkqMbd5V7dBcSxcqLtElU252C4SaWbT+OjKu8LJCLzXO5KeYeSUpHxhSkhyuVzYsGEDXnjhBZw7dw6bNm3Cpk2bcP78ebzzzjuIi4sLVTkxa9YsXHXVVYiPj0dycjJGjBiBPXv2SNIUFBRg0qRJqF69OqpUqYKbbroJ2dnZkjRHjx7F8OHDERsbi+TkZDz88MMoLi4OWblLg1ltQ8bObHR/YSle+G1Xqe775fpj6P7iUvxv7VHueb0l/Q5ZxO0imeO23SpgajtPm0dZ9bugUeHCsFBZyr3bjPDDxKvRo6Ybb43yb5PBOoxXjbWbztMoETQuK+D7JIUvBID8fpHktyHRJAUgYQerLs+PaIcHBjZHi1rx+okrMfzVbWEoiAqxUdZwF6FcYkpIslqtGDJkCC5evIi4uDh06NABHTp0CKlw5OWPP/7ApEmTsGbNGmRkZMDpdGLIkCHIy8vzpZk6dSp++eUXfPPNN/jjjz9w8uRJiQnQ5XJh+PDhKCoqwurVq/Hxxx/jo48+wtNPPx3y8geC2bg/Ly/cDQD4YNWhUt13+vfbAABP/bide15vSb987zZ5+lduao9GJeOt3ao/ihidHkJlwRICCLnaKiUetzVzo07VGO75T/7ZHR3qJeKLCVeXsnTlC6mTtnJ1W7jnFNWI22Ext4W7NTzcfnVDTBvcItzFiHh4408kPMMn0luie6NqGNercbiLUi4xrT9t164dDh48iMaNy7bBFy5cKPn90UcfITk5GRs3bkTfvn1x6dIl/Pe//8Xnn3+Oa665BgAwf/58tG7dGmvWrMHVV1+NxYsXY+fOnViyZAlq1aqFTp064bnnnsOjjz6KGTNmICoqqkzrpIdZc1vD6nHYd/pyiErjR0+TJF/dJk8fZbXAWfK33ZAmyaC5LYiO2yzBGuZevKE9bp6XiQcHt0CHelXx8329g5SzlEjShshhfX64Pkk6RQ923eRdS808Eu4WJZ+kyCdS924bl9oQE/o2C3cxyi2mhaTnn38eDz30EJ577jl07dpVoUVKSEgIWuG0uHTpEgCgWjWPT8vGjRvhdDoxaNAgX5pWrVqhQYMGyMzMxNVXX43MzEy0b98etWrV8qVJS0vDxIkTsWPHDnTu3Flxn8LCQhQWFvp+5+TkAACcTiecTqcifWnw5uf9v7CoyHeuqOR+P20+iaycQuQVSk2Eu05cwJJdUtOilzH/XSP5Pemzjchlrh/9nzVIiLahS8OquL27NCbGre9nolpsFNyiiJyCYrSoVUU37pHd4jm/+egF3PXROuyXCW4WuH31tBnQ0hQWSdu5V9Pq+OvAOUU6l9tt6JmwwpRaepfL5f+7uBhmH7X8WQJA61px2PLkNbBZLUHvO1LEEOfvh1dPLdxMu7pdxXA6nXAx5m63zjN0i8aesVHY5+z5XQyn0+IrixevST7U7SqK/nuy7eLpg+r35p1j8zJabrPPs7wSinq6OOOKm2MOcLlcZdK+kfAsI62egZTHtJCUnp4OALj++utly0NFCIKgGHRCgdvtxpQpU9CrVy+0a+dZIZWVlYWoqChUrVpVkrZWrVrIysrypWEFJO957zkes2bNwsyZMxXHFy9ejNjY2NJWhUtGRgYA4FIR4H1Ey5avQHIM8FAm/5H94+2/oPbd8uc+qUDx2zZpXb0Cx+87suE8vgNst8g8eJ6bVotje7cDsOLM5SIs2a0MF7Ftyya0SPTU83SWBXpWX48W0V+mS+fPcK/JvXwZCxYs0C1fXp4V3rZSS78jSwDg0YhlLF6MQM353mdZNnja6OLFS4baIZgYrefBHMBbzuXLlyPJAeQw/Xzb1q2IzdrCudJz/sTx41iwgO8rFwhbs/3PGQCWLlmCKiXuYidO+Pvm8mXLEGUN/fO8dNHfNxct8vf7des3IG8/+3EiHQd4zzubebfM9oey7bfhI5j1vHBBOa7sPintXwCwffs2LDizNWj31aPsn6W/b5blOGSknvn5+abzNS0ksdG3w8WkSZOwfft2rFq1KuT3mj59umTvupycHNSvXx9DhgwJutbM6XQiIyMDgwcPht1ux6lLBcDGPwEAffv2Q6PqsUAmvyMUuYOj2G3XtQewdaOhtI+mtcCAljWx7/Rl/LH3LL79+wQAYMr/paHjnjP4KPMINhy5qLgutXs3nNuzHoMHD8bKwr3YcPaE5n3S0tLw4Nqlvt+1U1Kw/cJpRbrY2Dikp+ubsGbvXgkUXgHgF/rlnF97FN8e8vh4DR2a5jMhGkX+LMuCyZmLAQBJVRORnl42vk5m67np2EW8vmMdAGDgwGuQkhCNc3lFeGrjCgBAx44dkN65ruI6b93q1quH9PTghY7I3XAcXx3c6fs9ZPBgn1P98m+3Yf3ZU76yrlyxLOTPc6O4G5+s8QiBw4cNw7Q1nve9W7duGNCypi+dtz288Prx7zlbgPPZqud5hKPfhoNQ1PODo2uAPI+lwdve2auP4Kcj0gVG7du3R3q3ekG5pxbhepZs3zTa70qDmXp6LUFmMC0k9evXz/RNgsl9992HX3/9FX/++Sfq1fN3tJSUFBQVFeHixYsSbVJ2djZSUlJ8adatWyfJz7v6zZtGjsPhgMPhUBy32+0h63jevC1Wv2rQYrVCtPAnakEI3vLyKyYW+o3t1RixUTa0qlMVG49e8h2PcUTh2k71sO7IRZ+QlJIQjawcT0DM2OgonIOnng4DwodN1s5RNv41YkmeujDypFp6q9V/j6goO+wq99QjlP1EDcFiKfN7Gq1nFJPGUXKNw+7vvBaLVTMfixDcullk71RUlL8eFsZfzlvuUD/PR4e1RnJCNIa2S0FUlP8+Npt2u/DOsf5fZsscjn4bDoJZz/rVYrHtRI4vX0A6jnixWrWfZbAJ57OMtHoGUp6AA1/k5+fj6NGjKGL8ZgCgQ4cOgWapiSiKuP/++/HDDz9gxYoVCsfxrl27wm63Y+nSpbjpppsAAHv27MHRo0eRmpoKAEhNTcULL7yA06dPIzk5GYBHRZeQkIA2bdqEpNylgRV8XKKIQpVVZRZBMLwlhx5yXycvyfEOnM4tlBxTW7rt/dtm8U8y3ijcgHTZvzHHbelvtU03g7ktCZsmElaomCGSS2uVdJSS/yKowKplKaNCxjlsuO+a5orjAUXcjuieUPGYeX07CIKA0T0a+I7R/sDlH9NC0pkzZ3DnnXfi999/554PlU/SpEmT8Pnnn+Onn35CfHy8z4coMTERMTExSExMxPjx4zFt2jRUq1YNCQkJuP/++5Gamoqrr/aYHoYMGYI2bdrgjjvuwMsvv4ysrCw8+eSTmDRpEldbFG5YR0CXW1Rdem8RgGC1em4BX0iqUUUpJLHCCjsge33V2OX9rLkqivHWjjLguS3fkNamMvIYDZlgdsKhcS548AJHhjPgnrxvqQnE5bIPlMtCl19qxjvw9m1dJMfoEZR/TEeAmTJlCi5evIi1a9ciJiYGCxcuxMcff4zmzZvj559/DkUZAQDvvvsuLl26hP79+6N27dq+f1999ZUvzWuvvYZrr70WN910E/r27YuUlBR8//33vvNWqxW//vorrFYrUlNTcfvtt2PMmDF49tlnQ1bu0sBqRkQRKCzmi0LB/GK8zNEktahVBXaOMGNV0SR5sRkQkgzFSZIJNWpbRxgNmVCW25KEg0guLk9IMrP9RqjrpvblH8ltSkQu7FjVq1l1CAKQ1pbv2kFEJqY1ScuWLcNPP/2Ebt26wWKxoGHDhhg8eDASEhIwa9YsDB8+PBTlNDSxRUdH4+2338bbb7+tmqZhw4ZlvvInUNwGNUnBHMB5mqT/jOmGh75RrjiSxLzh5MWa2xy2wM1tcuFHVZMUon0/ytsEGcnFlWgcvf+HU5MkF8AjVJNEm8uWT9i+/b/xPVBY7Da9CKS88cDA5nhj6T7cUgbO6WWBaSEpLy/P58+TlJSEM2fOoEWLFmjfvj3+/vvvoBewMsNqkrR8koIrJCnjSETZLAqzmNwviKfdYbVErFZJqkkyYm6TouaTFLK928qJlJQUa8eFfCcGtEwOd1FU0dMkRSrh7gPyPturWXX8tV87HEc5aNYKjzRqu1DhBSQAmDKwOYa0qYVWKRVjGxvT5raWLVv69kzr2LEj3nvvPZw4cQLz5s1D7dq1g17AygzrYyOK6poks9uXaMEzt9mtFoUwY5VNGrwB2cpoktgvdFaTFMjebeo+ScFz3C6PLJzSF3P/rxP+1a9puItiCO92L+F0MJZ3hUjVJMl5Z3TXcBeBMEA5+b4KKhaLgHZ1E2EzMLaXB0xrkiZPnoxTpzyxQ5555hkMHToUn332GaKiovDRRx8Fu3yVGtZ85HJ7og3zCNbKNgC4zDG3RdmUQpJF3v85gwGrSWK/xM36JMlnMqvi5h4M+yRV0E0eaiVEYwQnxlAkwVncJp1IdB5NqOecSPVJkrsbJMbY0bZOAnacVI/7Em7tFwEkRFf8MAoVHdNC0u233+77u2vXrjhy5Ah2796NBg0aoEaNGkEtXGVHvrrNpaIpUTseCLkcTVKU1aIQZpSaJOWAzGp82MtZcxnPIVyOYnWbimBl2NxWMWWkcgHbT/zmNiZyf1kLsAY7AwkcRCAMa5eC6zrWQbeGSeEuChEgpoWkgwcPokmTJr7fsbGx6NKli8YVRKCwGiK3KKKoDLZ84WmS7FaLQgiS+yDxV7dZmPP8SSaQOElqJhHjmiQiXPDiaUWK/DGkTS1pn404I5sUve4e2aWvHNisFrx5a+dwF4MoBaaNhs2aNUODBg1wxx134L///S/2798finIRkPrYuEURhc4gOh+pwPNJ4jlKy4/xBmRW+9SjsWcj4gbVYlXTqFEsUxGp+SQZ1RCRJiky4GmSyhq2K7w/plvYyqEHdVmCCA+mhaRjx45h1qxZiImJwcsvv4wWLVqgXr16GD16ND744INQlLHSwsoGLreIIld4hCQACilIPrHxJjo2BEBSXBS2z0zD0gf7qaaR4/VdktebFdB+uLen72/jZkeacsKFdLWP8lhZU14E5oAibpMqiSBKjWkhqW7duhg9ejTef/997NmzB3v27MGgQYPw9ddf41//+lcoylhpcck1SSqr24IJLwQAAIVcIReK9IJJ2q0CqjhsCvOamlYIABwlaeWr+thrkmKj0KJWFQDA4Da1VPNiKS8TY0VE6rgtKI7pmpAq6cQv18ASBFE2mPZJys/Px6pVq7BixQqsWLECmzZtQqtWrXDfffehf//+IShi5UW+uq0shCSny5gEIZdt9IJJqmmMeMtEH05riaHtUjByXiZQqBSSrIzwZREEfHbX1Vi4/VRQV3aZjcpNGIV9diVHJI7bZUukP+fv7+2JkxevoE2dBMW5yC45QVQMTAtJVatWRVJSEkaPHo3HHnsMffr0QVISee6HArkmSS1OUpkQwBe8XJOkl8bLbd0bICkuyhdDSUuTJAiePZPuSG1kuFw1qjhwLq9IPyERdKIMOPMTfro0SEKXBoGNr9S6BFF6TAtJ6enpWLVqFb788ktkZWUhKysL/fv3R4sWLUJRvkqNZHWbxrYkZYKo+ZM74bGCkVpsIzvnuDcrv0+SdFWfJEhlAOGa3x7dGdO/34YHBip3WydCS/1qMbipSz3ER9tUI6eXJaSNIQhCC9NC0o8//ggA2Lp1K/744w8sXrwYTz31FGw2G/r374/PPvss2GWstIiKbUlCHwIgULg+Say5zYQmyStweYUkuZmR1SQFMs82S47HN/f01E9IBB1BEPDqLR1Vz+svaw+/YBUpRLqpkCAqAqaFJC/t27dHcXExioqKUFBQgEWLFuGrr74iISmIsIu6tDa4lRMXZUVekTmBKspq0V49J5ub5OMzN5gka25T0yRxhSR/mQCluc0iEZJo0qxMBDvYZEWWM8icSRClx/Tqtjlz5uD6669H9erV0aNHD3zxxRdo0aIFvvvuO5w5cyYUZay0sD5JoghcuqKy8kxGTJR52bdvi5q+VWJcdCYTnkaHXcmmqkniCE8WmSZJLiTxlpETBCGFXg2CKD2mZ9MvvvgC/fr1w913340+ffogMTExFOUiIF/dJmL/6cuGrnMY2OpDTucGVVEvKQZ7s43dQy41Na+l3PFZsv2IipDE80uxKHySZJokgTRJlZVgm9u0ZP9I71o9GlfD7qxczTAaBEGUDtNC0vr160NRDoIDq0m6kF+Evdm5hq6Lc1hN3adJjTjc1acxPs08op5IZxxOa1sLM69vi/b1/EIza2JTddzmhADwToQOFU0SOyeQkFSxqKibD4eCR4e1Qp2qMUhrm8I9X6dqTBmXiCAqHuZVDgBWrlyJ22+/HampqThx4gQA4NNPP8WqVauCWrjKDqtJev63XbiQLzW31agSpbjmoSEtkBwfrZlvQrRUNr5/YDM4bFbUS1IfVKvITHgKnyRBwNiejSTLlVkTm9rXLt9x2/O/mk8SC31EVyzK2keoPDs/x0bZ8K9+TdGoRhz3/MT+TXFLt3qYf+dVZVwygqg4mBaSvvvuO6SlpSEmJgabNm1CYWEhAODSpUt48cUXg17Ayozehq1v3toFd/f1bDacFGvH/dc0w33XNJeYtm7r0QCd6ldFz6bVAQApCdF4+rq2uL5jHQAelX16+9oAgNQmNdC+biJa1KqCz+/qgXZ1EzD3/zoBAB5Ma4EO9cyZVu2SOEnGQwB4NUhq5jYWck4lCD5xDhtevrkjBrRMDndRCKLcYtrc9vzzz2PevHkYM2YMvvzyS9/xXr164fnnnw9q4So7elu1OewWPJ7eGo+nt5YcZwWSif2aoj5nS4Obu9bDG7LdqRNj7fjl/t6+37/e38f3d3J8NH6+rzcaPfab4fIHKwQAaZIILyQTEwRRlpjWJO3Zswd9+/ZVHE9MTMTFixeDUSaiBLfOhq1qDtpRNjaqcVCL5MOIkcJICAA14Qnwm9vkcZLYe4fKJ6lvi5oAgPjogKNkEEGkZcnCgH90Ct7WMwRBEHqYngFSUlKwf/9+NGrUSHJ81apVaNKkSbDKRUAacZuHw8Z30Ga3fgiVEGHEl8OQJklFeAL8wl6BUz3mU6jq16RmFax8ZACqxSn9vojQodarfrqvF7IuFaj63wR8v/LrkkQQRBlgWpM0YcIETJ48GWvXroUgCDh58iQ+++wzPPTQQ5g4cWIoylhp0fNJUtMksea2UG39YFaTpFYOufA0sJXff0JNSCqrOEn1q8UizkGapEgg2m4NuoBEEAShh+kZ4LHHHoPb7cbAgQORn5+Pvn37wuFw4KGHHsL9998fijJWWnTNbfbwmduMYGVurlYM1gwXG2WVbFmhti0JffwTwUIr5AC5PxEEYVpIEgQBTzzxBB5++GHs378fly9fRps2bVClShVcuXIFMTEUmyNYuPSEJCvf3GYvE3Obfhojt2Y1SVMHtUDVWL95y2Hla5JYpRQ58lYwIsj+RX2LIIiAbQlRUVFo06YNAKCwsBBz5szByy+/jKysrKAVrjLzaeZhzPhlp2YaNU0Su/Q+nMEWE2PsGNKmFlxuETXjHdw0bPwkuQ+W39wm1STVT4pFvxY1UcVhU/XLIsonZS0iRZBMRhBEBGJYSCosLMSMGTOQkZGBqKgoPPLIIxgxYgTmz5+PJ554AlarFVOnTg1lWSsVT/20QzdNlErsIdb/xxpGx21BEPD+mG66abzINWdeIennLSdlFwEf/7O7wZIShDokIxEEoYVhIenpp5/Ge++9h0GDBmH16tUYOXIk7rzzTqxZswZz5szByJEjYVUx/xChwaLmDM0cFwKKqR4e5D5YVWP4K8uCvX8XQRAEQfAwLCR98803+OSTT3D99ddj+/bt6NChA4qLi7FlyxaKehxhsPukhcwnKQR5ys1tXRomcdNRd6u4tORslBxKyNxGEIQWhoWk48ePo2vXrgCAdu3aweFwYOrUqSQgRSA2iU9SGAtiErkmqWlN/pLvqrH2sigOUYb8PrkPDp7JQ48m1cv0vnWqau9zSBBE5cawkORyuRAV5Td/2Gw2VKlSJSSFIkoH65MUMsftEHyByzVJgiDgk392x5gP1/mOPTK0JVqlJAT/5kRYaV07Aa1rl/1zva5DHezLvoyujfhaS4IgKjeGhSRRFDFu3Dg4HJ5VSgUFBbjnnnsQFyf92v/++++DW0LCNLayEJJCAG+vur4tauLmrvXw7cbjADx70RFEsLBYBDyU1jLcxSAIIkIxLCSNHTtW8vv2228PemGI4CDVJIXmHqFw5VCLMJ7EmNfIvEsQBEGUFYaFpPnz54eyHEQQsZVBMMlQoBY8kw0wSRAEQRBlRTlaIE4YRRICIFSapBAsC1ITkpJISCLCAIWaIAiChKQKiFUiJJWfEABq5rZqcbSajSAIgih7SEiqgNjKYN1/KOLLpCTyl2PXS4oN/s0IgiAIQodKKyS9/fbbaNSoEaKjo9GjRw+sW7dO/6IIoEWtKri1e318NzFVNY21PAVHAvDRnVfh9qsb4J+9GnPPt6ubiMkDm+OFG9qVcckIgiCIykzAG9yWZ7766itMmzYN8+bNQ48ePTB37lykpaVhz549SE5ODnfxNKkaG4VZN3bQTGOzhF72FYNocOvfMhn9W2q3+9TBLYJ2P4IgCIIwgiEh6eeffzac4fXXXx9wYcqKOXPmYMKECbjzzjsBAPPmzcNvv/2GDz/8EI899liYS6eDAdmkvGmSCIIgCCISMSQkjRgxwlBmgiDA5XKVpjwhp6ioCBs3bsT06dN9xywWCwYNGoTMzExF+sLCQhQWFvp+5+TkAACcTiecTmdQy+bNTytft+jWv6/ofwbBLqPvFmLgeRupZ3mnMtQRqNj1dIv+6KYVuZ4sVM+KQ2WoI2CunoG0hSCGYi13BHPy5EnUrVsXq1evRmqq36/nkUcewR9//IG1a9dK0s+YMQMzZ85U5PP5558jNjZ0DsWTM/nya9N4EQ+00xZEzxYAz23yXP96anFIymUXRMy+OrIFYoIoDV8csGDNaY/pOtjvEUEQZU9+fj5uu+02XLp0CQkJxrZBqpQ+SWaYPn06pk2b5vudk5OD+vXrY8iQIYYb2ShOpxMZGRkYPHgwkLmcmyapWhLS07vr5tWm6wUkxUapbhIbKJMzFwMABKsV6elpAeXB1tNur5jL+ytDHYGKXc9VP+7AmtMnAACDBw+usPVkqcjPk6Uy1LMy1BEwV0+vJcgMAQlJeXl5+OOPP3D06FEUFRVJzj3wwAOBZFlm1KhRA1arFdnZ2ZLj2dnZSElJUaR3OBy+/epY7HZ7yDqeVr4WwWLovqnNQu+AXtr6h7INI4XKUEegYtbTyiyA8NatItaTB9Wz4lAZ6ggYq2cg7WBaSNq0aRPS09ORn5+PvLw8VKtWDWfPnkVsbCySk5MjXkiKiopC165dsXTpUp+vldvtxtKlS3HfffeFt3BGiBCf7HgHKSEJgiCIio3pteJTp07FddddhwsXLiAmJgZr1qzBkSNH0LVrV8yePTsUZQw606ZNw3/+8x98/PHH2LVrFyZOnIi8vDzfajdCnfnjrkKz5Cr4cNxV4S4KQRAEQYQU0+qAzZs347333oPFYoHVakVhYSGaNGmCl19+GWPHjsWNN94YinIGlf/7v//DmTNn8PTTTyMrKwudOnXCwoULUatWrXAXLeIZ0CoZA1pFdiwpgiAIgggGpjVJdrsdlhJbfXJyMo4ePQoASExMxLFjx4JbuhBy33334ciRIygsLMTatWvRo0ePcBeJIAiCIIgIwrQmqXPnzli/fj2aN2+Ofv364emnn8bZs2fx6aefol072jaCIAiCIIiKgWlN0osvvojatWsDAF544QUkJSVh4sSJOHPmDN57772gF5CQUamiWhEEQRBE+DCtSerWrZvv7+TkZCxcuDCoBSIIgiAIgogETGuSrrnmGly8eFFxPCcnB9dcc00wykRoESEhAAiCIAiiomNaSFqxYoUigCQAFBQUYOXKlUEpFEEQBEEQRLgxbG7bunWr7++dO3ciKyvL99vlcmHhwoWoW7ducEtHEAQRJgTS2hJEpcewkNSpUycIggBBELhmtZiYGLz55ptBLVxlxe0m72yCIAiCCDeGhaRDhw5BFEU0adIE69atQ82aNX3noqKikJycDKvVGpJCVjbcIglJBBF+SJVEEJUdw0JSw4YNAXj2OSNCi6YiieQngiAIgigTAtql9MCBA5g7dy527doFAGjTpg0mT56Mpk2bBrVwlRUtTVJSXMXfzZkgCIIgIgHTq9sWLVqENm3aYN26dejQoQM6dOiAtWvXom3btsjIyAhFGSsdWkLSjOvblmFJCIIgCKLyYlqT9Nhjj2Hq1Kn497//rTj+6KOPYvDgwUErXGXjj71nMHe7FfU75nHPP/ePtqidGFPGpSIIgiCIyolpTdKuXbswfvx4xfF//vOf2LlzZ1AKVVm569NNOJQrYPJXW7nni2nVG0GUGaOuqg8A6NYwKcwlIQgiXJjWJNWsWRObN29G8+bNJcc3b96M5OTkoBWsMnM+TxmsEwC6NKDBmiDKio71q2LdEwNRLTYKotsV7uIQBBEGDAtJzz77LB566CFMmDABd999Nw4ePIiePXsCAP766y+89NJLmDZtWsgKWplwyXySMqdfg2Pnr6Bj/arhKRBBVFKS46MBAE4SkgiiUmJYSJo5cybuuecePPXUU4iPj8err76K6dOnAwDq1KmDGTNm4IEHHghZQSsTcqta7cQY8kUiCIIgiDLGsJAklmg3BEHA1KlTMXXqVOTm5gIA4uPjQ1O6SgpF3CYIgiCI8GPKJ0mQbWZEwlFoYM1tkwZQ7CmCIAiCCAemhKQWLVooBCU558+fL1WBCMArI0XZLHg4rVV4C0MQBEEQlRRTQtLMmTORmJgYqrIQMiy0dRRBEARBhA1TQtKoUaNomX8ZYtHR2hEEQRAEEToMB5PUM7MRwcdKbU4QBEEQYcOwkCRq7CdGhAaSkQiCIAgifBg2t7nd7lCWg+BgIackgiAIgggbpvduI8oOMrcRBEEQRPggISmCIT8wgiAIgggfJCRFMGRtIwiCIIjwQUJSBEMhAAiCIAgifJCQFMFYSZVEEARBEGGDhKQIhhRJBEEQBBE+SEiKYMjcRhAEQRDhg4SkCIbMbQRBEAQRPkhIimBIkUQQBEEQ4YOEpAiGzG0EQRAEET5ISIpgKOI2QRAEQYQPEpIiGJKRCIIgCCJ8lAsh6fDhwxg/fjwaN26MmJgYNG3aFM888wyKiook6bZu3Yo+ffogOjoa9evXx8svv6zI65tvvkGrVq0QHR2N9u3bY8GCBWVVDdOQuY0gCIIgwke5EJJ2794Nt9uN9957Dzt27MBrr72GefPm4fHHH/elycnJwZAhQ9CwYUNs3LgRr7zyCmbMmIH333/fl2b16tW49dZbMX78eGzatAkjRozAiBEjsH379nBUSxdLuXg6BEEQBFExsYW7AEYYOnQohg4d6vvdpEkT7NmzB++++y5mz54NAPjss89QVFSEDz/8EFFRUWjbti02b96MOXPm4O677wYAvP766xg6dCgefvhhAMBzzz2HjIwMvPXWW5g3b17ZV0wH8kkiCIIgiPBRLoQkHpcuXUK1atV8vzMzM9G3b19ERUX5jqWlpeGll17ChQsXkJSUhMzMTEybNk2ST1paGn788UfV+xQWFqKwsND3OycnBwDgdDrhdDqDVBt1yuIeZY23ThWxbl4qQx0BqmdFg+pZcagMdQTM1TOQtiiXQtL+/fvx5ptv+rRIAJCVlYXGjRtL0tWqVct3LikpCVlZWb5jbJqsrCzVe82aNQszZ85UHF+8eDFiY2NLUw0O0sdx6eLFiPaZKi0ZGRnhLkLIqQx1BKieFQ2qZ8WhMtQRMFbP/Px80/mGVUh67LHH8NJLL2mm2bVrF1q1auX7feLECQwdOhQjR47EhAkTQl1ETJ8+XaJ9ysnJQf369TFkyBAkJCQE9V6TMxdLfteonoT09O5BvUck4HQ6kZGRgcGDB8Nut4e7OCGhMtQRoHpWNKieFYfKUEfAXD29liAzhFVIevDBBzFu3DjNNE2aNPH9ffLkSQwYMAA9e/aUOGQDQEpKCrKzsyXHvL9TUlI003jP83A4HHA4HIrjdrs95B3PIlgqdOcuizYMN5WhjgDVs6JB9aw4VIY6AsbqGUg7hFVIqlmzJmrWrGko7YkTJzBgwAB07doV8+fPh0W29Cs1NRVPPPEEnE6nryEyMjLQsmVLJCUl+dIsXboUU6ZM8V2XkZGB1NTU4FQoyNDqNoIgCIIIH+ViGj5x4gT69++PBg0aYPbs2Thz5gyysrIkvkS33XYboqKiMH78eOzYsQNfffUVXn/9dYmpbPLkyVi4cCFeffVV7N69GzNmzMCGDRtw3333haNautAGtwRBEAQRPsqF43ZGRgb279+P/fv3o169epJzoigCABITE7F48WJMmjQJXbt2RY0aNfD000/7lv8DQM+ePfH555/jySefxOOPP47mzZvjxx9/RLt27cq0PkahYJIEQRAEET7KhZA0btw4Xd8lAOjQoQNWrlypmWbkyJEYOXJkkEoWWkiTRBAEQRDho1yY2yorpEkiCIIgiPBBQlIEQ0ISQRAEQYQPEpIiGCs9HYIgCIIIGzQNRzDkk0QQBEEQ4YOEpAiGzG0EQRAEET5ISIpgSEgiCIIgiPBBQlIEQ+Y2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOr2wiCIAgifNA0HMGQuY0gCIIgwgcJSRGMQOY2giAIgggbJCRFMFYSkgiCIAgibJCQFMGQuY0gCIIgwgcJSREMrW4jCIIgiPBBQlIEQ6vbCIIgCCJ80DQcwZAmiSAIgiDCBwlJEYyFfJIIgiAIImyQkBTB0Oo2giAIgggfJCRFMKRJIgiCIIjwQUJSBEOaJIIgCIIIHyQkRTCkSCIIgiCI8EFCUgRD5jaCIAiCCB8kJEUwFHGbIAiCIMIHCUkRDPkkEQRBEET4ICEpgiFzG0EQBEGEDxKSIhiSkQiCIAgifJCQFMGQTxJBEARBhA8SkiIY2ruNIAiCIMIHCUkRDGmSCIIgCCJ8kJAUwdDqNoIgCIIIHyQkRTAkIxEEQRBE+CAhKYIhcxtBEARBhA8SkiIYctwmCIIgiPBBQhJBEARBEAQHEpIIgiAIgiA4kJBEEARBEATBodwJSYWFhejUqRMEQcDmzZsl57Zu3Yo+ffogOjoa9evXx8svv6y4/ptvvkGrVq0QHR2N9u3bY8GCBWVUcoIgCIIgyhPlTkh65JFHUKdOHcXxnJwcDBkyBA0bNsTGjRvxyiuvYMaMGXj//fd9aVavXo1bb70V48ePx6ZNmzBixAiMGDEC27dvL8sqGIb8tgmCIAgifJQrIen333/H4sWLMXv2bMW5zz77DEVFRfjwww/Rtm1bjBo1Cg888ADmzJnjS/P6669j6NChePjhh9G6dWs899xz6NKlC956662yrAZBEARBEOUAW7gLYJTs7GxMmDABP/74I2JjYxXnMzMz0bdvX0RFRfmOpaWl4aWXXsKFCxeQlJSEzMxMTJs2TXJdWloafvzxR9X7FhYWorCw0Pc7JycHAOB0OuF0OktZK22cxa6Q3yMceOtUEevmpTLUEaB6VjSonhWHylBHwFw9A2mLciEkiaKIcePG4Z577kG3bt1w+PBhRZqsrCw0btxYcqxWrVq+c0lJScjKyvIdY9NkZWWp3nvWrFmYOXOm4vjixYu5wlrpkD6OLZs3w35iU5DvETlkZGSEuwghpzLUEaB6VjSonhWHylBHwFg98/PzTecbViHpsccew0svvaSZZteuXVi8eDFyc3Mxffr0MiqZn+nTp0u0Tzk5Oahfvz6GDBmChISEoN5rcuZiye9OnTohvWPtoN4jEnA6ncjIyMDgwYNht9vDXZyQUBnqCFA9KxpUz4pDZagjYK6eXkuQGcIqJD344IMYN26cZpomTZpg2bJlyMzMhMPhkJzr1q0bRo8ejY8//hgpKSnIzs6WnPf+TklJ8f3PS+M9z8PhcCjuCwB2uz3kHc9ms1bozl0WbRhuKkMdAapnRYPqWXGoDHUEjNUzkHYIq5BUs2ZN1KxZUzfdG2+8geeff973++TJk0hLS8NXX32FHj16AABSU1PxxBNPwOl0+hoiIyMDLVu2RFJSki/N0qVLMWXKFF9eGRkZSE1NDWKtCIIgCIKoCJQLn6QGDRpIflepUgUA0LRpU9SrVw8AcNttt2HmzJkYP348Hn30UWzfvh2vv/46XnvtNd91kydPRr9+/fDqq69i+PDh+PLLL7FhwwZJmACCIAiCIAignIUA0CIxMRGLFy/GoUOH0LVrVzz44IN4+umncffdd/vS9OzZE59//jnef/99dOzYEd9++y1+/PFHtGvXLowlJwiCIAgiEikXmiQ5jRo1giiKiuMdOnTAypUrNa8dOXIkRo4cGaqiEQRBEARRQagwmqTyDk/oIwiCIAgifJCQFCHwZKSUhOiyLwhBEARBEABISIoY5DLSuJ6N0KNJ9bCUhSAIgiAIEpIiBrm57e6+TcJUEoIgCIIgABKSIga5JslqEcJSDoIgCIIgPJCQFCHIfZIEkpEIgiAIIqyQkBQhiDJdkoWkJIIgCIIIKyQkRQhyTRIJSQRBEAQRXkhIihCUQlJ4ykEQBEEQhAcSkiIEhbmNpCSCIAiCCCskJEUIZG4jCIIgiMiChKQIQR4CgEQkgiAIgggvJCRFCPJgkqRIIgiCIIjwQkJShKDUJJGURBAEQRDhhISkCEHuk0QRtwmCIAgivJCQFCkwQtK7t3VClI0eDUEQBEGEE5qJIwQ2BMCAljXDWBKCIAiCIAASkiIGN6NJIkMbQRAEQYQfEpIiBHZ1G61sIwiCIIjwQ0JShMD6bQskJREEQRBE2CEhKUKQr24jCIIgCCK8kJAUIXgdtwVFxCSCIAiCIMIBCUmRAslGBEEQBBFRkJAUIXhlJPJGIgiCIIjIgISkCEEkKYkgCIIgIgoSkiIEv08SQRAEQRCRAAlJEYI3mCQJSQRBEAQRGZCQFCF4g0mSkEQQBEEQkQEJSREC+SQRBEEQRGRBQlKEQTISQRAEQUQGJCRFCBRxmyAIgiAiCxKSIgRa3UYQBEEQkQUJSREC+SQRBEEQRGRBQlKEQDISQRAEQUQWJCRFCBQCgCAIgiAiCxKSIgQKJkkQBEEQkUW5EpJ+++039OjRAzExMUhKSsKIESMk548ePYrhw4cjNjYWycnJePjhh1FcXCxJs2LFCnTp0gUOhwPNmjXDRx99VHYV0ISkJIIgCIKIJGzhLoBRvvvuO0yYMAEvvvgirrnmGhQXF2P79u2+8y6XC8OHD0dKSgpWr16NU6dOYcyYMbDb7XjxxRcBAIcOHcLw4cNxzz334LPPPsPSpUtx1113oXbt2khLSwtX1QD4HbdJRiIIgiCIyKBcCEnFxcWYPHkyXnnlFYwfP953vE2bNr6/Fy9ejJ07d2LJkiWoVasWOnXqhOeeew6PPvooZsyYgaioKMybNw+NGzfGq6++CgBo3bo1Vq1ahddeey38QlJY704QBEEQhJxyIST9/fffOHHiBCwWCzp37oysrCx06tQJr7zyCtq1awcAyMzMRPv27VGrVi3fdWlpaZg4cSJ27NiBzp07IzMzE4MGDZLknZaWhilTpqjeu7CwEIWFhb7fOTk5AACn0wmn0xm0OnrzEpi/Kyre+lXkelaGOgJUz4oG1bPiUBnqCJirZyBtUS6EpIMHDwIAZsyYgTlz5qBRo0Z49dVX0b9/f+zduxfVqlVDVlaWREAC4PudlZXl+5+XJicnB1euXEFMTIzi3rNmzcLMmTMVxxcvXozY2Nig1A8ATuYBgA0QgIyMjKDlG8lUhnpWhjoCVM+KBtWz4lAZ6ggYq2d+fr7pfMMqJD322GN46aWXNNPs2rULbrcbAPDEE0/gpptuAgDMnz8f9erVwzfffIN//etfISvj9OnTMW3aNN/vnJwc1K9fH0OGDEFCQkLQ7rM7Kxcvbc2EAGDw4MGw2+1ByzvScDqdyMjIqND1rAx1BKieFQ2qZ8WhMtQRMFdPryXIDGEVkh588EGMGzdOM02TJk1w6tQpAFIfJIfDgSZNmuDo0aMAgJSUFKxbt05ybXZ2tu+c93/vMTZNQkICV4vkvY/D4VAct9vtQe14VqvnUQghyDtSqQz1rAx1BKieFQ2qZ8WhMtQRMFbPQNohrEJSzZo1UbNmTd10Xbt2hcPhwJ49e9C7d28AHunx8OHDaNiwIQAgNTUVL7zwAk6fPo3k5GQAHvVbQkKCT7hKTU3FggULJHlnZGQgNTU1mNUKCDcFkyQIgiCIiKJcxElKSEjAPffcg2eeeQaLFy/Gnj17MHHiRADAyJEjAQBDhgxBmzZtcMcdd2DLli1YtGgRnnzySUyaNMmnCbrnnntw8OBBPPLII9i9ezfeeecdfP3115g6dWrY6qaApCSCIAiCiAjKheM2ALzyyiuw2Wy44447cOXKFfTo0QPLli1DUlISAMBqteLXX3/FxIkTkZqairi4OIwdOxbPPvusL4/GjRvjt99+w9SpU/H666+jXr16+OCDD8K+/B+gOEkEQRAEEWmUGyHJbrdj9uzZmD17tmqahg0bKsxpcvr3749NmzYFu3ilRqRISQRBEAQRUZQLc1tlgDRJBEEQBBFZkJAUIXj1SAJJSQRBEAQREZCQFCGIIpnbCIIgCCKSICEpQvBpksJaCoIgCIIgvJCQFCEIABw2C2z0RAiCIAgiIqApOULo3CAJ258ZhMc7ucJdFIIgCIIgQEISQRAEQRAEFxKSCIIgCIIgOJCQRBAEQRAEwYGEJIIg/r+9O4+J6mrDAP7MgDMMKgyyo6CoFFwJgtJRm6aVqtRYtaRRg2YUW6Nii0vd4xZjMV1MbdNgbF3SaCVqxFrX4karVUAEBRfUikssiK1lcwFl3u8P401Hrw32AwYvzy+5CXPOmTvnmYOX15l7Z4iISAWLJCIiIiIVLJKIiIiIVLBIIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFQ4O3oCLxsRAQBUVFTU+74fPnyIe/fuoaKiAi1atKj3/TcVzSFnc8gIMKfWMKd2NIeMwIvlfPJ3+8nf8bpgkfSCKisrAQCBgYEOngkRERG9qMrKSri7u9dprE5epKQi2Gw2/PHHH2jdujV0Ol297ruiogKBgYG4ceMG3Nzc6nXfTUlzyNkcMgLMqTXMqR3NISPwYjlFBJWVlQgICIBeX7ezjfhK0gvS6/Vo165dgz6Gm5ubpn+pn2gOOZtDRoA5tYY5taM5ZATqnrOuryA9wRO3iYiIiFSwSCIiIiJSwSKpCTEajVi8eDGMRqOjp9KgmkPO5pARYE6tYU7taA4ZgYbPyRO3iYiIiFTwlSQiIiIiFSySiIiIiFSwSCIiIiJSwSKJiIiISAWLpCbim2++QYcOHeDi4oLo6GhkZWU5ekov5JdffsHQoUMREBAAnU6HHTt22PWLCBYtWgR/f3+YTCbExMTg0qVLdmPu3LmD+Ph4uLm5wWw2Y8KECaiqqmrEFP8uOTkZvXv3RuvWreHj44Phw4ejsLDQbsyDBw+QmJgIT09PtGrVCnFxcbh165bdmOvXr2PIkCFwdXWFj48PZs2ahUePHjVmlH+VkpKCnj17Kh/OZrFYsHfvXqVfCxnVrFixAjqdDtOmTVPatJB1yZIl0Ol0dltYWJjSr4WMAHDz5k2MGTMGnp6eMJlM6NGjB06ePKn0a+EY1KFDh2fWUqfTITExEYB21rK2thYLFy5EcHAwTCYTOnXqhGXLltl951qjraeQw6WmporBYJB169bJ2bNn5YMPPhCz2Sy3bt1y9NTqbM+ePbJgwQLZvn27AJC0tDS7/hUrVoi7u7vs2LFDTp8+Le+8844EBwfL/fv3lTGDBw+W8PBwOXHihPz666/SuXNnGT16dCMneb5BgwbJ+vXrpaCgQPLy8uTtt9+WoKAgqaqqUsZMmjRJAgMD5eDBg3Ly5El59dVXpW/fvkr/o0ePpHv37hITEyO5ubmyZ88e8fLyknnz5jkikqqdO3fK7t275eLFi1JYWCjz58+XFi1aSEFBgYhoI+PTsrKypEOHDtKzZ09JSkpS2rWQdfHixdKtWzcpLi5Wttu3byv9Wsh4584dad++vYwbN04yMzPlypUrsn//frl8+bIyRgvHoNLSUrt1TE9PFwBy+PBhEdHGWoqILF++XDw9PWXXrl1SVFQkW7dulVatWsmqVauUMY21niySmoA+ffpIYmKicru2tlYCAgIkOTnZgbP6754ukmw2m/j5+clnn32mtJWVlYnRaJTNmzeLiMi5c+cEgGRnZytj9u7dKzqdTm7evNloc38RpaWlAkAyMjJE5HGmFi1ayNatW5Ux58+fFwBy/PhxEXlcTOr1eikpKVHGpKSkiJubm1RXVzdugBfg4eEh3333nSYzVlZWSkhIiKSnp8vrr7+uFElaybp48WIJDw9X7dNKxjlz5kj//v2f26/VY1BSUpJ06tRJbDabZtZSRGTIkCGSkJBg1/buu+9KfHy8iDTuevLtNgerqalBTk4OYmJilDa9Xo+YmBgcP37cgTOrP0VFRSgpKbHL6O7ujujoaCXj8ePHYTabERUVpYyJiYmBXq9HZmZmo8+5LsrLywEAbdq0AQDk5OTg4cOHdjnDwsIQFBRkl7NHjx7w9fVVxgwaNAgVFRU4e/ZsI86+bmpra5Gamoq7d+/CYrFoMmNiYiKGDBlilwnQ1npeunQJAQEB6NixI+Lj43H9+nUA2sm4c+dOREVF4b333oOPjw8iIiLw7bffKv1aPAbV1NRg48aNSEhIgE6n08xaAkDfvn1x8OBBXLx4EQBw+vRpHD16FLGxsQAadz35BbcO9ueff6K2ttbulxYAfH19ceHCBQfNqn6VlJQAgGrGJ30lJSXw8fGx63d2dkabNm2UMU2JzWbDtGnT0K9fP3Tv3h3A4wwGgwFms9lu7NM51Z6HJ31NRX5+PiwWCx48eIBWrVohLS0NXbt2RV5enmYyAkBqaipOnTqF7OzsZ/q0sp7R0dHYsGEDQkNDUVxcjKVLl+K1115DQUGBZjJeuXIFKSkpmDFjBubPn4/s7Gx89NFHMBgMsFqtmjwG7dixA2VlZRg3bhwA7fy+AsDcuXNRUVGBsLAwODk5oba2FsuXL0d8fDyAxv2bwiKJ6D9ITExEQUEBjh496uipNIjQ0FDk5eWhvLwc27Ztg9VqRUZGhqOnVa9u3LiBpKQkpKenw8XFxdHTaTBP/vcNAD179kR0dDTat2+PLVu2wGQyOXBm9cdmsyEqKgqffPIJACAiIgIFBQVYvXo1rFarg2fXMNauXYvY2FgEBAQ4eir1bsuWLdi0aRN++OEHdOvWDXl5eZg2bRoCAgIafT35dpuDeXl5wcnJ6ZkrEG7dugU/Pz8Hzap+Pcnxbxn9/PxQWlpq1//o0SPcuXOnyT0PU6dOxa5du3D48GG0a9dOaffz80NNTQ3Kysrsxj+dU+15eNLXVBgMBnTu3BmRkZFITk5GeHg4Vq1apamMOTk5KC0tRa9eveDs7AxnZ2dkZGTgq6++grOzM3x9fTWT9Z/MZjNeeeUVXL58WTPr6e/vj65du9q1denSRXlbUWvHoGvXruHAgQN4//33lTatrCUAzJo1C3PnzsWoUaPQo0cPjB07FtOnT0dycjKAxl1PFkkOZjAYEBkZiYMHDyptNpsNBw8ehMViceDM6k9wcDD8/PzsMlZUVCAzM1PJaLFYUFZWhpycHGXMoUOHYLPZEB0d3ehzViMimDp1KtLS0nDo0CEEBwfb9UdGRqJFixZ2OQsLC3H9+nW7nPn5+Xb/eNPT0+Hm5vbMQb4psdlsqK6u1lTGAQMGID8/H3l5ecoWFRWF+Ph45WetZP2nqqoq/P777/D399fMevbr1++Zj+O4ePEi2rdvD0A7x6An1q9fDx8fHwwZMkRp08paAsC9e/eg19uXJ05OTrDZbAAaeT3/jxPQqZ6kpqaK0WiUDRs2yLlz52TixIliNpvtrkBo6iorKyU3N1dyc3MFgKxcuVJyc3Pl2rVrIvL4ck2z2Sw//vijnDlzRoYNG6Z6uWZERIRkZmbK0aNHJSQkpEldfjt58mRxd3eXI0eO2F2Ge+/ePWXMpEmTJCgoSA4dOiQnT54Ui8UiFotF6X9yCe7AgQMlLy9P9u3bJ97e3k3qEty5c+dKRkaGFBUVyZkzZ2Tu3Lmi0+nk559/FhFtZHyef17dJqKNrDNnzpQjR45IUVGRHDt2TGJiYsTLy0tKS0tFRBsZs7KyxNnZWZYvXy6XLl2STZs2iaurq2zcuFEZo4VjkMjjq5+DgoJkzpw5z/RpYS1FRKxWq7Rt21b5CIDt27eLl5eXzJ49WxnTWOvJIqmJ+PrrryUoKEgMBoP06dNHTpw44egpvZDDhw8LgGc2q9UqIo8v2Vy4cKH4+vqK0WiUAQMGSGFhod0+/vrrLxk9erS0atVK3NzcZPz48VJZWemANOrU8gGQ9evXK2Pu378vU6ZMEQ8PD3F1dZURI0ZIcXGx3X6uXr0qsbGxYjKZxMvLS2bOnCkPHz5s5DTPl5CQIO3btxeDwSDe3t4yYMAApUAS0UbG53m6SNJC1pEjR4q/v78YDAZp27atjBw50u7zg7SQUUTkp59+ku7du4vRaJSwsDBZs2aNXb8WjkEiIvv37xcAz8xdRDtrWVFRIUlJSRIUFCQuLi7SsWNHWbBggd3HFDTWeupE/vERlkREREQEgOckEREREalikURERESkgkUSERERkQoWSUREREQqWCQRERERqWCRRERERKSCRRIRERGRChZJRNQsXL16FTqdDnl5eQ32GOPGjcPw4cMbbP9E1LhYJBHRS2HcuHHQ6XTPbIMHD67T/QMDA1FcXIzu3bs38EyJSCucHT0BIqK6Gjx4MNavX2/XZjQa63RfJyenJvVN50TU9PGVJCJ6aRiNRvj5+dltHh4eAACdToeUlBTExsbCZDKhY8eO2LZtm3Lfp99u+/vvvxEfHw9vb2+YTCaEhITYFWD5+fl48803YTKZ4OnpiYkTJ6Kqqkrpr62txYwZM2A2m+Hp6YnZs2fj6W95stlsSE5ORnBwMEwmE8LDw+3mRERNG4skItKMhQsXIi4uDqdPn0Z8fDxGjRqF8+fPP3fsuXPnsHfvXpw/fx4pKSnw8vICANy9exeDBg2Ch4cHsrOzsXXrVhw4cABTp05V7v/FF19gw4YNWLduHY4ePYo7d+4gLS3N7jGSk5Px/fffY/Xq1Th79iymT5+OMWPGICMjo+GeBCKqP///9/USETU8q9UqTk5O0rJlS7tt+fLlIiICQCZNmmR3n+joaJk8ebKIiBQVFQkAyc3NFRGRoUOHyvjx41Ufa82aNeLh4SFVVVVK2+7du0Wv10tJSYmIiPj7+8unn36q9D98+FDatWsnw4YNExGRBw8eiKurq/z22292+54wYYKMHj36vz8RRNRoeE4SEb003njjDaSkpNi1tWnTRvnZYrHY9VksludezTZ58mTExcXh1KlTGDhwIIYPH46+ffsCAM6fP4/w8HC0bNlSGd+vXz/YbDYUFhbCxcUFxcXFiI6OVvqdnZ0RFRWlvOV2+fJl3Lt3D2+99Zbd49bU1CAiIuLFwxNRo2ORREQvjZYtW6Jz5871sq/Y2Fhcu3YNe/bsQXp6OgYMGIDExER8/vnn9bL/J+cv7d69G23btrXrq+vJ5kTkWDwniYg048SJE8/c7tKly3PHe3t7w2q1YuPGjfjyyy+xZs0aAECXLl1w+vRp3L17Vxl77Ngx6PV6hIaGwt3dHf7+/sjMzFT6Hz16hJycHOV2165dYTQacf36dXTu3NluCwwMrK/IRNSA+EoSEb00qqurUVJSYtfm7OysnHC9detWREVFoX///ti0aROysrKwdu1a1X0tWrQIkZGR6NatG6qrq7Fr1y6loIqPj8fixYthtVqxZMkS3L59Gx9++CHGjh0LX19fAEBSUhJWrFiBkJAQhIWFYeXKlSgrK1P237p1a3z88ceYPn06bDYb+vfvj/Lychw7dgxubm6wWq0N8AwRUX1ikUREL419+/bB39/fri00NBQXLlwAACxduhSpqamYMmUK/P39sXnzZnTt2lV1XwaDAfPmzcPVq1dhMpnw2muvITU1FQDg6uqK/fv3IykpCb1794arqyvi4uKwcuVK5f4zZ85EcXExrFYr9Ho9EhISMGLECJSXlytjli1bBm9vbyQnJ+PKlSswm83o1asX5s+fX99PDRE1AJ3IUx/sQUT0EtLpdEhLS+PXghBRveE5SUREREQqWCQRERERqeA5SUSkCTxzgIjqG19JIiIiIlLBIomIiIhIBYskIiIiIhUskoiIiIhUsEgiIiIiUsEiiYiIiEgFiyQiIiIiFSySiIiIiFSwSCIiIiJS8T8IBxsauELk9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(episode_rwds_ppo)\n", "plt.xlabel(\"Episode\")\n", "plt.ylabel(\"Total Reward\")\n", "plt.title(\"Total Rewards Per Episode\")\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\91740\\AppData\\Local\\Temp\\ipykernel_8108\\1561640575.py:31: DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning disappear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly.\n", " frames = [imageio.imread(path) for path in frames_paths]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Episode 1 evaluated, GIF saved to eval_gifs\\episode_1.gif.\n", "Episode 2 evaluated, GIF saved to eval_gifs\\episode_2.gif.\n", "Episode 3 evaluated, GIF saved to eval_gifs\\episode_3.gif.\n", "Episode 4 evaluated, GIF saved to eval_gifs\\episode_4.gif.\n", "Episode 5 evaluated, GIF saved to eval_gifs\\episode_5.gif.\n", "Episode 6 evaluated, GIF saved to eval_gifs\\episode_6.gif.\n", "Episode 7 evaluated, GIF saved to eval_gifs\\episode_7.gif.\n", "Episode 8 evaluated, GIF saved to eval_gifs\\episode_8.gif.\n", "Episode 9 evaluated, GIF saved to eval_gifs\\episode_9.gif.\n", "Episode 10 evaluated, GIF saved to eval_gifs\\episode_10.gif.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIjCAYAAAB20vpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1LklEQVR4nOzdd3hT5fvH8XeS7gkUStmbQtmUVfYuQxEFERUZiijIVPwh4kJA3CAOREW2ytQvOFjKKnuVvaFllzILLV3J+f3x0JTSFlpoepL2fl1XrzxJT5JP0kPpnWcZNE3TEEIIIYQQQgghhN0x6h1ACCGEEEIIIYQQGZOiXQghhBBCCCGEsFNStAshhBBCCCGEEHZKinYhhBBCCCGEEMJOSdEuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYaekaBdCCCGEEEIIIeyUFO1CCCGEEEIIIYSdkqJdCCFEptauXYvBYGDt2rV6R7ELBoOBDz74QO8Ydqtv376ULVs2V5/TFudoVFQU3bt3x8/PD4PBwOTJk3Psse3FBx98gMFg4PLly3pHEUII8QBStAshhJ0xGAxZ+spKkfLRRx/xxx9/2DzzzJkz02RzcnKiRIkS9O3bl3Pnztn8+UX2pRRtmX1dvHhR74i6GTFiBCtWrGD06NHMmTOHDh062PT57vdzePXVV2363DmhR48eGAwGRo0apXeUdOLi4vjggw/kg0chhENz0juAEEKItObMmZPm+uzZs1m1alW626tWrfrAx/roo4/o3r07Xbt2zcmImfrwww8pV64c8fHxbNmyhZkzZxIWFsb+/ftxc3PLlQwie6ZOnYqXl1e62wsUKJDtx/rxxx+xWCw5kEpf//33H0888QQjR47Mteds164dvXv3Tnd75cqVcy3Dw4iJiWHZsmWULVuWX3/9lY8//hiDwaB3LKu4uDjGjh0LQMuWLfUNI4QQD0mKdiGEsDO9evVKc33Lli2sWrUq3e32qGPHjtSrVw+A/v37U7hwYT755BOWLl1Kjx49dE73YLGxsXh6euodI8fExcXh4eFx32O6d+9O4cKFc+T5nJ2dc+Rx9Hbp0qWH+tAiM/Hx8bi4uGA0Zj7AsXLlyg7xb/xeixcvxmw28/PPP9O6dWvWr19PixYt9I4lhBB5igyPF0IIBxQbG8sbb7xBqVKlcHV1JTAwkM8//xxN06zHGAwGYmNjmTVrlnWobd++fQGIjIxk0KBBBAYG4u7ujp+fH08//TQRERE5mrNZs2YAnDhxIs3thw8fpnv37hQqVAg3Nzfq1avH0qVLrd+/fv06JpOJKVOmWG+7fPkyRqMRPz+/NK9z4MCBBAQEWK9v2LCBp59+mtKlS+Pq6kqpUqUYMWIEt2/fTpOhb9++eHl5ceLECTp16oS3tzfPP/88AAkJCYwYMYIiRYrg7e1Nly5dOHv2bLrXd/PmTYYPH07ZsmVxdXXF39+fdu3asWvXrvu+LylD0w8fPkyPHj3w8fHBz8+PYcOGER8fn+74uXPnEhwcjLu7O4UKFaJnz56cOXMmzTEtW7akevXq7Ny5k+bNm+Ph4cHbb7993xxZkTJnfP78+bz99tsEBATg6elJly5d0mXIaE77b7/9RnBwMN7e3vj4+FCjRg2++uqrNMecPHmSp59+mkKFCuHh4UGjRo3466+/0mU5e/YsXbt2xdPTE39/f0aMGEFCQkKGubdu3UqHDh3w9fXFw8ODFi1asHHjxvu+1pRpHpqm8e2331r/3WQnZ8r79dtvv/HOO+9QokQJPDw8iImJue9zZ0VWz23Aem4VKVIEd3d3AgMDGTNmTLrjrl+/Tt++fSlQoAC+vr7069ePuLi4LGeaN28e7dq1o1WrVlStWpV58+ZleNzevXtp0aIF7u7ulCxZkvHjxzNjxgwMBkO63zv//PMPzZo1w9PTE29vbzp37syBAwfSHJPy7/fcuXN07doVLy8vihQpwsiRIzGbzQBERERQpEgRAMaOHWv9ecq6FEIIRyM97UII4WA0TaNLly6sWbOGl156idq1a7NixQrefPNNzp07x6RJkwA1zL5///40aNCAAQMGAFChQgUAtm/fzqZNm+jZsyclS5YkIiKCqVOn0rJlSw4ePPjA3tmsSvljvGDBgtbbDhw4QJMmTShRogRvvfUWnp6eLFiwgK5du7J48WKefPJJChQoQPXq1Vm/fj1Dhw4FICwsDIPBwNWrVzl48CDVqlUDVCGT8uEAwMKFC4mLi2PgwIH4+fmxbds2vv76a86ePcvChQvT5EtOTiY0NJSmTZvy+eefW193//79mTt3Ls899xyNGzfmv//+o3Pnzule36uvvsqiRYsYPHgwQUFBXLlyhbCwMA4dOkTdunUf+P706NGDsmXLMnHiRLZs2cKUKVO4du0as2fPth4zYcIE3n33XXr06EH//v2Jjo7m66+/pnnz5uzevTtNj/CVK1fo2LEjPXv2pFevXhQtWvSBGa5evZruNicnp3Q9zRMmTLDOW7506RKTJ0+mbdu2hIeH4+7unuFjr1q1imeffZY2bdrwySefAHDo0CE2btzIsGHDALXoW+PGjYmLi2Po0KH4+fkxa9YsunTpwqJFi3jyyScBuH37Nm3atOH06dMMHTqU4sWLM2fOHP777790z/vff//RsWNHgoODef/99zEajcyYMYPWrVuzYcMGGjRokGHe5s2bM2fOHF544YV0w9WzmjPFuHHjcHFxYeTIkSQkJODi4pLJT0CJj4/PcFE4Hx8f632zem7v3buXZs2a4ezszIABAyhbtiwnTpxg2bJlTJgwIc3j9+jRg3LlyjFx4kR27drFTz/9hL+/v/XndT/nz59nzZo1zJo1C4Bnn32WSZMm8c0336R5vefOnaNVq1YYDAZGjx6Np6cnP/30E66urukec86cOfTp04fQ0FA++eQT4uLimDp1Kk2bNmX37t1pPhQym82EhobSsGFDPv/8c1avXs0XX3xBhQoVGDhwIEWKFGHq1KkMHDiQJ598kqeeegqAmjVrPvC1CSGEXdGEEELYtddee027+9f1H3/8oQHa+PHj0xzXvXt3zWAwaMePH7fe5unpqfXp0yfdY8bFxaW7bfPmzRqgzZ4923rbmjVrNEBbs2bNfTPOmDFDA7TVq1dr0dHR2pkzZ7RFixZpRYoU0VxdXbUzZ85Yj23Tpo1Wo0YNLT4+3nqbxWLRGjdurFWqVCnN6y5atKj1+uuvv641b95c8/f316ZOnappmqZduXJFMxgM2ldffXXf1zZx4kTNYDBokZGR1tv69OmjAdpbb72V5tjw8HAN0AYNGpTm9ueee04DtPfff996m6+vr/baa6/d973JyPvvv68BWpcuXdLcPmjQIA3Q9uzZo2mapkVERGgmk0mbMGFCmuP27dunOTk5pbm9RYsWGqB9//332cqQ0VdgYKD1uJRzoESJElpMTIz19gULFmhAmve+T58+WpkyZazXhw0bpvn4+GjJycmZ5hg+fLgGaBs2bLDedvPmTa1cuXJa2bJlNbPZrGmapk2ePFkDtAULFliPi42N1SpWrJjmHLVYLFqlSpW00NBQzWKxWI+Ni4vTypUrp7Vr1+6B7w2Q7uea1Zwp71f58uUzPBcze77Mvn799dc0r+FeGZ3bzZs317y9vdPcpmlamvcj5ef/4osvpjnmySef1Pz8/LKU+/PPP9fc3d2t58XRo0c1QPv999/THDdkyBDNYDBou3fvtt525coVrVChQhqgnTp1StM09X4WKFBAe/nll9Pc/+LFi5qvr2+a21P+/X744Ydpjq1Tp44WHBxsvR4dHZ3u360QQjgaGR4vhBAO5u+//8ZkMll7oFO88cYbaJrGP//888DHuLtnNCkpiStXrlCxYkUKFCjwwKHd99O2bVuKFClCqVKl6N69O56enixdupSSJUsCqlf3v//+o0ePHty8eZPLly9z+fJlrly5QmhoKMeOHbOuNt+sWTOioqI4cuQIoHrUmzdvTrNmzdiwYQOget81TUvT0373a4uNjeXy5cs0btwYTdPYvXt3uswDBw5Mc/3vv/8GSPf+Dh8+PN19CxQowNatWzl//nx23yoAXnvttTTXhwwZkibDkiVLsFgs9OjRw/peXb58mYCAACpVqsSaNWvS3N/V1ZV+/fplK8PixYtZtWpVmq8ZM2akO6537954e3tbr3fv3p1ixYpZs2akQIECxMbGsmrVqkyP+fvvv2nQoAFNmza13ubl5cWAAQOIiIjg4MGD1uOKFStG9+7drcd5eHhYR5GkCA8P59ixYzz33HNcuXLF+p7FxsbSpk0b1q9f/1CL5WU1Z4o+ffpkOgIhI0888US6n8OqVato1aqV9ZisnNvR0dGsX7+eF198kdKlS6d5jowWiLt3dfpmzZpx5cqVLA3nnzdvHp07d7aeF5UqVSI4ODjdEPnly5cTEhJC7dq1rbcVKlTIOh0lxapVq7h+/TrPPvtsmvPdZDLRsGHDdOd7ZvlPnjz5wOxCCOFIZHi8EEI4mMjISIoXL56mgILU1eQjIyMf+Bi3b99m4sSJzJgxg3PnzqWZI37jxo2Hzvbtt99SuXJlbty4wc8//8z69evTDIE9fvw4mqbx7rvv8u6772b4GJcuXaJEiRLWQnzDhg2ULFmS3bt3M378eIoUKcLnn39u/Z6Pjw+1atWy3v/06dO89957LF26lGvXrqV57Htfm5OTk/UDhRSRkZEYjUbrVIIUgYGB6bJ++umn9OnTh1KlShEcHEynTp3o3bs35cuXf9BbBagi524VKlTAaDRapxUcO3YMTdPSHZfi3oXfSpQo8cBh2Pdq3rx5lhaiuzeDwWCgYsWK910HYdCgQSxYsICOHTtSokQJ2rdvT48ePdJsoRYZGUnDhg3T3ffu87l69epERkZSsWLFdIXnvT+XY8eOAapozsyNGzfSTNnIiqzmTFGuXLlsPX7JkiVp27btfY/JyrmdUrDeneV+7i3sU96Xa9eu4ePjk+n9Dh06xO7du+nduzfHjx+33t6yZUu+/fZbYmJirPePjIwkJCQk3WNUrFgxzfWUn13r1q0zfM5787i5uVnnrN+d/973RgghHJ0U7UIIkQ8NGTKEGTNmMHz4cEJCQvD19cVgMNCzZ89H2rKrQYMG1tXju3btStOmTXnuuec4cuQIXl5e1sceOXIkoaGhGT5Gyh/yxYsXp1y5cqxfv56yZcuiaRohISEUKVKEYcOGERkZyYYNG2jcuLF1VW6z2Uy7du24evUqo0aNokqVKnh6enLu3Dn69u2b7rW5urred0XvB+nRowfNmjXj999/Z+XKlXz22Wd88sknLFmyhI4dO2b78e4tSC0WCwaDgX/++QeTyZTu+Hu3astOz25u8Pf3Jzw8nBUrVvDPP//wzz//MGPGDHr37m2dB53TUn7Gn332WZqe3btltMVdTsvpn0V2z+2syui8AtJ8kJeRuXPnAmpP+xEjRqT7/uLFi7M96iPlNcyZMyfN4pIpnJzS/tmaWXYhhMhrpGgXQggHU6ZMGVavXs3NmzfT9LYfPnzY+v0Ume2XvGjRIvr06cMXX3xhvS0+Pp7r16/nWE6TycTEiRNp1aoV33zzDW+99Za1B9rZ2fmBvYqghrquX7+ecuXKUbt2bby9valVqxa+vr4sX76cXbt2WfdgBti3bx9Hjx5l1qxZaRYRu9/w7HuVKVMGi8XCiRMn0vTipgzTv1exYsUYNGgQgwYN4tKlS9StW5cJEyZkqWg/duxYmh7Z48ePY7FYrIttVahQAU3TKFeunO77daf0gqbQNI3jx48/cFEvFxcXHn/8cR5//HEsFguDBg1i2rRpvPvuu1SsWJEyZcpk+N7eez6XKVOG/fv3o2lamvP63vumjJDw8fHJ0jmWVVnNaStZPbdT/o3t37/fZlk0TeOXX36hVatWDBo0KN33x40bx7x586xFe5kyZdL0xqe497aUn52/v3+O/ezsac94IYR4WDKnXQghHEynTp0wm8188803aW6fNGkSBoMhTbHo6emZYSFuMpnS9aR9/fXX1q2SckrLli1p0KABkydPJj4+Hn9/f1q2bMm0adO4cOFCuuOjo6PTXG/WrBkRERHMnz/fOlzeaDTSuHFjvvzyS5KSktLMZ0/pebv7tWmalm6LsftJef/u3m4OYPLkyWmum83mdMPt/f39KV68eKbbkN3r22+/TXP966+/TpPhqaeewmQyMXbs2HQ/L03TuHLlSpaeJyfMnj2bmzdvWq8vWrSICxcu3PfDiXvzGY1Ga5Gf8h516tSJbdu2sXnzZutxsbGx/PDDD5QtW5agoCDrcefPn2fRokXW4+Li4vjhhx/SPEdwcDAVKlTg888/59atW+ky3XuOZVVWc9pKVs/tIkWK0Lx5c37++WdOnz6d5nsP6j3Pqo0bNxIREUG/fv3o3r17uq9nnnmGNWvWWNd6CA0NZfPmzYSHh1sf4+rVq+nmvoeGhuLj48NHH31EUlJSuud9mJ9dyo4QOfmBpBBC5DbpaRdCCAfz+OOP06pVK8aMGUNERAS1atVi5cqV/O9//2P48OFp5mIHBwezevVqvvzyS+tw84YNG/LYY48xZ84cfH19CQoKYvPmzaxevRo/P78cz/vmm2/y9NNPM3PmTF599VW+/fZbmjZtSo0aNXj55ZcpX748UVFRbN68mbNnz7Jnzx7rfVMK8iNHjvDRRx9Zb2/evDn//PMPrq6u1K9f33p7lSpVqFChAiNHjuTcuXP4+PiwePHibM1xrV27Ns8++yzfffcdN27coHHjxvz777/pegVv3rxJyZIl6d69O7Vq1cLLy4vVq1ezffv2NCMY7ufUqVN06dKFDh06sHnzZus2cylz9CtUqMD48eMZPXo0ERERdO3aFW9vb06dOsXvv//OgAEDGDlyZJZfW0YWLVqU4XDxdu3apdkyrlChQjRt2pR+/foRFRXF5MmTqVixIi+//HKmj92/f3+uXr1K69atKVmyJJGRkXz99dfUrl3bOhf8rbfe4tdff6Vjx44MHTqUQoUKMWvWLE6dOsXixYut0xdefvllvvnmG3r37s3OnTspVqwYc+bMSbc9odFo5KeffqJjx45Uq1aNfv36UaJECc6dO8eaNWvw8fFh2bJl2X6fsprzYR09etQ65PxuRYsWpV27dtk6t6dMmULTpk2pW7cuAwYMoFy5ckRERPDXX3+lKZwf1rx58zCZTBlugwjQpUsXxowZw2+//cbrr7/O//3f/zF37lzatWvHkCFDrFu+lS5dmqtXr1p7w318fJg6dSovvPACdevWpWfPnhQpUoTTp0/z119/0aRJk3QfVj6Iu7s7QUFBzJ8/n8qVK1OoUCGqV6+e5Tn/QghhF3J1rXohhBDZdu+Wb5qmtkYaMWKEVrx4cc3Z2VmrVKmS9tlnn6XZ0knTNO3w4cNa8+bNNXd3dw2wbv927do1rV+/flrhwoU1Ly8vLTQ0VDt8+LBWpkyZNFvEZXfLt+3bt6f7ntls1ipUqKBVqFDBuvXXiRMntN69e2sBAQGas7OzVqJECe2xxx7TFi1alO7+/v7+GqBFRUVZbwsLC9MArVmzZumOP3jwoNa2bVvNy8tLK1y4sPbyyy9re/bs0QBtxowZ1uP69OmjeXp6Zvh6bt++rQ0dOlTz8/PTPD09tccff1w7c+ZMmq2jEhIStDfffFOrVauW5u3trXl6emq1atXSvvvuu/u+V5qWut3WwYMHte7du2ve3t5awYIFtcGDB2u3b99Od/zixYu1pk2bap6enpqnp6dWpUoV7bXXXtOOHDliPaZFixZatWrVHvjc92bI7CvlZ55yDvz666/a6NGjNX9/f83d3V3r3Llzui3F7t3ybdGiRVr79u01f39/zcXFRStdurT2yiuvaBcuXEhzvxMnTmjdu3fXChQooLm5uWkNGjTQ/vzzz3SZIyMjtS5dumgeHh5a4cKFtWHDhmnLly/P8BzdvXu39tRTT2l+fn6aq6urVqZMGa1Hjx7av//++8D3hgy2fMtqzpT3a+HChQ98nrufL7OvFi1aWI/L6rmtaZq2f/9+7cknn7RmDQwM1N59913r91N+/tHR0Wnul/JvOWUbtnslJiZqfn5+Gf7bu1u5cuW0OnXqWK/v3r1ba9asmebq6qqVLFlSmzhxojZlyhQN0C5evJjmvmvWrNFCQ0M1X19fzc3NTatQoYLWt29fbceOHdZjMvv3m/K67rZp0yYtODhYc3Fxke3fhBAOyaBpOTRWSgghhBBZ8sEHHzB27Fiio6OztHK7ntauXUurVq1YuHBhmu3WhHhUw4cPZ9q0ady6dUsWlRNCiPuQOe1CCCGEEMKmbt++neb6lStXmDNnDk2bNpWCXQghHkDmtAshhBBCCJsKCQmhZcuWVK1alaioKKZPn05MTAzvvvuu3tGEEMLuSdEuhBBCCCFsqlOnTixatIgffvgBg8FA3bp1mT59Os2bN9c7mhBC2D2Z0y6EEEIIIYQQQtgpmdMuhBBCCCGEEELYKSnahRBCCCGEEEIIOyVz2gGLxcL58+fx9vbGYDDoHUcIIYQQQgghRB6naRo3b96kePHiGI2Z96dL0Q6cP3+eUqVK6R1DCCGEEEIIIUQ+c+bMGUqWLJnp96VoB7y9vQH1Zvn4+OicRtibpKQkVq5cSfv27XF2dtY7jhA2Jee7yE/kfBf5iZzvIr9wpHM9JiaGUqVKWevRzEjRDtYh8T4+PlK0i3SSkpLw8PDAx8fH7v/hC/Go5HwX+Ymc7yI/kfNd5BeOeK4/aIq2LEQnhBBCCCGEEELYKSnahRBCCCGEEEIIOyVFuxBCCCGEEEIIYadkTnsWmc1mkpKS9I4h7mIymXBycpJt+oQQQgghhBB5lhTtWXDr1i3Onj2Lpml6RxH38PDwoFixYri4uOgdRQghhBBCCCFynBTtD2A2mzl79iweHh4UKVJEenXthKZpJCYmEh0dzalTp6hUqRJGo8z2EEIIIYQQQuQtUrQ/QFJSEpqmUaRIEdzd3fWOI+7i7u6Os7MzkZGRJCYm4ubmpnckIYQQQgghhMhR0jWZRdLDbp+kd10IIYQQQgiRl0nFI4QQQgghhBBC2Ckp2oUQQgghhBBCCDslc9pzidmise3UVS7djMff240G5QphMsqQeyGEEEIIIYQQmZOe9lywfP8Fmn7yH8/+uIVhv4Xz7I9baPrJfyzff8Hmz71582ZMJhOdO3e2+XNlJiIiAoPBQHh4+AOPHTp0KMHBwbi6ulK7dm2bZxNCCCGEEEIIeyZFu40t33+BgXN3ceFGfJrbL96IZ+DcXTYv3KdPn86QIUNYv34958+ft+lz5ZQXX3yRZ555Ru8YQgghhBBCCKE7KdqzSdM04hKTs/R1Mz6J95ceQMvoce5cfrD0IDfjk7L0eJqW0SNl7tatW8yfP5+BAwfSuXNnZs6cme6YpUuXUqlSJdzc3GjVqhWzZs3CYDBw/fp16zFhYWE0a9YMd3d3SpUqxdChQ4mNjbV+v2zZsnz00Ue8+OKLeHt7U7p0aX744Qfr98uVKwdAnTp1MBgMtGzZMtPMU6ZM4bXXXqN8+fLZeq1CCCFEtljMGCLDKHF1M4bIMLCY9U4khO3I+S7yizx6rtvNnPaPP/6Y0aNHM2zYMCZPngxAfHw8b7zxBr/99hsJCQmEhoby3XffUbRoUev9Tp8+zcCBA1mzZg1eXl706dOHiRMn4uRkm5d2O8lM0HsrcuSxNOBiTDw1PliZpeMPfhiKh0vWX9eCBQuoUqUKgYGB9OrVi+HDhzN69Gjr9nWnTp2ie/fuDBs2jP79+7N7925GjhyZ5jFOnDhBhw4dGD9+PD///DPR0dEMHjyYwYMHM2PGDOtxX3zxBePGjePtt99m0aJFDBw4kBYtWhAYGMi2bdto0KABq1evplq1ari4uGT5NQghhBA57uBSWD4Kp5jz1AOInAo+xaHDJxDURe90QuQsOd9FfpGHz3W76Gnfvn0706ZNo2bNmmluHzFiBMuWLWPhwoWsW7eO8+fP89RTT1m/bzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvvdx+CXZp+vTp9OrVC4AOHTpw48YN1q1bZ/3+tGnTCAwM5LPPPiMwMJCePXvSt2/fNI8xceJEnn/+eYYPH06lSpVo3LgxU6ZMYfbs2cTHpw7579SpE4MGDaJixYqMGjWKwoULs2bNGgCKFCkCgJ+fHwEBARQqVMjGr1wIIYTIxMGlsKA3xNwzZSzmgrr94FJ9cglhC3K+i/wij5/ruve037p1i+eff54ff/yR8ePHW2+/ceMG06dP55dffqF169YAzJgxg6pVq7JlyxYaNWrEypUrOXjwIKtXr6Zo0aLUrl2bcePGMWrUKD744AOb9Oi6O5s4+GFolo7dduoqfWdsf+BxM/vVp0G5Bxey7s6mLD0vwJEjR9i2bRu///47AE5OTjzzzDNMnz7dOjz9yJEj1K9fP839GjRokOb6nj172Lt3L/PmzbPepmkaFouFU6dOUbVqVYA0H7gYDAYCAgK4dOlSlvMKIYQQNmcxw/JRkOnENQMsfwuqdAZj1v/PFcIuyfku8ot8cK7rXrS/9tprdO7cmbZt26Yp2nfu3ElSUhJt27a13lalShVKly7N5s2badSoEZs3b6ZGjRpphsuHhoYycOBADhw4QJ06dTJ8zoSEBBISEqzXY2JiAEhKSiIpKSnNsUlJSdYi1WKxAODmlLUBCk0q+BHg40ZUTHyGp5ABCPB1o0kFvyxt/6ZpWpbntf/0008kJydTvHjxNPd3dXVlypQp+Pr6Wh8v5XUB1nbK67116xYDBgxgyJAh6Z6jdOnS1uOdnJzSPI7BYMBsNqd53+5uZ+W13p0nMxaLBU3TSEpKwmSyzT/ClHPi3nNDiLxIzneRlxkiw3C6txcmDQ1izpF8cj1amaa5lksIW5DzXeQXjnyuZ/XvLV2L9t9++41du3axfXv63uiLFy/i4uJCgQIF0txetGhRLl68aD3m7oI95fsp38vMxIkTGTt2bLrbV65ciYeHR5rbnJycCAgI4NatWyQmJmbpdd3tzTZlGfn7YQyk/ewnpUQf2bossbduZvtx7yc5OZnZs2czfvx4WrVqleZ7vXr1YsaMGbz44ouULVuWVatWWT+0ANi4cSMAN2/exGg0Ur16dfbt24e/v3+654mPjyc+Ph6LxUJ8fHyaxzGbzSQkJBATE2P9gCQmJibNMfeTkJCA2Wx+4PGJiYncvn2b9evXk5ycnKXHflirVq2y6eMLYU/kfBd5UYmrm9U8xwcI37CCcwey9v+VEPZKzneRXzjyuR4XF5el43Qr2s+cOcOwYcNYtWoVbm5uufrco0eP5vXXX7dej4mJoVSpUrRv3x4fH580x8bHx3PmzBm8vLweKueT9X1wd3fnwz8PcTEmdQ54gK8b73auSofqAQ//QjLxxx9/cP36dQYNGoSvr2+a73Xv3p1ff/2V4cOHM2TIEL777jvryu/h4eH89ttvAPj4+ODj48OYMWNo3LgxY8aM4aWXXsLT09M6JeHrr78GwGg04ubmlua9M5lMuLq64uPjg4eHB+7u7oSFhREYGIibm1u6XCmOHz/OrVu3uHbtGomJiZw8eRKAoKCgDKc7xMfH4+7uTvPmzW12HiUlJbFq1SratWuHs7OzTZ5DCHsh57vIywyRPmphogeo3SyUWnbWGyNEdsn5LvILRz7Xs9qhqVvRvnPnTi5dukTdunWtt5nNZtavX88333zDihUrSExM5Pr162l626OioggIUIVuQEAA27ZtS/O4UVFR1u9lxtXVFVdX13S3Ozs7p/sj1Ww2YzAYMBqNGI0Pt25fp5rFCa1ejG2nrnLpZjz+3m40KFcoS0PiH8aMGTNo27YtBQsWTPe97t2789lnn7F//35q1qzJokWLeOONN5gyZQohISGMGTOGgQMH4u7ujtFopHbt2qxbt44xY8bQokULNE2jQoUKPPPMM2nej5T36G4pt7m4uDBlyhQ+/PBD3n//fZo1a8batWszzD5gwIA0i+UFBwcDaqX7smXLpjveaDRiMBgy/NnltNx4DiHshZzvIk8q31ytJJzpMEoD+BTHqXxzh533KIRV+ebgXQxuXsjkADnfRR7hwL/bs/q3lm5Fe5s2bdi3b1+a2/r160eVKlUYNWoUpUqVwtnZmX///Zdu3boBauG006dPExISAkBISAgTJkzg0qVL1uHbq1atwsfHh6CgoNx9QQ9gMhoIqeCXK8+1bNmyTL/XoEGDNPPiu3TpQpcuqVsgTJgwgZIlS6bpta5fvz4rV2a+LV1ERES628LDw9Nc79+/P/37939g9syKeSGEEOKRGU0QOhEW9sn8mA4f290fdUI8FKMJKrWHXbMyP0bOd5EXGE3Q9kNYklGtcaeT1MHPdd2Kdm9vb6pXr57mNk9PT/z8/Ky3v/TSS7z++usUKlQIHx8fhgwZQkhICI0aNQKgffv2BAUF8cILL/Dpp59y8eJF3nnnHV577bUMe9JFet999x3169fHz8+PjRs38tlnnzF48GC9YwkhhBC24ep9p5HBajNPfu/we/kKYWVOhlN3Ri+6+UL8jbTfbzBAzneRd1w7pS4NJtDMqbf7FFcFu4Of67qvHn8/kyZNwmg00q1bNxISEggNDeW7776zft9kMvHnn38ycOBAQkJC8PT0pE+fPnz44Yc6pnYsx44dY/z48Vy9epXSpUvzxhtvMHr0aL1jCSGEELYR/ou6rNeP5CpdCN+wnOBrf2GIOXOfYcRCOKCDf8C1CPDwg6F7SD67g/ANK6hTMBZT+Gw4tAzafgAuHg94ICHs3M2LEDZZtZ+aRrJ7YcI3rKB2s1C7HBL/MOyqaL93aLSbmxvffvst3377bab3KVOmDH///beNk+VdkyZNYtKkSXrHEEIIIWwv/gYc/lO16/RC86/JuQMx1K5ZHadlg2HLVGg4EJxzd4FcIXKcpsHGyard4BVw80Yr05RzB2Ko1b41plNr4cZp2PwttHhTz6RCPLo1EyApFkrWh+rd0ZKT1blepmmeKNgBHm5lNSGEEEIIR3Pgd0iOh8KBUDx1IVyt2lPgUwJuRcHe33QMKEQOOfEfXNwHzh7Q4OW033Nyg7bvq3bYJLgZlfv5hMgpUQdg91zVbj8BDLZZ6FtvUrQLIYQQIn8I/1Vd1n4u7R92JhcIubOey8avwGJOf18hHEnYnVGUwX3Bo1D671fvBiWCVe/kmgm5Gk2IHKNpsGIMaBYI6gqlG+qdyGakaBdCCCFE3nflBJzZAgYj1Hwm/ffr9ga3AnD1pJrrK4SjOrcTIjaA0QlCXsv4GIMBQj9S7d1zIOpg7uUTIqccXw0n16gPXtt+oHcam5KiXQghhBB53547vezlW4FPsfTfd/VSq2mDmgusaemPEcIRpCzIVeNp8C2Z+XGlG0HQE6qXcuU7uRJNiBxjTk49bxsMgELl9M1jY1K0CyGEECJvs1hgz5256rWfy/y4hq+Akzuc3w2n1udONiFy0uXjqSNFmgx78PFtPwCjM5z4F46ttmk0IXLU7tkQfRjcC0LzkXqnsTkp2oUQQgiRt0VsgBtnwNUXqnTO/DjPwlD3BdUOk51VhAPa9BWgQeWO4F/1wccXKq8+rALVa2lOtmk8IXJEfAysuTO9o+VoVbjncVK05xaLGU5tgH2L1KUsciOEEELkjpSh8dWfBGf3+x8bMhgMJjVP8ny4zaMJkWNuXkwdUdJ0eNbv13ykKnqiD6n57ULYu42TITYa/CpCvRf1TpMrpGjPDQeXwuTqMOsxWPySupxcXd1uY5s3b8ZkMtG58316FmwsIiICg8FAeHj4fY/bs2cPzz77LKVKlcLd3Z2qVavy1Vdf5U5IIYQQeVPCTTj4P9WudZ+h8SkKloHqT6n2Rvk/SDiQLd+BORFKNVLz1bPKvSC0GKXaayaofzNC2KsbZ2Hzt6rd7kMwOeubJ5dI0W5rB5fCgt4Qcz7t7TEX1O02LtynT5/OkCFDWL9+PefPn3/wHXS0c+dO/P39mTt3LgcOHGDMmDGMHj2ab775Ru9oQgghHNXBpZAUB4UqQKkGWbtPk+F37vuHWk1eCHt3+zps/1m1m47I/v3rvaSGysdGpy5kJ4Q9+vdDSI6HMk0hsJPeaXKNFO3ZpWmQGJu1r/gY+Of/gIxWoL1z2/JR6risPF42V7K9desW8+fPZ+DAgXTu3JmZM2emO2bp0qVUqlQJNzc3WrVqxaxZszAYDFy/ft16TFhYGM2aNcPd3Z1SpUoxdOhQYmNjrd8vW7YsH330ES+++CLe3t6ULl2aH374wfr9cuXUao516tTBYDDQsmXLDPO++OKLfPXVV7Ro0YLy5cvTq1cv+vXrx5IlS7L1uoUQQgirlKHxtZ9Nuzf7/QRUh4rt1Kram762XTYhcsqOnyHxJhSpCpXaZ//+Ti7Qbpxqb/5G9WYKYW/O7YS981U7dHzWf6fnAU56B3A4SXHwUfEcejBN9cB/XCprh799Hlw8s/zoCxYsoEqVKgQGBtKrVy+GDx/O6NGjMdw5wU+dOkX37t0ZNmwY/fv3Z/fu3YwcmXb1xRMnTtChQwfGjx/Pzz//THR0NIMHD2bw4MHMmDHDetwXX3zBuHHjePvtt1m0aBEDBw6kRYsWBAYGsm3bNho0aMDq1aupVq0aLi4uWX4NN27coFChQlk+XgghhLC6FqEWocMANXtm775Nh8PxVbB7nlroyMvfBgGFyAFJ8bBlqmo3GQbGh+yTq9IZyjSByI3w7zh4alrOZRTiUWkarLizxVvNnlC8jr55cpn0tOdh06dPp1evXgB06NCBGzdusG7dOuv3p02bRmBgIJ999hmBgYH07NmTvn37pnmMiRMn8vzzzzN8+HAqVapE48aNmTJlCrNnzyY+Pt56XKdOnRg0aBAVK1Zk1KhRFC5cmDVr1gBQpEgRAPz8/AgICMhyEb5p0ybmz5/PgAEDHuVtEEIIkV/tudMjU645FMjiB+QpyjSBkvXBnABbv8/5bELklD2/Quwl8CkJNbo//OMYDNB+vGrv/Q3O7cqZfELkhMN/wulN4OQGbd7VO02uk5727HL2UD3eWRG5CeZl4Zfn84ugTOOsPXcWHTlyhG3btvH7778D4OTkxDPPPMP06dOtw9OPHDlC/fr109yvQYO08/327NnD3r17mTdvnvU2TdOwWCycOnWKqlXVdiI1a9a0ft9gMBAQEMClS5eynPde+/fv54knnuD999+nffuHGOYlhBAif9M02POLat9vb/bMGAxqbvv852HbT6rt5pOTCYV4dBYzbJqi2o0HP/qiXCXqQs1n1BDkle9A37/y1RBkYaeSE2HVe6rdeAj4ltQ3jw6kaM8ugyHrQ9QrtAaf4mrRuQzntRvU9yu0BqMpJ1Myffp0kpOTKV48dSi/pmm4urryzTff4Ovrm6XHuXXrFq+88gpDhw5N973SpUtb287Oaf+TMBgMWCyWh8p+8OBB2rRpw4ABA3jnnXce6jGEEELkc6c3q+HxLl5Q9fGHe4zATlC4Mlw+CjtnQpP0/xcKoatDS9Viie4FoW7vnHnMNu+pHRciN8Lhv6DqYznzuEI8rB3T1Xnu6a+mgORDMjzelowm6PDJnSv3fkp553qHj3O8YE9OTmb27Nl88cUXhIeHW7/27NlD8eLF+fVXtShPYGAgO3bsSHPf7du3p7let25dDh48SMWKFdN9ZXVuespxZvOD96Y/cOAArVq1ok+fPkyYMCFLjy+EEEKkE35nhFhQ12ytB5OG0QiN7xTqW76D5IQciSZEjtC01JXeGwx4+PP8Xr4lIeQ11V71nurlFEIvt6/Bujv1VOsx4Oqtbx6dSNFua0FdoMds8CmW9naf4ur2oC45/pR//vkn165d46WXXqJ69eppvrp168b06dMBeOWVVzh8+DCjRo3i6NGjLFiwwLrCfMpidaNGjWLTpk0MHjyY8PBwjh07xv/+9z8GDx6c5Tz+/v64u7uzfPlyoqKiuHHjRobH7d+/n1atWtG+fXtef/11Ll68yMWLF4mOjn60N0QIIUT+khgHB+7szf4wQ+PvVrMHeBeHmxdSVy0Wwh6cXAsXwsHJHRq8krOP3XQEeBaBqyfUyvRC6GX956pw9w+COi/onUY3UrTnhqAuMHw/9PkTuk1Xl8P32aRgBzU0vm3bthkOge/WrRs7duxg7969lCtXjkWLFrFkyRJq1qzJ1KlTGTNmDACurq6Amqu+bt06jh49SrNmzahTpw7vvfdemmH3D+Lk5MSUKVOYNm0axYsX54knnsjwuEWLFhEdHc3cuXMpVqyY9eveefdCCCHEfR3+U21/VaAMlA55tMdycoWQQaq9cQo85NQvIXLcxsnqsm5v8PTL2cd29YZW6m9C1n2siiYhctuVE7D1zi4G7cfl+OhkRyJz2nOL0QTlmuXKUy1btizT7zVo0ADtrv3eu3TpQpcuqR8eTJgwgZIlS+Lm5ma9rX79+qxcuTLTx4yIiEh3W3h4eJrr/fv3p3///vfN/cEHH/DBBx/c9xghhBDigVKGxtd+7uG3v7pbcF9Y/xlcOQZH/nr4OfJC5JTzu1VPu8GUOpQ9p9V5QRVM0YdUb2eoTFsUuWz1B2BJggptoGJbvdPoSnra87nvvvuO7du3c/LkSebMmcNnn31Gnz599I4lhBBCPJwbZ+Hkne1Na2Vzb/bMuHpD/ZdVO2ySmksshJ42fqUuq3eDgmVs8xwmp9Qt4LZOUwuBCZFbIjerhRYNxtTzMB+Toj2fO3bsGE888QRBQUGMGzeON954Q3q7hRBCOK49vwGa2me9YNmce9yGr6r9gc/thIiwnHtcIbLrygm1ujtA0+G2fa5KbdUuR5Yk1espRG6wWGDlnekZdXtD0SB989gBKdrzuUmTJnH+/Hni4+M5evQo7777Lk5OMmtCCCGEA9I02KN2SHnkBeju5VUEaj+v2ilziYXQw6avQbNApfZQtJrtn6/9eNXbefB/cHqL7Z9PiANL1AekLl6payvkc1K0CyGEECJvOLsdrhwHZw8IynjR00fSeIgqXo6vhov7cv7xhXiQm1EQ/otqNxmeO89ZtBrU6aXaK8bI9BBhW0nxsHqsajcdDl7+usaxF1K0Z5Emv6DskvxchBBCWKUUM1W72GYv30LloNqTqp2yP7YQuWnrVDAnQMkGUKZx7j1vq3fA2RPO7YD9i3PveUX+s3Uq3DgNPiWgkY0WWXRAUrQ/gMmkthZITEzUOYnISFxcHADOzs46JxFCCKGrpHjYv0S1az9ru+dpMkxdHlgC1yJs9zxC3Cs+Brbf2TO96XAwGHLvub2Lqr3bQfWCJsXn3nOL/ONWNKz/QrXbvAcuHvrmsSMyefkBnJyc8PDwIDo6GmdnZ4w5sXWMeGSaphEXF8elS5coUKCA9cMVIYQQ+dSRvyDhBviUhLLNbfc8xWqphblO/AebvoHOn9vuuYS4284Z6hwvHAiVO+b+84e8Bjt+Vr2gW6emFvFC5JS1EyHxJhSrDTV66J3GrkjR/gAGg4FixYpx6tQpIiMj9Y4j7lGgQAECAgL0jiGEEEJv4XcWoKvVM2f2Zr+fpiNU0b57DrQYpRapE8KWkhNg83eq3WSo7c/xjLh4qN7PP16FDV+qfdw9C+d+DpE3RR+BnTNVO3SCPue4HZOiPQtcXFyoVKmSDJG3M87OztLDLoQQAmIuwIl/VbuWDYfGpyjbDIrXhfO7YNs0aP2O7Z9T5G97foNbF8G7uL49kDWfUb3sF/aoXtHOX+iXReQtK98FzQxVHoOyTfVOY3ekaM8io9GIm5ub3jGEEEIIca99C9QWWKUaQuGKtn8+g0HNKV7QG7b9qFbxdvWy/fOK/Mlihk1TVDvkNXBy0S+L0QjtJ8Csx2DHDGgwAIoE6pdH5A0n18KxFWB0grZj9U5jl2TcgRBCCCEcl6alrhqfG73sKao8BoUqQPx12DUr955X5D+H/1JbGbr5QnAfvdNAuWYQ2En1iq56T+80wtFZzLDizmil+v1z54NXByRFuxBCCCEc1/ndEH0YnNxSt2PLDUZT6krym76BZJlCJ2xA0yBskmo3GGCbrQwfRrsPVa/o0eVwcp3eaYQjC/8FovapD6VajNI7jd2Sol0IIYQQjmvPnQXoqnQG9wK5+9y1eoJXANw8D/sW5u5zi/whYoNaO8HJDRq8oneaVIUrQb2XVHvlGNVbKkR2JdyC/8ardvM3waOQvnnsmBTtQgghhHBMyQmpxXLt53L/+Z1codFA1d74FVgsuZ9B5G1hk9VlnV72t0tBi1Hg6gsX96V+eCZEdmz6Wi2wWLCsGkkiMiVFuxBCCCEc09EVcPsaeBeD8q30yVDvRVW4XD4CR//RJ4PImy7sUbsiGIwQMljvNOl5+kHzkar97zhIjNU3j3AsMRdSF1hs+4H6EFRkSop2IYQQQjimlAXoavZQc8z14OYD9V9U7bDJag6yEDlh41fqstpTUKicvlky0/AVKFBG9ZZu+lrvNMKR/DcekuLUrh9BXfVOY/ekaBdCCCGE47l1CY6tVO1aOgyNv1vDgWByhbPb4PRmfbOIvOHqKTjwu2qnLHhoj5xcVS8pqA8ZYi7oGkc4iAt7IXyeaod+pLbRFPclRbsQQgghHM++hWrLqeJ1wb+Kvlm8i0LtO9vNpcxBFuJRbP4GNAtUaAPFauqd5v6qPQklG6he0zXj9U4j7J2mqcUL0aB6NyhZT+9EDkGKdiGEEEI4nvA7C1/psQBdRhoPVXOPj62AqAN6pxGO7FY07J6r2k1H6JslKwwGCJ2g2rvnqYXphMjM0RVwar0andTmfb3TOAwp2oUQQgjhWC7sVfv6mlxUT4098KsAVbuodspcZCEextbvITkeSgRD2aZ6p8maUg3U3Hs0WDFG1nYQGTMnwap3VbvRq1CwjL55HIgU7UIIIYRwLCnbSwV2tK99fZsOV5f7FsH107pGEQ4q4SZs/1G1mwx3rLm+bd9XH6SdWpe63oQQd9s5Ey4fBQ8/aPaG3mkcihTtQgghhHAc5iTYu0C19V6A7l7F60D5lmqu/aZv9E4jHNHOmRB/A/wqQpXOeqfJnoJloeGrqr3yXTAn6xpH2Jn4G7B2omq3HA1uvvrmcTBStAshhBDCcRxbBXGXwbMIVGyjd5r0mgxXl7tmQ+wVXaMIB5OcCJu/U+0mw/TbxvBRNHsD3AvB5SOwa6beaYQ92fAlxF2BwpUhuK/eaRyOFO1CCCGEcBx7UvZmfwZMzvpmyUj5llCsFiTfhm0/6J1GOJJ9C+DmefAups5vR+ReQPWiAqyZCPExusYRduJaJGyZqtrtxtnn7247J0W7EEIIIRxD3FU4sly1az2rb5bMGAypve3bpkFirK5xhIOwWFIXMGw0UO1/7qjq9QO/SmpETNiXeqcR9uDfD8GcAOWaQ+VQvdM4JCnahRBCCOEY9i0CSxIE1ISA6nqnyVzQE1CwHNy+pobJC/EgR/5WC3S5+kJwP73TPBqTM7Qfp9qbv5NFGfO7sztg/yLAAO0nONbiinZEinYhhBBCOIaUofH2sjd7ZowmaDJUtTd/qxbPEyIzmgYbJ6t2/ZfAzUfXODmicgco20z1rq4eq3caoRdNgxVvq3bt56BYTX3zODAp2oUQQghh/y4dgvO7wegENZ7WO82D1XoOPP3hxhnYv1jvNMKeRW6Cs9vB5KqGxucFBgOETgAMqpf17E69Ewk9HPwfnNkKzh7Q+h290zg0KdqFEEIIYf/C7/SyVwoFz8L6ZskKZ7fUAixsspqzLERGwiapy9rPgZe/vllyUrFaqWtPrHhb9bqK/CM5AVa/r9qNh4BPcX3zODgp2oUQQghh38zJsHe+ate20wXoMlLvRXDxhuhDcGyl3mmEPbq4H46vAoNRFTZ5TZt3wckdzmyBQ0v1TiNy07Yf4VoEeAVA46F6p3F4UrQLIYQQwr6dXAO3otT+z5UcaOVh9wJqJW1InbMsxN1SVowPegL8KuibxRZ8iqd+GLHqfbUXvcj74q7C+k9Vu/U74Oqlb548QIp2IYQQQti38HnqssbT4OSib5bsajQITC5wejOc3qJ3GmFPrkWmrneQsk1gXtRkGHgVhWunYPuPeqcRuWHdpxB/A4pWt/+FQx2EFO1CCCGEsF+3r8Hhv1XbEf/48ykGtXqqdthkXaMIO7P5G9DMUL4VFK+tdxrbcfVKXYRs3aeqF1bkXZePp34403682k1DPDIp2oUQQghhvw78rraN8g9SC1s5osbDAAMc/Uetgi9E7GXYNUe1mw7XNUquqP286nWNv64Kd5F3rX4fLMlQqT1UaKV3mjxDinYhhBBC2K/wu/ZmNxj0zfKwCleEqo+p9sYp+mYR9mHbD5B8G4rVhnIt9E5je0YTtB+n2tt/hCsn9M0jbCMiDA7/CQYTtBund5o8RYp2IYQQQtiny8fU/tUGE9TooXeaR9NkhLrctwCun9E3i9BXwi3YOk21mw533A+jsqtCa6jYTvXCrnpP7zQip1kssGKMagf3Af8q+ubJY6RoF0IIIYR9Sullr9gGvIvqm+VRlQyGss1UwbLlO73TCD3tmq2GiRcqD1W76J0md7Ufp7a3O/wnRGzUO43ISfsWwoVwtc1ly7f1TpPnSNEuhBBCCPtjMd+1N7sDLkCXkZS5yztnyWJc+ZU5CTZ/q9qNh+a/Rbr8q0LdPqq9cozqnRWOLzEO/h2r2s1eB68i+ubJg6RoF0IIIYT9ObUOYs6Bmy9U7qh3mpxRoQ0E1ICkWNj+k95phB72LYKYs+DpD7We1TuNPlq9DS5ecH437F+kdxqRE7Z8q35f+5ZS21yKHCdFuxBCCCHsT/iv6rJ6d3B20zdLTjEYUvfj3vq96p0S+YfFAhsnq3bIoLxzXmeXl7/qjQVYPRaSbuubRzyam1Gp21m2eT//ntc2JkW7EEIIIexLfAwcWqbaeWVofIqgrlCgDMRdgd1z9U4jctOxFRB9GFx9oN6LeqfRV6NBqlc25mzqdAHhmNZ+BIm3oHhdqN5N7zR5lhTtQgghhLAvB/9Q22EVrgwlgvVOk7NMTtB4iGpv+lrNcRb5Q0pvZL1+atpHfubsDm3urCAfNgluXdI3j3g4UQfVwooAoR+BUUpLW5F3VgghhBD2JWVofK1n8+Z2WHV6gUdhuHEaDvyudxqRGyI3w5ktYHKROb8pqneH4nVUL+2aj/ROIx7GqndBs0DVx6FMiN5p8jQp2oUQQghhP66ehNObAAPUfEbvNLbh7A6NXlXtjV+BpumbR9heylz2Ws+Cd4CuUeyG0ah6ZwF2zYJLh/TNI7Ln+L9wfDUYnaHtWL3T5HlStAshhBDCfuz5TV1WaAW+JfTNYkv1+6sVtKP2qz98Rd4VdRCOLgcMaps3kapMY6jymOqtXfmu3mlEVlnMsPId1W4wAPwq6JsnH5CiXQghhBD2wWK5a2h8HluA7l7uBSG4r2qnzHUWedOmKeqy6uNQuKK+WexRuw/B6ATHV6neW2H/ds+BSwfBrQA0H6l3mnxBinYhhBBC2IfIjWqet6sPVOmsdxrbazRIDS2NDIMz2/VOI2zh+hnYt1C1mw7XNYrd8qugemtB9bZbzPrmEfeXcBP+m6DaLUaBRyF98+QTUrQLIYQQwj7sudPLXq0ruHjoGiVX+JZInbefMudZ5C2bvwVLMpRrnvd2QshJzd9UvbaXDshWiPZu41cQewkKlVfTfESukKJdCCGEEPpLuAUH/lDt2s/rGiVXNbkzx/nwnxB9RN8sImfFXVULrAE0Ga5rFLvnUQha/J9qr5mgfh8I+3PjHGz6RrXbjgUnF33z5CNStAshhBBCf4eWQVKs6r0p1VDvNLmnSKBaiAtg4xR9s4icte0HSIqDgJpQobXeaexf/ZehYDm4FaV6c4X9+W8cJN+G0o3VGg0i10jRLoQQQgj9hc9Tl3l1b/b7SemF3Ttf9WQJx5cYC1unqXbT4fnvnH4YTi7Q7s7WYZu+ln8L9uZ8eOoUptDxck7nMinahRBCCKGv66chYoNq1+qpbxY9lKoPZZqAJQm2fKd3GpETds+F21ehYFmo+oTeaRxH1S5QOkT15v43Xu80IoWmpW7xVqOHrM+gAynahRBCCKGvlL3ZyzaDAqX1zaKXlN72nTPh9jU9k4hHZU5KnffbeAiYnPTN40gMBmh/Z2XyPb+q3l2hvyN/qw9WndygzXt6p8mXpGgXQgghhH40LXXIZX5agO5eldqBfzVIvAXbf9I7jXgU+5eorQs9i+Tvc/phlQyGGk8Dd3p3NU3vRPmbOQlW3SnUGw2CAqX0zZNPSdEuhBBCCP2c2QpXT4KzZ/5e2MhgSN3He8v3kHRb1zjiIWla6iJqDV8FZ3d98ziqNu+ByVX17h75R+80+duOn+HKcfUhVNMReqfJt3Qt2qdOnUrNmjXx8fHBx8eHkJAQ/vkn9R9my5YtMRgMab5effXVNI9x+vRpOnfujIeHB/7+/rz55pskJyfn9ksRQgghxMNIWYCuWldw9dI1iu6qPQW+pSHucur7IhzLsVVqr3EXL6j/kt5pHFeB0hAySLVXvat6e0Xuu30d1n6s2i1Hg5uPrnHyM12L9pIlS/Lxxx+zc+dOduzYQevWrXniiSc4cOCA9ZiXX36ZCxcuWL8+/fRT6/fMZjOdO3cmMTGRTZs2MWvWLGbOnMl778lcCyGEEMLuJcal7s1e61ldo9gFk5OaAw1q+zezdEI4nLBJ6rJeP3AvqG8WR9f0dfAorHp5d8zQO03+tOFztaBikSpQt4/eafI1XYv2xx9/nE6dOlGpUiUqV67MhAkT8PLyYsuWLdZjPDw8CAgIsH75+KR+wrNy5UoOHjzI3LlzqV27Nh07dmTcuHF8++23JCYm6vGShBBCCJFVh/+ChBjVq1amid5p7EOdXuDhB9cj4eAfeqcR2XFmG5zeBEZnNfdXPBo3H2g1WrXXTlS9viL3XItI3baw/XhZUFFndvPum81mFi5cSGxsLCEhIdbb582bx9y5cwkICODxxx/n3XffxcPDA4DNmzdTo0YNihYtaj0+NDSUgQMHcuDAAerUqZPhcyUkJJCQkGC9HhMTA0BSUhJJSTL8RqSVck7IuSHyAznfRW4yhc/DCJir98BiNoPZnKvPb5fnu8EZY73+mNZ/ghY2meTALrIfsoMwbfgSI2Cp0QOzexGwp/MKOz3fH6Tm8zhtnYbh8lHM6z7D0uYDvRPlG6aV72E0J2Ip1xJzmRZ2dz7fjyOd61nNqHvRvm/fPkJCQoiPj8fLy4vff/+doKAgAJ577jnKlClD8eLF2bt3L6NGjeLIkSMsWbIEgIsXL6Yp2AHr9YsXL2b6nBMnTmTs2LHpbl+5cqX1AwEh7rVq1Sq9IwiRa+R8F7bmlniV9ifXAvDf1aLE/f23blns7Xx3Ti5Ne6MLTlH72D7/E6J9auodSTyA9+1ztD76DxoG1iTW4JaO5/OD2Nv5/iBFfR6j0eUvYev3rI0pR5xrEb0j5XkFbx2j+bH/oWFgnWtbYv5xzMUAHeFcj4uLy9JxuhftgYGBhIeHc+PGDRYtWkSfPn1Yt24dQUFBDBgwwHpcjRo1KFasGG3atOHEiRNUqFDhoZ9z9OjRvP7669brMTExlCpVivbt26cZfi8EqE/AVq1aRbt27XB2dtY7jhA2Jee7yC3GTV9hOKBhKdWIlk/20yWDPZ/vBve9sG0ajZK3YO70lt5xxAOYlqm1CLTATjR/qr/OaTJmz+f7fWkdsfy6E9OpdbTR1mPuNF3vRHmbpmGaNUU1az1H08defcAd7I8jnespI74fRPei3cXFhYoVKwIQHBzM9u3b+eqrr5g2bVq6Yxs2bAjA8ePHqVChAgEBAWzbti3NMVFRUQAEBARk+pyurq64urqmu93Z2dnuf7BCP3J+iPxEzndhU5oG++YDYKzzPEadzzW7PN+bDIUd0zFGhmG8tBdKBOudSGTmxjnYvwgAY7PXdT+fH8Quz/cHCZ0A3zfDeOh/GC8OhlIN9E6Ud+1fDOd2gLMnxrbv2f35fD+OcK5nNZ/d7dNusVjSzDe/W3h4OADFihUDICQkhH379nHp0iXrMatWrcLHx8c6xF4IIYQQdubcTrh8FJzcIair3mnsk29JqPG0aodN1jWKeIAt34ElCco0hZL19E6TNwXUgDrPq/aKt9UHfyLnJcXD6g9Uu8kw8M68E1TkLl2L9tGjR7N+/XoiIiLYt28fo0ePZu3atTz//POcOHGCcePGsXPnTiIiIli6dCm9e/emefPm1Kyp5na1b9+eoKAgXnjhBfbs2cOKFSt45513eO211zLsSRdCCCGEHQj/RV1WfVz2/b2fJsPU5aFlcPmYvllExuKupm5H1nSEvlnyulbvgLMHnN0OB37XO03etG0aXD8N3sWg8WC904i76Fq0X7p0id69exMYGEibNm3Yvn07K1asoF27dri4uLB69Wrat29PlSpVeOONN+jWrRvLli2z3t9kMvHnn39iMpkICQmhV69e9O7dmw8//FDHVyWEEEKITCXFW4cSU/s5fbPYO/+qULkjoMGmKXqnERnZPh2SYqFoDajYRu80eZtPsdQPslZ/AMkZj8wVDyn2Mqz/XLVbvwsunvrmEWnoOqd9+vTMF5IoVaoU69ate+BjlClThr/teIVOIYQQQtzl6D8QfwN8SkC55nqnsX9Nh6v3bM9v0PJtVbgI+5AYB1u/V+0mw2RrvtzQeAjsnAnXI9Ue4k2G6p0o71j7MSTEQEBNqPWs3mnEPexuTrsQQggh8rCUofE1nwGjSd8sjqB0IyjVCMyJau60sB/h8yDuMhQoDdWe1DtN/uDiCa3fUe31n0PsFX3z5BXRR2HHz6odOgGMUiLaG/mJCCGEECJ33IyC4/+qtgyNz7qUudI7ZsDt67pGEXeYk1OnLDQeCibdN2TKP2o9qxamS7gB6z7WO03esOo90MxqOo6MgLJLUrQLIYQQInfsW6D+MCxZHwpX0juN46jUHopUhcSbqb1hQl8H/1ALdnn4Qe3n9U6TvxhN0H6Cau/4WRZpfFSn1qspOAYTtJN1weyVFO1CCCGEsD1NSx0aL73s2WM0pi7AtWWqWsxP6EfTUrfha/gquHjoGidfKt8CKncAS7LqJRYPx2KBFWNUu96LUKSyvnlEpqRoF0IIIYTtXdgDlw6CyRWqPaV3GsdTozv4lITYS7DnF73T5G/H/4WofeDsCfX7650m/2o3TvUOH/kbTm3QO41j2vsbXNwLrj7Q8i2904j7kKJdCCGEELaX0stepTO4F9A1ikMyOafum7zpa7CY9c2Tn22crC6D+4JHIT2T5G9FKkO9fqq9cozqNRZZlxgL/45T7WZvgGdhffOI+5KiXQghhBC2lZwI+xaqtgyNf3h1e4N7Qbh6Eg4t1TtN/nR2B0RsAKMThAzSO41oOVr1El/YA3vn653GsWz6Bm6eV7sfNHxV7zTiAaRoF0IIIYRtHVsBt6+CV1Eo30rvNI7LxRMaDFDtsElqbrXIXWGT1GWNHuBbUt8sQvUON3tdtf/9EBLj9M3jKG5ehI1fqXbbD8DZTdc44sGkaBdCCCGEbYX/qi5rPiNbYz2qBq+Ak7vqWTy5Vu80+cvlY3D4L9VOWRhQ6K/hQPAtrXqNN3+jdxrH8N94SIpVO3nIGiMOQYp2IYQQQthO7GXV0w4yND4nePqpYfKQOrda5I6NXwEaBHYC/yp6pxEpnN2g7fuqHTZZ9SKLzF3cD7vnqnb7CWAw6JtHZIkU7UIIIYSwnX0L1bZMxeuAf1W90+QNIa+pVbNProXzu/VOkz/EnIc9v6l2k+G6RhEZqN4NStRTvcdrJuidxn5pGqx8B9AgqCuUbqh3IpFFUrQLIYQQwnZSVo2vJb3sOaZgGbUFHKTuFy5sa8t3YEmC0o2l0LFHBgOEfqTau+dC1AF989ir46vh5Bowuai57MJhSNEuhBBCCNu4uF/tAWx0Ti0yRc5ImVN9aClcOaFvlrzu9nXYMVO1mw7XMYi4r9INIegJ0Cx3epNFGubk1PelwQAoVE7fPCJbpGgXQgghhG3subMAXWAH2c86pxWtBpXaqwJl09d6p8nbdkyHxJvgH6Tec2G/2n6gPiQ88R8cW613GvuyaxZEHwb3QtD8Tb3TiGySol0IIYQQOc+clLpvsgyNt42UudXhv8DNKF2j5FlJt2HLVNVuMkwW7bJ3hcpDw1dUe+UY1bssID4G1tyZPtDyLXAvoGsckX1StAshhBAi5x3/F2KjwaMwVGqnd5q8qUxjKNkAzAmwdareafKm8F/UeexbSi12Juxf85HgXlD1Ku+erXca+xA2CeIug19FqPei3mnEQ5CiXQghhBA5b8+dBehq9gCTs75Z8iqDIXWO9fafVW+ayDkWc+rUg5DBch47CveC0OIt1V7zkfy7uH5GLaQI0O5DOY8dlBTtQgghhMhZcVfhyD+qLXuz21bljlA4EBJuwM4ZeqfJWw7+D66dUnOA676gdxqRHfVehEIV1CiJjZP1TqOvfz+E5Hgo0xQCO+mdRjwkKdqFEEIIkbP2LwZzIhStAQE19E6TtxmNqSvJb/4OkhP0zZNXaJoaUgxqjrSLp755RPY4uaheZYDN38KNs/rm0cu5nbBvgWqHjpc1GRyYFO1CCCGEyFkpe7NLL3vuqPE0+JSAWxdhz296p8kbTq5R2xU6e6jtsYTjqdIZyjRRvcz/fqh3mtynabDizhZvNXtC8Tr65hGPRIp2IYQQQuScS4fh/C4wOqliUtiekws0GqTam6aoudji0YRNVpd1e8t2hY7KYID241V773zV65yfHFoGpzeBkzu0eVfvNOIRSdEuhBBCiJyTsgBdxXbgVUTfLPlJcB9w84Urx+Hwn3qncWzndsGpdWAwQchreqcRj6JEXdXLDKrXWdP0zZNbkhNh9fuq3Xgw+JbUN494ZFK0CyGEECJnWMyw9878SRkan7tcvVOHcYdNzj/FiS2kLFxW42koUFrXKCIHtHkXnNxUr3N++UBr+09w9SR4+qeueSEcmhTtQgghhMgZJ9fAzQtqy6XKoXqnyX8avKKKk/O7IGKD3mkc05UTcHCpakuxkzf4llRb9gGsek/1QudlcVdh3Seq3XqM+kBPODwp2oUQQgiRM1IWoKvxNDi56pslP/IqAnV6qXbKnGyRPZumABpUCoWiQXqnETml6XDV63z1JOyYrnca21r/OcRfB/8gqCNbFeYVUrQLIYQQ4tHdvg6H/1LtWs/qGiVfazxEzcU+8S9c2KN3Gsdy82LqB09NR+ibReQsV29o9bZqr/sEbl/TN4+tXDkB235Q7fbjwGjSN4/IMVK0CyGEEOLRHfhdba1UpKpsLaSngmWh2pOqvfErXaM4nC1TwZwIpRpCmRC904icVucF9fvp9jXVG50XrX4fLElQoQ1UbKt3GpGDpGgXQgghxKPb86u6rP2s2mpJ6CdlLvaB3+HqKX2zOIr4G7DjZ9VuMlzXKMJGTE6pW8BtnaZ6pfOSyE1qmzeDMfV1ijxDinYhhBBCPJrLx+HMVvXHYs1n9E4jitVUPW2aBTZ9rXcax7DjZ0iIgSJVoHIHvdMIW6nUVv3bsCTB6g/0TpNzLBZYMUa16/aW9RjyICnahRBCCPFoUnrZK7QB7wB9swglZU52+Dy4Fa1vFnuXFK+GxoMapWCUP4/ztPbj1QeMh5ZC5Ga90+SM/YvVrhEuXtBqjN5phA3IbyUhhBBCPDyLBfb8ptq1ZQE6u1G2KZQIVusMbP1e7zT2be9vcCsKfEpA9e56pxG2VvSuVdVXjlG/wxxZ0m34d6xqNx0OXv66xhG2IUW7EEIIIR5exHqIOQuuvhDYWe80IoXBkDo3e/uPkHBT1zh2y2KGjVNUO+Q1cHLRN4/IHa3GqF7pczvhwBK90zyaLVPhxhn1oVOj1/ROI2xEinYhhBBCPLzwO0Pjqz8Fzm76ZhFpVXkM/CqpRdZ2ztQ7jX06tAyungC3AlC3j95pRG7xLpr6odbqsWqKhCO6FQ0bvlTtNu+Bi4e+eYTNSNEuhBBCiIeTcFPNCwWo/by+WUR6RiM0Garam7+D5ER989gbTYONk1W7wQBw9dI1jshlIa+Bd3G4cRq2TtU7zcNZ+xEk3oRitaFGD73TCBuSol0IIYQQD+fg/yApDvwqQsl6eqcRGan5DHgXg5vnYd8CvdPYl1Pr4fxucHKHhq/onUbkNhcP1TsNsP4Lx1uw8dLh1BE0oRNkAcU8Tn66QgghhHg44b+oy1qyN7vdcnKFRgNVO2yy4y+6lZPCJqnLOr3As7C+WYQ+aj4DxWqp3uq1E/VOkz2r3lXbOlZ5TC08KfI0KdqFEEIIkX3XIiByI2CAWj31TiPuJ7ifWijwyjE48rfeaezD+XA4uQYMJmg8WO80Qi9GI4R+pNo7Z0L0EV3jZNmJNXBsJRidoO1YvdOIXCBFuxBCCCGyL2Wbt/ItwLekvlnE/bn5QP2XVDtskprLnd9t/EpdVn8KCpbVNYrQWdmmaucLzQwr39U7zYNZzLDyHdWu3x8KV9Q3j8gVUrQLIYQQInssltSh8bIAnWNoNBBMrnBux50REvnY1ZNw8A/VbjJM1yjCTrT7UPVaH1sBJ9fqneb+wn+BqP3g5gstRumdRuQSKdqFEEIIkT2nN8P1SHDxVvMphf3z8oc6dz5gCZusaxTdbfpazQWu2A4CauidRtiDwhWh3p3RKCveUb3Z9ijhFvw3XrWbvwkehfTNI3KNFO1CCCGEyJ6UXvZqXWVfYEfSeAgYjHB8FVzcr3cafdy6BLvnqXbT4bpGEXamxSi19kPUvtTfcfZm0xS4dVFN6WgwQO80IhdJ0S6EEEKIrEuMTR1aXPs5XaOIbCpUHoKeUO2UOd35zdbvwZwAJepBmSZ6pxH2xNMPmo9U7f/Gq15texJzHjZOUe22Y9XOECLfkKJdCCGEEFl3aBkk3lI9PaVD9E4jsqvJcHW5fzFci9Q1Sq6Lj4FtP6l20+GyTaFIr+ErUKCM6s3e9LXeadL6bzwk34ZSjVI/fBP5hhTtQgghhMg6697sz0nR44iK14byrdRK2Zu/0TtN7to5ExJugF8ltVq4EPdycoV2d7ZQ2zQFYi7omyfFhb2pv3tDJ8jv3nxIinYhhBBCZM31M3BqvWrL3uyOK2Uu9645EHtZ1yi5JjkBtnyn2k2Gqf25hchIUFco1RCS4lIXfdOTpsHKMYAG1btByXp6JxI6kN9YQgghhMiavb8BGpRtBgXL6J1GPKxyLaBYbTXUdus0vdPkjr3z4eYF8C4GNXvonUbYM4MB2k9Q7fB5qpdbT0dXqA9LTa7Q5n19swjdSNEuhBBCiAfTNAj/VbVrPatvFvFoDAZoOkK1t/1gfwtu5TSLJXUBr5DXZAEv8WCl6kO1p4A7vdyapk8OcxKsele1G70qH5bmY1K0C3E/FjOGyDBKXN2MITLMfvftzGssZji1AfYtUpfyvguhvzPb4OoJcPaURZDygqqPQ6EKEH8dds3WO41tHfkLrhwDN18I7qt3GuEo2r4PJhfVy310hT4Zds6Ey0fBww+avaFPBmEXpGgXIjMHl8Lk6jjN7Uq9yKk4ze0Kk6ur24Xt3HnfmfUYLH5JXcr7LoT+9txZBCmoC7h66ZtFPDqjSe3bDrD5W0hO1DePrWgahE1S7fr9wdVb3zzCcRQsCw1fVe1V76pe79wUfwPWTlTtlqPVh04i35KiXYiMHFwKC3qrPTHvFnNB3S4FpG3I+y6EfUq6DfuXqLYMjc87aj0Lnv4Qcxb2L9I7jW1EhMG5nWo+cEoBJkRWNXtD9XJfPqp6vXPThi8g7goUrgzB/XL3uYXdcdI7gBB2x2KG5aOAjOYv3bntf4Pg/C4wyOdeOUazwLYfyfx9N8Dyt6BKZ9VDJITIPYf/goQY8C2lFqETeYOzG4QMgtUfwMavoGbPvLeq+sbJ6rJOL/Dy1zWKcEDuBVQv998jVa93zR650+N9LRK2TFXtduPAJCVbfidngBAJN+HSIYjaD1EHIHJz+p7ejO6TMtxO5BINYs5B5CYoJ0WDELlqT8oCdHmwqMvv6r0IG76E6MNwbAUEdtQ7Uc65uA+Or1YfsKdMBRAiu4L7ql0WrhxT/1ZS9nG3pX/HgjkRyjWHyqG2fz5h96RoF/mHxQxXT6UW51EH4NIBuBbxcI9XoS0UrpSjEfO1y8fgxOoHH3cryvZZhBCpYi7Aif9UW4bG5z1uvlCvn+ppD5uUt4r2sMnqMqgrFCqnZxLhyEzO0H4c/NpT9X7Xe9G2q7if2Q77FwN3tp4zGGz3XMJhSNEu8qbYK6ogjzqQWqRfOqz2pM2IdzEoWk19GZwg7IsHP0fT4dLjm5NObcha0e5V1PZZhBCp9s5X01dKNQK/CnqnEbbQaJAqRs5sVaPNyoTonejRXYuAA3fWYWg6XM8kIi+o3EFNDYrYAP9+CN2n2+Z5NA1WvK3atZ+DYjVt8zzC4UjRLhxbcoJaHCTqYNoe9FsXMz7eyR38q94p0KtD0SDwrwaefqnHWMyw91fVu5Th/GoD+BSHMo1t8YryrzKN1fua6fuO+vkVr5ursYTI1zQNwu+sGl/7OX2zCNvxDlCjKHbNUnPA80LRvukb9WFThdZQrJbeaYSjMxggdAJMa6EWbWw0EErWy/nnOfgHnN0Gzh7Q+p2cf3zhsKRoF45B09Q885Qh7SnF+eWjYEnO+D4Fy94pzO/0oPtXU8PjHrSImdEEHT5Rq5VjIG0BeWeIUoePZTG0nHbf9/2O5Nvwy9PQcx64F8zthELkP+d3weUj4OQG1brqnUbYUuOhar/2o8vVB+FFg/RO9PBuRcPuOardZLiuUUQeUqyW+nBrzy+qN/zFFTk7dD05AVa9r9qNh6qODCHukKJd2J/E2LQLw6X0osdfz/h4N19VkKcU50Wrg3+VR9uLNagL9JitVpG/e1E6n+KqYA/q8vCPLTKX6fteAur2VnsJR26EnztCr8XgW0K/rELkBym97FUflz2C87rCFdXP+dBSNb/9qWl6J3p426ZBcjwUr6MW8hIip7R5Fw78rqaSHPxfzn6Yue0HuB4JXgHQZGjOPa7IE6RoF/qxWODaqdRe86j9cOmgWiwuo15Wg0ntVVk06K7h7dVUQWeLRTqCukCVziSfXE/4hhXUbhaKU/nm0sNua3fedyI3qUXnvIqqofNGE1R5DOZ2g+hDML2dKtz9q+qdWIi8KTkB9t3Zu1sWoMsfmg5XRfv+RWpoboFSeifKvoRbd7YPBZqOkEW8RM7yKa4K6nWfwOr31cKNTq6P/rhxV2H9Z6rd+h1w8Xz0xxR5ihTtInfEXVUFeZqF4Q5BUlzGx3sVTTusvWg1KBKYM78Ys8NoQivTlHMHYqhVpqkU7LnFaMp4kb+A6tB/Fcztrobs/hwKz/4m6wsIYQtHl6sRTt7FoXxLvdOI3FAiWPVMn1qvRjZ1/FjvRNm3a5Y6bwtVUB/0CpHTGg+FnTPVYofbfoTGgx/9Mdd9AvE3VIeUrB8iMiBFu8hZyYlqH8t7F4a7mcm+505uUKTKXXPP7ywM51Ukd3MLx1GgNLy4XG29cmYrzO4K3X6EoCf0TiZE3pIyNL7WM/KBZX7SZLgq2nfNghb/Bx6F9E6UdcmJagE6UL2hct4KW3D1Ur3hS4fA+k9Vkf0o/04uH4ftP6l2+/Fy3ooMSdEuHo6mwc2LaYe1Rx2A6CNgScr4PgVKp10Yrmh1KFRefjmJ7PMoBL3/B4v7w+E/YUEf6PgpNBygdzIh8oZbl+DYKtWuJb0++UqF1hBQEy7uVXNsW76ld6Ks27dQdRJ4BciUDmFbtZ+HrdPU38DrPoGOnzz8Y616Ty2qXKk9VGiVcxlFniJFu3iwxDg1hzjqQNqv21czPt7VB/yD7lkYriq4+eRubpG3OburRev+Hgk7foZ/3oSbF6DNezKHUYhHtXcBaGYoUQ+KVNY7jchNBoOa277oRVWUNB7iGPNrLRa1gB6o7bhyezqdyF+MJmg/DuY8qXrJ67+sFnPMrogwOPKXWrep3biczynyDCnaRSqLRa1aee/CcFdOkPHCcEbwq5Q6rD2lF923lBRNIncYTdD5SzXnds14CPtSFe5dvgaTs97phHBMafZml97KfKnqE2rb1GsRsHsuNHxF70QPdnS5WuvE1Qfq9dM7jcgPKrSGiu3g+Cq1KF3Pedm7v8Wito4DCO6rdj4SIhNStDsKiznj1bQf1u3rGS8Ml3gr4+M9CqtFwIpWT+1FLxKoejuF0JPBAC3eBO8AWDYM9vyqhvb2mK3mnQkhsufiXrh0AEwuUL2b3mmEHkxOqof9rzdg09dQ70X7/iBU0yBskmrXe1G2JxS5p/14OPGfmqoXEQZlm2b9vvsWwIU94OINLUfbLqPIE6RodwQHl2ayX/gnD94v3JwEV46nH9oeczbj400u6ReGK1odvPxz7vUIYQt1X1Dn6cK+cOJfmNkZnl8o564Q2RX+q7oM7ATuBfXNIvRT+3lY+zHcOAP7l6gFCe3V6c1wdhuYXNXQeCFyi38VCO6jpumtGAMvrwGj8cH3S4yDfz9U7WavywLM4oGkaLd3B5fCgt6kG54ec0Hd3mO2Ktw1TfUu3r0oXNR+tTCcOTHjx/Ytdde885SF4SqoT9iFcESVQ6HPn/DL03AhHKa3V3u5+1XQO5kQjiE5UfX+gGw7lN85u0PDV+G/cbBxMtTsYb9T38Imq8vaz6pRV0LkppZvw96F6u+OfQuz9gHXlm8h5pz6W7zRIJtHFI5PqjN7ZjGrHvaM5pOn3PbHQLVH5KWDEHc548dx8cp4YTj3AjYKLoSOSgbDS6vU4jDXTqnC/fkFav9hIcT9HV8FcVfA0x8qtNE7jdBb/ZfUsPNLB+HYSvXBqL2JOgDHVgAGtX+2ELnNqwg0G6F6zv8dC1UfBxePzI+/GZX6QVOb98HZLVdiCscmRbs9i9yUdkh8RhJvQcR61TYYVU/53YvCFa0GvqWzNlRHiLzCrwL0Xw3zuqv5YjMfU6NSKrXTO5kQ9i1lAbqaPWTUlVDTI+r1U/PawybbZ9GesmJ80BMyqkrop9Eg2DFDTSfZ8i00fzPzY9dMUH+/F68r64aILJNKzp7disracXX7qjk0o8/BkB2qOGnxf1Cls1r9VQp2kR95+UPfv9Tqrklx8MszsDubK7sKkZ/EXoGjK1RbhsaLFI0GgdEZTm+CM9v0TpPW9dOwb5FqNx2uaxSRzzm7qy1nQX3AdTOTv+GjDsLuOaod+pH8jS6yTM4Ue+ZVNGvH1egOJerefyiOEPmRqzc8Ox9q9lR7Tv9vEKz/XK0BIYRIa/8isCRBsVpqlJYQoBa+TZmjmzKk115s/lb9bi/XAorX0TuNyO+qd1fnYeItWPtRxsesfAc0C1TtAmVCcjefcGhStNuzMo3Vf5ZktvCLAXxKqOOEEBlzcoEnv4cmw9X1/8bB3yPVmhFCiFThd0ai1H5e3xzC/jQeBhjgyF9w6bDeaZTYK7BzlmpLL7uwB0aj6j0H2DVb9arf7fhqtbuN0Rnajc39fMKhSdFuz4wmta0bkL5wv3O9w8ePtl+7EPmBwaD+g+z4KWCA7T/Bwj6QdFvvZELYh6iDav0Ho7PqLRLibkUqqyl3AJum6JslxbYfIPm2GhlSvpXeaYRQyjRWC9FpFlj1burtFjOsvHO9wQAoVF6ffMJhSdFu74K6qDnqPsXS3u5TPHW7NyFE1jR8BZ6eASYXOLRMrTB/+5reqYTQ3547C9BVDgVPP32zCPvUdIS63LsAbpzVN0tiLGybptpNhtvvVnQif2o7Vn0Aenw1EUsnsuPPHzi38P/ULgxuBaD5SL0TCgeka9E+depUatasiY+PDz4+PoSEhPDPP/9Yvx8fH89rr72Gn58fXl5edOvWjaiotAs7nD59ms6dO+Ph4YG/vz9vvvkmycnJuf1SbCuoCwzfr/af7jZdXQ7fJwW7EA+j2pPwwu/g6gunN8PPHeD6Gb1TCaEfczLsma/asgCdyEzJelCmqVr3YPN3+mbZNVt94FqwnFo1Xgh74leBS/5NACi762Pq7XiTEod+AuBs0dbgUUjPdMJB6Vq0lyxZko8//pidO3eyY8cOWrduzRNPPMGBAwcAGDFiBMuWLWPhwoWsW7eO8+fP89RTT1nvbzab6dy5M4mJiWzatIlZs2Yxc+ZM3nvvPb1eku0YTVCumVp0rlwzGRIvxKMo2xRe/Ae8i0P0YbWXe9QBvVMJoY8T/0HsJfDwg4qyLaK4j5Te9p0zIe6qPhnMSWoBOoAmQ+XvIWF3dq+YReELa9OteatpUDxiCbtXzNInmHBouhbtjz/+OJ06daJSpUpUrlyZCRMm4OXlxZYtW7hx4wbTp0/nyy+/pHXr1gQHBzNjxgw2bdrEli1bAFi5ciUHDx5k7ty51K5dm44dOzJu3Di+/fZbEhMT9XxpQgh7V7Qa9F8FRarAzfPwc0eICNM7lRC5L2UBuho91MKNQmSmYhsoWgOSYmH7dH0y7F+s9sL29IdaMjJE2BdzcjLFN6tF5u6dtZFyvdjmsZjz2qhgYXNOegdIYTabWbhwIbGxsYSEhLBz506SkpJo27at9ZgqVapQunRpNm/eTKNGjdi8eTM1atSgaNHUrdFCQ0MZOHAgBw4coE6djLf/SEhIICEhwXo9JiYGgKSkJJKSkmz0CoWjSjkn5NzIgzyKwgt/YlrYC+OZLWhznsT8xFS0qvl3uKWc7/nM7es4HfkbA5BU/WnIZz93Od+zz9DoNZz+9yra1u9Jrj8AnHNxu1nNglPYJAyAuf4ALJjy3Tn7KOR8t73DW/6hBlcy3fjJaIAArrBv899UadQxd8PlI450rmc1Y5aK9tdffz3LT/zll19m+ViAffv2ERISQnx8PF5eXvz+++8EBQURHh6Oi4sLBQoUSHN80aJFuXjxIgAXL15MU7CnfD/le5mZOHEiY8em32ph5cqVeHjIXuciY6tWrdI7grARY6H+BMckU/zGDkxL+rO/xBpO+rfXO5au5HzPH8pG/0stcyI33EqxducZMOi8wJhO5HzPOoPmShuXwnjGXebQL+9wqkjbB98phxS9sZtG0YdJMrqx8koJkv/+O9eeOy+R8912EiO3UCMLxx3evZmTV7UHHygeiSOc63FxcVk6LktF++7du9Nc37VrF8nJyQQGBgJw9OhRTCYTwcHB2YwJgYGBhIeHc+PGDRYtWkSfPn1Yt25dth8nO0aPHp3mg4iYmBhKlSpF+/bt8fHxselzC8eTlJTEqlWraNeuHc7OznrHEbZieRzzyrcx7ZxOjXNzCSpdEEurd8GQvzbZkPM9fzHN+AoAr6Yv06lhZ53T5D453x+OseglWDGKGjfXUvWFT8GYOwM3TbPVAnjGBv1p3+bpXHnOvETOd9s7vMUA/z54ocYqdUKkp92GHOlcTxnx/SBZ+i27Zs0aa/vLL7/E29ubWbNmUbBgQQCuXbtGv379aNasWbaDuri4ULFiRQCCg4PZvn07X331Fc888wyJiYlcv349TW97VFQUAQEBAAQEBLBt27Y0j5eyunzKMRlxdXXF1dU13e3Ozs52/4MV+pHzI69zhse+gAIl4N8PMW3+GlPsJejyTb6c5yvnez4QfRTO7wSDCVPtZzHl45+3nO/ZFNwbNnyK4cZpnI/+pRbJtbXTW+DMFjC5YGo8OF+fr49KznfbCQrpRNS/fhTRrmDMYIi8RYNLBj+CQjphcrKbWcp5liOc61nNl+0upC+++IKJEydaC3aAggULMn78eL744ovsPlw6FouFhIQEgoODcXZ25t9//7V+78iRI5w+fZqQkBAAQkJC2LdvH5cuXbIes2rVKnx8fAgKCnrkLPbEbNHYfOIK/ws/x+YTVzBbZEiNEDnOYIBmb0DXqWAwwd758OszkHBT72RC5LyUvdkrtQMvf32zCMfi4gENX1XtsMmkWybbFsImq8uaz4BPMds/nxAPweTkxKbKbwKqQL9byvULIe9LwS6yLdtnTExMDNHR0eluj46O5ubN7P1hO3r0aDp27Ejp0qW5efMmv/zyC2vXrmXFihX4+vry0ksv8frrr1OoUCF8fHwYMmQIISEhNGrUCID27dsTFBTECy+8wKeffsrFixd55513eO211zLsSXdUy/dfYOyyg1y4EW+9rZivG+8/HkSH6vIflxA5rvZzamXiBb3VdlgzO8NzC8G76IPvK4QjsJhT92av9ay+WYRjqt9fFdJR++D4v1DJhnPbLx2Co/8ABmgyzHbPI8QjunE7iY8jKrE8aThjnWcTQOrWiBfx4xuXl5jQvreOCYWjynZP+5NPPkm/fv1YsmQJZ8+e5ezZsyxevJiXXnopzR7qWXHp0iV69+5NYGAgbdq0Yfv27axYsYJ27dQ+sZMmTeKxxx6jW7duNG/enICAAJYsWWK9v8lk4s8//8RkMhESEkKvXr3o3bs3H374YXZflt1avv8CA+fuSlOwA1y8Ec/AubtYvv+CTsmEyOMqtYW+y8CjMFzYA9PbwZUTeqcSImecXKu2OnQrAIEyr1I8BI9CENxXtTdOtu1zbZyiLqs+BoUr2fa5hHgEH/11iKiYBI4WaoX3W4c50O4XdtT7jB0tZ9PO8jW/3KzN2qPpOz+FeJBs97R///33jBw5kueee866RL2TkxMvvfQSn332WbYea/r0++/x6ebmxrfffsu3336b6TFlypTh7zy6eqjZojF22UEyGnSmoXaTGLvsIO2CAjBlNHFGCPFoSgTDSythbje4dkoV7s8thJLZX3RTCLuy51d1WaM7OOWdkWkil4UMgm3TIGIDnN0BJevl/HNcPwP7Fqh2kxE5//hC5JD1R6OZv+MMBgN80q0mnu6uVGuSusBnz1sHmR52iu/XnqBVoExJEtmTrZ52s9nMjh07mDBhAleuXGH37t3s3r2bq1ev8t133+Hp6WmrnPnStlNX0/Ww300DLtyIZ9upq5keI4R4RH4V4KVVULwOxF2BWY/B0RV6pxLi4cXfgEPLVLv2c/pmEY7NtyTU6KHaYZNs8xxbvgNLMpRtJh+YCrt1KyGZ0Uv2AdAnpCwNyhVKd8xLTcvhZDSw9dRVdp2+ltsRhYPLVtFuMplo3749169fx9PTk5o1a1KzZk0p1m3k0s3MC/aHOU4I8ZC8ikCfP6FiW0iKg1+fhV1z9E4lxMM58Ackx0PhQCheV+80wtGlzDE//BdcPpazjx13FXbOUu2mw3P2sYXIQR//c4hz129TqpA7b4YGZnhM8QLudK1TAoDv18p0O5E92Z7TXr16dU6ePGmLLOIe/t5uOXqcEOIRuHrBs79BredAM8PSwbDus9xZNVmInJQyNL72s2rHBCEehX8VCOwEaLDxq5x97O0/QVIsBNSACm1y9rGFyCGbT1xh7pbTAHz8VE08XTOfffxqi/IArDoUxfFLt3Iln8gbsl20jx8/npEjR/Lnn39y4cIFYmJi0nyJnNOgXCGK+bqR2Z9UBtQq8hkNwRFC2IDJGbp+p7aFA1gzHv56Xa3ELYQjuHICTm8Gg1FtnSVETmgyXF3u+Q1izufMYybGwdbvUx9fPmASdiguMZlRi/cC8GyD0jSpWPi+x1f096Zt1aJoGvywXnrbRdZlu2jv1KkTe/bsoUuXLpQsWZKCBQtSsGBBChQokGbvdvHoTEYD7z+u9pvP7L+q9x8PkkXohMhNBgO0eQ86fQ4YYMfPMP8FSLqtdzIhHmzPb+qyfCvwKa5vFpF3lG4IpRuDJUnNQc8Ju+eqdUQKlIGgrjnzmELksM9XHOX01TiK+brxdqcqWbrPwJYVAPh99zku3mftKiHulu3V49esWWOLHCITHaoXY2qvuun2aXdxMjKlZ23Zp10IvTR4GbyKwuL+cOQvmP2EGj7vISNfhJ2yWO4aGi8L0Ikc1nQ4/LIJdsxQo5HcH6Ejx5wEm75W7cZDwJTtP1eFsLmdkVeZsekUAB89VQNvN+cs3S+4TEEalC3EtoirTA87yZjOQbaMKfKIbP8WbNGihS1yiPvoUL0Y7YIC2HbqKocvxDD2z4MkJluoVtxX72hC5G9BXcDzD/i1J5zZCj+HQq/FUKC03smESC8yDG6cAVdfqNL5wccLkR2V2oN/EFw6CNunQ/ORD/9YB36HG6fBozDU6ZVzGYXIIfFJZt5ctBdNg251S2Z7C7dXW5Zn28yr/LL1NINbVcLXI2sFv8i/sj08PkVcXByHDx9m7969ab6EbZiMBkIq+NGvaTmaVPQDYNHOszqnEkJQpjG8uAJ8SsDlo/BTO7i4T+9UQqQX/ou6rP4kOLvrm0XkPQZD6kryW79/+ClD2l0L2jV8Vc5VYZcmrz7GyehYini78t5j2e8pbxXoT2BRb2ITzczdGmmDhCKvyXbRHh0dzWOPPYa3tzfVqlWjTp06ab6E7fWoVwpQRbvZIitXC6E7/6pqL3f/ILh1EWZ0glPr9U4lRKqEW3BwqWrXkqHxwkaqdwPfUhAbnfohUXYdXw1R+8HFCxr0z9l8QuSAPWeuWxeRm9C1+kP1khsMBl5tqVaS/znsFPFJsqCtuL9sF+3Dhw/n+vXrbN26FXd3d5YvX86sWbOoVKkSS5cutUVGcY/QagH4uDlx7vptNh6/rHccIQSAbwno9w+UaQIJMTC3G+xfrHcqIZRDS9XWWYUqQKkGeqcReZXJGUIGq/amKWBOzv5jhE1Wl8F9H21evBA2kJBs5v8W7cWiQZdaxWlfLeChH+uxmsUpUcCdK7GJLJTRs+IBsl20//fff3z55ZfUq1cPo9FImTJl6NWrF59++ikTJ060RUZxDzdnE13rlABgwY4zOqcRQli5F4BeSyDoCTAnwqIXYXMOraQsxKNI6fWUvdmFrdV9AdwLwbUIOPS/7N33zHa19oLRGRoNskk8IR7Ft2tOcCTqJn6eLnzQpdojPZazyUj/ZuUA+HH9SZLNlpyIKPKobBftsbGx+PurxRYKFixIdHQ0ADVq1GDXrl05m05kKmWI/MoDUVyLTdQ5jRDCytkNus+ABq+o6ytGw4oxauVuIfRwLRIiNgAGqNlT7zQir3PxhIZ3fv+FTVZz1LNq42R1WfMZNXpJCDty4PwNvltzHICxT1SjkKfLIz/mM/VLUdDDmdNX4/hn/8VHfjyRd2W7aA8MDOTIkSMA1KpVi2nTpnHu3Dm+//57ihWT7cdyS/USvgQV8yHRbOGP8HN6xxFC3M1ogo6fQNux6vrmb+D3AZAsH7AJHaTszV6uORQopW8WkT80GADOHnBxL5zM4lbB0Ufg8J+q3WSo7bIJ8RCSzBb+b9Feki0aHaoF0LlGztQ8Hi5O9GlcFoCpa0+gZedDLpGvZLtoHzZsGBcuXADg/fff559//qF06dJMmTKFjz76KMcDisw9U1/98TV/+xn5Ry6EvTEY1L7FT04DoxPsWwjzukN8jN7JRH6iabAnZWi8LEAncolHIajbW7XDJmXtPhunqMvAzlAk0Da5hHhIP6w/yYHzMRTwcObDrtUw5OA0oz4hZXF3NnHwQgwbjslaVSJj2S7ae/XqRd++fQEIDg4mMjKS7du3c+bMGZ555pmczifuo2vtErg4GTl88Sb7z0khIIRdqtUTnlsAzp5wah3M7AQ3ZQicyCWnN6u5xS5eUPVxvdOI/CTkNTCY1E4a5x4wffLGOdg7X7WbDrd5NCGy42jUTb5afQyA9x8Pwt/bLUcfv6Cni7Uj7vt1J3L0sUXeke2i/eTJk2mue3h4ULduXQoXLpxjoUTW+Ho40+HOqpXzd5zWOY0QIlMV20C/v8CziNrDfXo7uHxM71QiP0hZgC6oq5prLERuKVAaajyt2ilz1TOz5TuwJKndN2R3A2FHzBaNNxftJdFsoXUVf7rWts1aC/2blcPJaGDTiSvsOXPdJs8hHFu2i/aKFStSunRpXnjhBaZPn87x48dtkUtkUcqCdP8LPy97PAphz4rXUXu5FyoP10/D9PZqpWQhbCUxDg78odq1n9U1isinmgxTlweXwpVMehBvX4OdM+8cPzw3UgmRZdPDTrLnzHW8XZ2Y8GT1HB0Wf7eSBT3oUqs4IL3tImPZLtrPnDnDxIkTcXd359NPP6Vy5cqULFmS559/np9++skWGcV9NK7gR8mC7tyMT2a5rDophH0rVE4V7sXrwu2rMOtxOPKP3qlEXnX4T0i8CQXKQOnGeqcR+VHRIKgUCmiw8auMj9n+EyTeAv9qUKldrsYT4n5ORt/ii5VHAXjnsaoU83W36fO90qICAMsPXORk9C2bPpdwPNku2kuUKMHzzz/PDz/8wJEjRzhy5Aht27ZlwYIFvPLKK7bIKO7DaDTwdHDqgnRCCDvnWRj6/gmV2kPybfjtOdg5S+9UIi9KGRpf61kwZvu/eyFyRtMR6nLPr+nX80i6DVu+v3PccLWApxB2wGLRGLV4LwnJFppVKmwd2WpLgQHetKnij6bBjxtOPvgOIl/J9v/icXFxrFy5krfffpvGjRtTs2ZN9uzZw+DBg1myZIktMooH6F6vJAYDbD55hcgrsXrHEUI8iIsn9PwV6vQCzQLLhsLaj7O3n7EQ93PjLJxcq9q1ZG92oaMyIVCqIZgTYcvUtN8Lnwdxl8G3NFR7Sp98QmRg9uYItkdcw9PFxMSnathsWPy9Xm2petsX7zzHpZj4XHlO4RiyXbQXKFCAF154gfj4eN566y3Onz/P7t27mTRpEk888YQtMooHKFHAnaYV1UKAC3ec1TmNECJLTE7Q5Rto/qa6vnYiLBsG5mR9c4m8Ye98QFMLexUqp3cakd+lzFXf8TPE31Btc3LqNm+NB6vfiULYgTNX4/hk+REA3upYhZIFPXLtueuXLURwmYIkmi1M33gq155X2L9sF+2dOnXCbDbz22+/8dtvv7Fw4UKOHj1qi2wiG1K2ili08yxmi/TWCeEQDAZo/Q50/hIMRtg1C+b3UguICfGwNC11aLzszS7sQeUOUKQKJMSoOeynNsCK0XA9EtwKqlFHQtgBTVPD4m8nmWlYrhDPNyyT6xlevTO3/Zctp4mJT8r15xf2KdtF+x9//MHly5dZvnw5ISEhrFy5kmbNmlnnugt9tAsqSgEPZy7GxLP+WLTecYQQ2VH/JegxB5zc4Og/MLsLxF7RO5VwVGd3wJXj4OwBQTICTtgBozF1Jfn/xsOsx2DbD+q6lgzH/9UvmxB3+XXbGTaduIKbs5FPutXEaMz9dRbaVPGnkr8XNxOSmbslMtefX9inh16ZpkaNGjRp0oSQkBDq16/PpUuXmD9/fk5mE9ng6mSy7h25QBakE8LxVH0Mev8P3ArA2e3wcyhck/+sxUPYc6eXverj4OqtbxYhUji5qUvNkvb2hFuwoLfaFk4IHZ2/fpuP/j4EwMj2gZQt7KlLDqPRYF1J/uewCNnSWQAPUbR/+eWXdOnSBT8/Pxo2bMivv/5K5cqVWbx4MdHR0sOrp5Qh8qsPRXHlVoLOaYQQ2Va6Eby0EnxLwZVjML0dXNirdyrhSJLiYf9i1Zah8cJeWMywckwm37wzpW/5W+o4IXSgaRqjl+zjVkIydUsXoF8TfdcC6VKrOMV83bh8K4Elu87pmkXYh2wX7SlF+uzZs7l8+TI7duywFvIFCxa0RUaRRVWL+VCzpC9JZo3fd8s/cCEcUpFAVbgXrQ63omBGp9RVwIV4kCN/q4W+fEpC2eZ6pxFCidwEMefvc4AGMefUcULoYPGuc6w7Go2Lk5FPu9fCpMOw+Lu5OBnp36w8AD+sPyHrVYnsF+3bt2/n888/57HHHsPX19cWmcQjSNlHcsGOM2iyfZQQjsmnOPT7G8o2g8SbMLc77FukdyrhCKx7s/eUvdmF/bgVlbPHCZGDomLi+XDZAQBGtK1MRX8vnRMpPeuXwtfdmYgrcSzff1HvOEJnD/U/+oYNG+jVqxchISGcO6d6dOfMmUNYWFiOhhPZ93it4rg6GTkadYvwM9f1jiOEeFhuvtBrMVR7EixJsPgl2PS13qmEPbt5EU7cWdCr1rP6ZhHibl5Fc/Y4IXKIpmmM+X0/MfHJ1Cjhy8vN7GeLTE9XJ/qEqNXrv193Qjrj8rlsF+2LFy8mNDQUd3d3du/eTUKCmjt948YNPvrooxwPKLLH192ZTjWKAbBA9mwXwrE5uUK3n6HRIHV95Tuw/G2wWO5/P5E/7Z2vFvkq1RAKV9Q7jRCpyjRWI4jIbMixAXxKqOOEyEXL9l5g9aEonE0GPnu6Jk4m+xqh1KdxWdycjew7d4NNJ2RXmfws22fm+PHj+f777/nxxx9xdna23t6kSRN27dqVo+HEw0kZIr9sz3niEpN1TiOEeCRGI3SYCO3Hq+tbvoUl/SFZFpsUd9E0CP9VtaWXXdgbowk6fHLnyr2F+53rHT5WxwmRSy7fSuD9/+0HYHCrSlQJ8NE5UXp+Xq48c+fv+qlrT+icRugp20X7kSNHaN48/eI2vr6+XL9+PScyiUfUqHwhyvh5cCshmb/3yRwYIfKExkPgqR/B6KxWB5/bTS04JgTAhXCIPgQmVzWlQgh7E9QFeswGn2Jpb/cprm4P6qJPLpFvvb/0ANfikqgS4M3AlhX0jpOp/s3KYzIaCDt+mX1n5f/9/CrbRXtAQADHjx9Pd3tYWBjly5fPkVDi0RgMBp4OLgmoBemEEHlEzR7w/EJw8YaIDWpl+ZgLeqcS9iBlAbqqj4F7AV2jCJGpoC4wfD/0+RO6TVeXw/dJwS5y3fL9F/hr7wVMRgOfP10LFyf7GhZ/t1KFPHispvqw6/v10tueX2X7DH355ZcZNmwYW7duxWAwcP78eebNm8fIkSMZOHCgLTKKh9A9uBRGA2w7dZVTl2P1jiOEyCkVWqmV5b2KQtR+tZd79BG9Uwk9JSfAvoWqXUv2Zhd2zmiCcs2gRnd1KUPiRS67FpvIO3+o1eJfbVGe6iXsfzesV1uokQD/7LtAhPxdny9lu2h/6623eO6552jTpg23bt2iefPm9O/fn1deeYUhQ4bYIqN4CAG+brSoXASQ3nYh8pxiNdVe7n4V4cYZ+DkUTm/VO5XQy9EVcPsaeBdTH+oIIYTI1Lg/D3L5VgIV/b0Y0rqS3nGypGoxH1oGFsGiwQ8bTuodR+gg20W7wWBgzJgxXL16lf3797Nlyxaio6MZN24ct2/ftkVG8ZBSFqRbvPMsyWZZbVqIPKVgWXhxJZSopwq22V3g8F96pxJ62HNnAbqaPaTXUggh7uO/w1Es2X0OowE+614TN2fH+Z2Z0tu+aOdZLt2M1zmNyG0PPYHDxcWFoKAgGjRogLOzM19++SXlytnP3oYC2lQtip+nC5duJrDuaLTecYQQOc3TD/osg8odIDke5veCHT/rnUrkplvRcGylasvQeCGEyNSN20mMXrIPgJealqNO6YI6J8qehuUKUad0ARKTLczcGKF3HJHLsly0JyQkMHr0aOrVq0fjxo35448/AJgxYwblypVj0qRJjBgxwlY5xUNwcTLyZJ0SAMzfLkPkhciTXDzgmXlQt7fao/vPEfDfBLUFmMj79i0ESzIUrwv+VfROI4QQduujvw4RFZNAucKevNE+UO842WYwGKy97XO2RHIzPknnRCI3Zblof++995g6dSply5YlIiKCp59+mgEDBjBp0iS+/PJLIiIiGDVqlC2ziofQo74aIv/f4UtE35R9nYXIk0xO8PgUaPGWur7+U1g6BMzJ+uYStrfnzqrxtaWXXQghMrPhWDTz76zx9Ek3xxoWf7d2VYtSoYgnN+OT+WXrab3jiFyU5aJ94cKFzJ49m0WLFrFy5UrMZjPJycns2bOHnj17YjI55smf11Uu6k3tUgVItmgs2XVW7zhCCFsxGKDVaHj8KzAYYfcc+O05SJRVZvOsi/vUl8kFqnfTO40QQtilWwnJvLVYDYvvE1KGBuUK6Zzo4RmNBl5prnrbp4edIiHZrHMikVuyXLSfPXuW4OBgAKpXr46rqysjRozAYDDYLJzIGc/c6W1fsOMMmgyZFSJvC+4LPX8BJ3c4tgJmPQ6xl/VOJWwh/M4CdJU7gIfj/hEqhBC29Mk/hzl3/TYlC7rzfx0cfxrRE3WKE+DjxqWbCfyx+5zecUQuyXLRbjabcXFxsV53cnLCy8vLJqFEznqsZjHcnU2ciI5l1+lrescRQthaYEfosxTcC8K5nTC9PVyL0DuVyEnmJNg7X7VrP69vFiGEsFNbTl5hzpZIQA2L93R10jnRo3N1MvFSU7X497R1JzFbpEMuP8jymatpGn379sXV1RWA+Ph4Xn31VTw9PdMct2TJkpxNKB6Zt5sznWoUY/Gus8zffobgMtIjI0SeV6oBvLQK5jwFV0/AT+3g+YVQvLbeyUROOL4a4i6DZxGo2EbvNEIIYXduJ5oZtXgvAM82KE2TioV1TpRznm1Ymq//O8bJy7GsOniRDtWL6R1J2FiWe9r79OmDv78/vr6++Pr60qtXL4oXL269nvIl7FPKEPk/914gNkEWpxIiXyhcCfqvgqI1IPYSzOwMJ/7TO5XICeHz1GXNZ8DkrG8WIYSwQ5+vPELklTiK+boxupPjD4u/m5erE71DygIwdd1Jmf6aD2S5p33GjBm2zCFsrH7ZgpQv7MnJy7H8tfeCdVV5IUQe5x0A/f5We7ifWgfznoYnvoNaz+idTDysuKtwZLlq13pW3yxCCGGHdkZe5eeNpwD46Kka+LjlvQ83+zYpy48bTrLnzHU2n7xC4wp5ZySBSC/LPe3CsRkMBp6upwr1lC0vhBD5hJsPPL8IqndXe3r/PgA2fiV7uTuq/YvBkgQBNSGgut5phBDCrsQnmXlz0V40DbrVLUmrQH+9I9lEYS9Xnq5XEoDv153UOY2wNSna85FudUtgMhrYGXmN45du6h1HCJGbnFzgqR8hZLC6vuo9WD4aLBZ9c4nsSxkaL3uzCyFEOl/9e4yT0bEU8Xbl3ceq6h3HpgY0q4DRAOuPRnPg/A294wgbkqI9H/H3caNVYBEAFu6QPduFyHeMRgidAKEfqetbp8KifpAUr28ukXWXDsH53WB0ghpP651GCCHsyt6z1/lhvep1ntC1OgU8XB5wD8dW2s+DzjWLA2oleZF3SdGez/S4M0R+8a6zJJmlh02IfCnkNeg2HYzOcPAPmNsNbl8HixlDZBglrm7GEBkGFrPeScW9wn9Rl5VCwVPmLwohRIrEZAtvLtyL2aLxeK3itK8WoHekXPFK8/IA/Ln3PKevxOmcRtiKFO35TKsq/hT2cuXyrUT+O3xJ7zhCCL3U6A69FoOrD0SGwdSm8GUQTnO7Ui9yKk5zu8Lk6nBwqd5JRQpzMuxdoNq1ZQE6IYS42zdrjnMk6iZ+ni6M7VJN7zi5pnoJX5pVKoxFgx83SG97XpWl1eOXLs36H21dunR56DDC9pxNRrrVLcG09SdZuOMMofnkU0ghRAbKt1Ary898DGIyWKAy5gIs6A09ZkOQ/G7X3ck1cOsiuBdSPe1CCCEAOHg+hu/WHAdg7BPVKOSZt4fF32tgywpsOHaZBTvOMKxtJQp7ueodSeSwLBXtXbt2zdKDGQwGzGYZTmnvnq5XimnrT7LmSDSXYuLx93HTO5IQQi/+QeCU2X/uGmCA5W9Blc5gNOVmMnGvlKHxNZ5WCwsKIYQgyWzhzUV7SLZohFYrSucaxfSOlOtCyvtRq6Qve87eYObGCEaGBuodSeSwLA2Pt1gsWfqSgt0xVPT3ol6ZgpgtGot2yYJ0QuRrkZvgVtR9DtAg5hycWJNrkUQGbl+Hw3+ptqwaL4QQVj+sP8mB8zH4ujszrmt1DAaD3pFyncFg4NUWFQCYvTmCWwnJOicSOU3mtOdTKQvSLdxxFk32ahYi/7pvwX6XX3qoYfTrP4dzO2WRutx2YAmYE9TIiGK19E4jhBB24VjUTb5afQyA9x8Pwt87/44ebV8tgHKFPYmJT+a3baf1jiNyWJaGx98rNjaWdevWcfr0aRITE9N8b+jQoTkSTNhW55rFGLvsAKcux7I94hoNyhXSO5IQQg9eRbN2nGaGiA3q679x4FYAyjWHCq2gfEsoVN6WKUX4r+qy1rOQD3uRhBDiXmaLxpuL9pJottC6ij9P1imhdyRdmYwGXmlenreW7OOnDafoHVIWFyfpn80rsl207969m06dOhEXF0dsbCyFChXi8uXLeHh44O/vL0W7g/B0deKxmsWZv+MM87efkaJdiPyqTGPwKa4WnSOjUTcG9f0X/oBT6+DkWji1AeKvw6Gl6gugQBlVvFdoBeVagIf8Tskxl4/B2W1gMEHNHnqnEUIIu/Bz2CnCz1zH29WJCU/mz2Hx93qybgm+XHWUizHx/BF+zjqyVji+bH/8MmLECB5//HGuXbuGu7s7W7ZsITIykuDgYD7//HNbZBQ20qO++of8974L3IxP0jmNEEIXRhN0+OTOlXv/4LlzvcPHUKQyNHgZes6D/zsJL62GVu9AmSZqv/frkbBrFizsC5+Whx9awuoP4OQ6SIrPtZeTJ+2508tesQ14y44fQghx6nIsn688AsCYzlUp5uuucyL74Opk4sWm5QCYtu4EFotMgc0rsl20h4eH88Ybb2A0GjGZTCQkJFCqVCk+/fRT3n77bVtkFDZSt3QBKhTx5HaSmT/3XtA7jhBCL0Fd1LZuPvesuOtTPOPt3kxOUKo+tHhTbRk3KgKeWwiNBkGRqoAG53dD2CSY3QU+KQtznoSNU+DCXrBYcumF5QEWM+z5TbVlATohhMBi0Ri1aC8JyRaaVizMM/WlN/luzzcsjbfb/7d33+FN1usfx99JuktbaKGTVTZlQxllg0xxIFtBQVQEweOex4UL9/G4QBQBRZGhqCAiILJXGWWVTaFQWgqUDlo6k98fAc4PRWW0fdLk87quXNokTT7Vp2nufL/Pfbtx8GQ2S3dfYd8acXhXvT3e3d0ds9le6wcHB5OYmEj9+vUJCAjg6NHLzPkVh2UymRjcsgqvL9zDrNij3N6qqtGRRMQoUbdAvT4UHlpJ3KpfadqhJ241Ol7ZmDfPclCnh/0CkJVi30Z/8Hf7P8+mwMFl9guAT0X7VvoL2+kDKpfMz+QMElbau/d7BUCd3kanEREx3Ffrj7DxcBo+HhYm9GukbfF/4OflzrA21Zi4/CATVxyke1SI/hs5gasu2ps1a0ZsbCy1a9emU6dOvPDCC5w6dYqvvvqKhg0blkRGKUG3NavMW4v2Enc0nX0nsqgT4md0JBExitmCrVp7knZl0qRa+2ufy+4XCk2G2C82G5zc878C/vBqyDkFO+faLwBBtf9XwFdvby9Qxe7C1viGA8Dddbsii4gAHE3L4c1FewB4pnc9qgT6GJzIMd3drjpTViewNTGdjQlptK4RZHQkuU5XvT3+9ddfJyzMvoXytddeo0KFCowZM4aTJ0/y6aefFntAKVmV/DzpWi8YgFmx2ikhIsXMZILg+hDzAAydbd9KP2IhdHwSKrcEkxlO74fYz+DbO+DNSPi8O/z+OhxZB0Uu3G8jNxPizzf609Z4EXFxNpuNp77bTk5+Ea0jAxnauprRkRxWsJ8X/Zvbd7FNWnHQ4DRSHK56pT06OvrivwcHB7No0aJiDSSlb3DLKiyOP8G8rUk81auexkOISMlx84Dq7eyXrv+Gc+n21fdDv9tX49MO2julH9sIK94Ej3L21fca50fLVarrOiPP4n+EwnP2nQgRLYxOIyJiqG9jj7L24Gm83M282b8xZrOL/C24Rvd3rMGs2ER+33uS3cmZ1A/zNzqSXIerrs66du1Kenr6n67PzMyka9euxZFJSlmnOpUI9vMkLTuf39SwQkRKk3d5qH8T9HkX/rUFHt4Bt3wIDfqBTxDkn4V9i2DRU/BJa3gvCuaNgW2zIMvJX6/ivrH/s+kdrvNBhYjIZRxPP8drP+8G4PEedale0dfgRI6vekVfeje0747+VKvtZd5VF+3Lly8nPz//T9fn5uayatWqYgklpcvNYmZAC/sWmlmbtEVeRAxUvio0vwsGToXHD8D9K6HbePtKu5sXZB2Hbd/AvFHwbh34pC0sehb2L4H8bKPTF5+0Q5C4FjBB48FGpxERMYzNZuPZeTs4m1dI86rlubtdpNGRyozRnWoCMH97MkfTcgxOI9fjirfHb9++/eK/x8fHk5KScvHroqIiFi1aRERERPGmk1IzMLoKnyw/yMp9J0nOOKd5lyJiPLMZwprYL+0fhoJzkLje3tDu0O/28XGpu+yX9R/b58VXaQ01O0ONrhDe9Nqb6Rntwpi3ml0gQH9bRcR1fbclieV7T+LhZuatAU2waFv8FWtUOYD2tSqy+sAppqxO4KVbGhgdSa7RFRftTZs2xWQyYTKZLrsN3tvbmw8//LBYw0npiazoS6vIQDYmpPHd5mOM61rb6EgiIpdy97YXsTW7AOMh+zQkrDh/PvxyyEiEI6vtl2Wv2rvQR3b83/nwgTXKxjZzq/V/XeObqAGdiLiu1MxcXp6/C4CHu9WmVnA5gxOVPaM71WT1gVN8G5vIg11rEVTO0+hIcg2uuGhPSEjAZrNRo0YNNm7cSKVKlS7e5uHhQXBwMBZLGV3REAAGR1dhY0Iaszcd44HOtdTgQ0Qcm28QNOxnv9hs9i3lFxraJayC3AzYPd9+AfvW+wsFfI3O4BNoZPq/lrgW0hPB0x/q9TE6jYiIIWw2G//+YSeZuYU0ighgVIcaRkcqk9rVCqJhhD87kzKZvu4Ij3avY3QkuQZXXLRXq2Yfq2C1WkssjBjrxkZhvPjTLhLTclifcJq2NSsaHUlE5MqYTBBU035peS8UFUJy3P/mwx/dYC+Et0y3XzDZt91fmA9fpY3jzEG/0ICuQV/w0AxiEXFN87cnsyT+BO4WE28PbIybRdONroXJZGJ0p5qM+2YrX647zOhONfDxuOoBYmKwa/o/dvDgQd5//31277Z3cYyKiuKhhx6iZs2axRpOSpe3h4Wbm4Qzc2MiczYdU9EuImWXxQ0qR9svnZ6AvLNwZO3/zodPjbcX9clxsOZ9e5O7qjH2Ar5GFwhpaD+nvrTlnYVdP9j/XVvjRcRFnT6bx0s/2bfFj+1Si3qhGld2PXo3DKNa0F6OnM7h241HGdlezfzKmqt+R/Lrr78SFRXFxo0bady4MY0bN2bDhg00aNCAJUuWlERGKUWDW1YBYOGOZDLOFRicRkSkmHiWgzo9oNfr8MA6eGwv3DYZmtwO5UKhMNdezC95AT7tAO/UhrkjYctXkF6KUzV2z4eCbKgQCVXblN7ziog4kBd+2kVadj71Qv14oHMto+OUeRaziVEd7acXfL7qEAVF2jld1lz1SvvTTz/NI488whtvvPGn65966im6d+9ebOGk9DWpHEDdED/2nsjip23HubNNNaMjiYgUP79QaDLYfrHZ4OTe/50Pf3g15JyCnd/ZLwBBtf53PnxkB3uTu5KwTbPZRcS1LdqZzM/bk7GYTbwzsAkebtoWXxz6N6/Mf5bs53hGLj/FHaf/+XHPUjZc9W/B7t27ueeee/50/ciRI4mPjy+WUGIck8nEwGj7L/HsWM1sFxEXYDJBcD1oMwaGzoanDsPdv0DHJ6FyKzBZ4PQBiP0MZg2FNyPh8+6w7DX7lvuiYtqVlJ4ICSvt/95kSPE8pohIGZKek89zP9i3xY/uVIOGESX0AakL8nK3MLJ9dQA+XXkQq9VmbCC5KlddtFeqVIm4uLg/XR8XF0dwcHBxZBKD9WteGXeLiR1JGcQfzzQ6johI6XLzgGptoeu/4d4l8FQCDP7a3uAuqBbYiuDYRlj5FkztDW9Wh68HwfqJkLrHvnJ/LbbNsv+zegd7p3sRERfz8vx4Tp3No1ZwOR7U+OFiN7R1Ncp5urHvxFmW7Uk1Oo5chSveHv/yyy/z+OOPc9999zFq1CgOHTpE27ZtAVizZg1vvvkmjz76aIkFldIT6OtB96gQFu5IYfamo7x0SwOjI4mIGMcrAOrfZL+A/Rz3Cw3tDi2HnNOw/1f7BcAv7PxYuS5Qo5N9K/7fsRbBkTWwcbL96ya3l9APIiLiuJbtOcH3W5Mwm+CtAY3xctco6eIW4O3O0NZV+XTlISatOEi3qBCjI8kVuuKV9vHjx3P27Fmef/55XnjhBT788EM6depEp06d+Oijj3jppZd47rnnrurJJ0yYQMuWLfHz8yM4OJi+ffuyd+/eS+7TuXNnTCbTJZfRo0dfcp/ExET69OmDj48PwcHBPPHEExQWFl5VFrnUoGh7Q7of4pLIKywyOI2IiAMpXwWa3wkDvoDHD8D9q6D7y/Yi3c0LspJh20yYNwrerQufxMCiZ2HfYsjPvvSx4n+C9xvC9Jsh+/yqx7JX7NeLiLiIzNwCnv1+JwD3tI+kedUKBidyXiPbR+JhMbPpyBk2HU4zOo5coSteabed3+5nMpl45JFHeOSRR8jKygLAz8/vmp58xYoVjB07lpYtW1JYWMizzz5Ljx49iI+Px9fX9+L97rvvPl5++eWLX/v4/G9ubVFREX369CE0NJS1a9eSnJzMXXfdhbu7O6+//vo15RLoULsSYQFeJGfksiT+BDc1Djc6koiI4zGbIayx/dLuISjIhaPrz8+H/x2St9vHy6XGw/qPwewOVVrbV+LNbvDbeOAP2+mzUmD2XTDoS4i6xYifSkSkVL3+825SMnOpHuTDo93rGh3HqYX4e9GveQTfxh5l0oqDfF490OhIcgWuqnu86Q+dbK+1WL9g0aJFl3w9bdo0goOD2bx5Mx07drx4vY+PD6Ghl99euHjxYuLj41m6dCkhISE0bdqUV155haeeeoqXXnoJDw+P68roqixmEwNaVObDZQeYFXtURbuIyJVw9zq/Nb4zMB6yT0PCiv9tp09PhCOr7Ze/ZANMsOhpqNcHzNoiKiLOa9X+k3x7vvnxWwOa4O2h17ySNqpjDWZtOsrS3ansTcmibuj11XRS8q6qaK9Tp86fCvc/Sku79m0WGRkZAAQGXvqJz9dff82MGTMIDQ3l5ptv5vnnn7+42r5u3ToaNWpESMj/zsno2bMnY8aMYdeuXTRr1uxPz5OXl0deXt7FrzMz7c3WCgoKKCjQbPIL+jYJ5cNlB1h94BSHT2YSUd7b6EiGuHBM6NgQV6DjvZh5+EPdm+0Xmw3OJGBOWI5p1/eYj67/m2+0QWYShYdWYqvWvtTiuhod7+JKHPF4P5tXyNPfbQfgztZVaFbZz6HyOasq5T3pXj+YxfGpTFq+n7f6NzI6UrFyxGP9r1xpxqsq2sePH09AQMmMXrBarTz88MO0a9eOhg0bXrz+jjvuoFq1aoSHh7N9+3aeeuop9u7dy/fffw9ASkrKJQU7cPHrlJSUyz7XhAkTGD9+/J+uX7x48SVb7wVq+5vZn2nmjVnL6V3FtUdDLFmyxOgIIqVGx3tJCiXC3Ixo/q5ot4tb9StJuzTFo6TpeBdX4kjH+9xDZpLSzQR62mhkS2DhwgSjI7mMhmZYjBs/bjtOY/NRAj2NTlT8HOlY/ys5OTlXdL+rKtqHDBlSYmPdxo4dy86dO1m9+tItg6NGjbr4740aNSIsLIwbbriBgwcPUrNmzWt6rmeeeeaSTveZmZlUqVKFHj164O/vf20/gJMqiEjm8bk72HHWl//26oDZ/Pc7LZxRQUEBS5YsoXv37ri7uxsdR6RE6XgvHaYj/nBk4j/er2mHnjTRSnuJ0fEursTRjvcNCWmsWrcJgP/cHk3bmkEGJ3I9a7NjWZ9whsOeNRh2Yz2j4xQbRzvW/86FHd//5IqL9n/aFn89xo0bx4IFC1i5ciWVK1f+2/u2bt0agAMHDlCzZk1CQ0PZuHHjJfc5ceIEwF+eB+/p6Ymn558/TnJ3d3f4/7Gl7aYmEYxfsJuk9FxiEzNpX7ui0ZEMo+NDXImO9xJWoyP4h0NmMn9qRAeACfzDcavRUee0lwId7+JKHOF4P5dfxL9/jAfg9lZV6FTvH0ZjSokY06U26xM2MntTEg93q0sFX+fqBeYIx/o/udJ8Vzzy7UL3+OJks9kYN24c8+bNY9myZURGRv7j98TFxQEQFhYGQExMDDt27CA1NfXifZYsWYK/vz9RUVHFntnVeLlb6Ns0AoBZm44anEZExEmYLdDrzfNf/PFD8fNf93pDBbuIOKV3F+/lyOkcwgK8eObG+kbHcVkda1ckKsyfcwVFfLnuiNFx5G9ccdFutVqLfWv82LFjmTFjBt988w1+fn6kpKSQkpLCuXPnADh48CCvvPIKmzdv5vDhw/z000/cdddddOzYkcaNGwPQo0cPoqKiuPPOO9m2bRu//vorzz33HGPHjr3sarpcvQsz23/dlUJ6Tr7BaUREnETULfaxbv5hl17vH65xbyLitDYfOcOUNfZz11/v1wh/L8deCXVmJpOJ0Z3tpxtPW5tATn6hwYnkr1xx0V4SJk6cSEZGBp07dyYsLOziZdasWQB4eHiwdOlSevToQb169Xjsscfo378/8+fPv/gYFouFBQsWYLFYiImJYdiwYdx1112XzHWX69Mwwp/6Yf7kF1r5Me640XFERJxH1C3w8E4YvgD6T7H/8+EdKthFxCnlFhTx5Nxt2GzQv3llutQtmV5ZcuVubBhKlUBvzuQUMDtWu2od1VU1oitu/7TlvkqVKqxYseIfH6datWosXLiwuGLJH5hMJgZHV+al+fHMij3K8LbVjY4kIuI8zBaI7GB0ChGREvff3/Zz8GQ2lfw8ef4mbYt3BG4WM6M61OD5H3fx2aoEhraphrvF0HVduQz9H5Er0rdZBB4WM/HJmexMyjA6joiIiIiUIduPpTN55SEAXu3bkPI+ztX0rCwbGF2FIF8PktLP8fP2ZKPjyGWoaJcrUt7Hgx4NQgCYrYZ0IiIiInKF8gutPDl3O0VWGzc3CadnA3WLdyRe7hbublcdgEkrDpZIA3K5Pira5YoNbmlvSPfD1iRyC4oMTiMiIiIiZcHHvx9gT0oWQb4evHSzpjs5ojvbVMfXw8KelCyW7z1pdBz5AxXtcsXa1axIRHlvMnML+XVXitFxRERERMTB7U7O5OPfDwAw/tYGBJXTdCdHFODjzu2tqgIwccVBg9PIH6lolytmNpsY0KIyALPUXVJERERE/kZBkZUn5m6j0GqjZ4MQ+jQK++dvEsPc0yESd4uJjQlpbD5yxug48v+oaJerMjC6MiYTrD14mqNpOUbHEREREREHNXnlIXYmZRLg7c4rfRtiMpmMjiR/IyzAm75NIwD7ue3iOFS0y1WpXMGH9rUqAjBHDelERERE5DIOpGbx36X7AXjx5iiC/bwMTiRX4v5ONQBYEn+CA6lZBqeRC1S0y1UbFG1vSDdn8zGKrOouKSIiIiL/U2S18cTc7eQXWelStxK3NYswOpJcoVrBfvSIsk+M+nTFIYPTyAUq2uWqdY8KIcDbneSMXFYfOGV0HBERERFxIFPXJLA1MR0/Tzde79dI2+LLmNGdawLwQ1wSyRnnDE4joKJdroGXu+XiJ6az1ZBORERERM5LOJXN27/uBeDffeoTFuBtcCK5Ws2rVqBVZCAFRTamrEowOo6gol2u0YUt8ovjU0jLzjc4jYiIiIgYzWq18dTc7eQVWmlfqyKDW1YxOpJcozGd7KvtMzcmkpFTYHAaUdEu1yQq3J+GEf4UFNmYtzXJ6DgiIiIiYrCv1h9h4+E0fDwsTNC2+DKtc91K1Av1Izu/iK/WHzY6jstT0S7XbPCFhnSbjmKzqSGdiIiIiKs6mpbDm4v2APB073pUCfQxOJFcD5PJxOjzq+1T1xwmt6DI4ESuTUW7XLNbmkbg6WZmT0oW249lGB1HRERERAxgs9l4+vvt5OQX0SoykGGtqxkdSYrBTY3DiCjvzensfI16NpiKdrlmAd7u9G4YCsAs/SKLiIiIuKRvY4+y5sBpvNzNvNW/MWaztsU7AzeLmVEd7XPbJ686RGGR1eBErktFu1yXCw3p5scd51y+ts2IiIiIuJLj6ed47efdADzeoy7VK/oanEiK06DoKgT6enA07Rw/70g2Oo7LUtEu16VNjSCqBHqTlVfILzv1iywiIiLiKmw2G8/O28HZvEKaVS3P3e0ijY4kxczbw8LwmOoATFpxSH2sDKKiXa6L2WxiUAv7avsszWwXERERcRnfb0li+d6TeLiZeXtAYyzaFu+U7oqphre7hd3Jmazcf8roOC5JRbtctwHRlTGZYENCGodPZRsdR0RERERKWGpmLuPn7wLg4W61qRXsZ3AiKSkVfD24vVVVACYtP2hwGtekol2uW1iANx1rVwJgzmattouIiIg4M5vNxnM/7CQzt5BGEQGM6lDD6EhSwu7tEImb2cS6Q6eJO5pudByXo6JdisXglvYt8nM3H1NnSREREREntmB7MovjT+BuMfH2wMa4WVRSOLvw8t7c0jQc0Gq7EfQbJsWiW/0QAn09OJGZx8r9J42OIyIiIiIl4PTZPF78yb4tfmyXWtQL9Tc4kZSW0Z1qAvBrfAoHT541OI1rUdEuxcLDzUzfphEAzI49ZnAaERERESkJL/60i7TsfOqF+vFA51pGx5FSVCfEj271g7HZYPKKQ0bHcSkq2qXYXNgiv3T3CU6dzTM4jYiIiIgUp0U7U1iwPRmL2cTbA5rg4aZSwtVcWG2ftzWJE5m5BqdxHfpNk2JTN9SPJlXKU2i1MW9LktFxRERERKSYpOfk89wPOwG4v2MNGlUOMDiRGCG6eiDR1SqQX2Tli9UJRsdxGSrapVgNjj4/s33TUWw2m8FpRERERKQ4vLwgnlNn86gVXI5/3VDb6DhioDGd7avtX29IJONcgcFpXIOKdilWNzUJw8vdzIHUs2zVOAgRERGRMm/ZnhN8vyUJkwneGtAYL3eL0ZHEQF3qBlMnpBxn8wqZsf6I0XFcgop2KVb+Xu7c2CgMgNmxmtkuIiIiUpZl5hbw7Pf2bfH3tIukedUKBicSo5nNJu7vaF9tn7rmMLkFRQYncn4q2qXYXdgiP3/bcbLzCg1OIyIiIiLXasLC3aRk5lI9yIfHetQ1Oo44iFuahhMe4MWps3l8t0WTo0qainYpdq0iA6ke5EN2fhELdyQbHUdERERErsHq/aeYudG+c/LN/o3x9tC2eLFzt5i5t0MNACavPESRVb2sSpKKdil2JpOJgedX22dv0hZ5ERERkbImO6+Qp77bDsDwmGq0rhFkcCJxNENaVaG8jztHTufwy04t1JUkFe1SIga0qIzZBLGHz3Dw5Fmj44iIiIjIVXhz0R6S0s9RuYI3T/aqZ3QccUA+Hm7cFVMdgEkrDmpyVAlS0S4lIsTfiy51gwGttouIiIiUJRsOnebLdfau4G/2b4yvp5vBicRRjWhbHS93MzuTMllz4LTRcZyWinYpMRe2yH+3OYmCIqvBaURERETkn5zLL7q4Lf72VlVoV6uiwYnEkQX6ejCkZVUAJq44YHAa56WiXUrMDfWDqVjOg1Nn81i+96TRcURERETkH7y7eC+HT+cQFuDFMzfWNzqOlAH3tI/EYjax5sBpdhzLMDqOU1LRLiXG3WKmX/PKAMzSzHYRERERh7Yl8QxT1iQA8PptjfD3cjc4kZQFVQJ9uKVJOGA/t12Kn4p2KVGDou1F++97U0nNzDU4jYiIiIhcTm5BEU/M2YbNBv2aR9ClXrDRkaQMub+Tffzbwp3JJJzKNjiN81HRLiWqVrAfzauWp8hq4/utSUbHEREREZHL+OC3/Rw8mU0lP09euCnK6DhSxtQL9adL3UrYbPa57VK8VLRLiRvc8vzM9tijGgUhIiIi4mB2HMvg0/OF1qt9G1Lex8PgRFIWje5UE4DvthwjNUs7bIuTinYpcX0ah+PjYeHQqWw2HTljdBwREREROS+/0MoTc7dRZLVxU+MwejYINTqSlFGtIgNpXrU8+YVWpq45bHQcp6KiXUpcOU83+jQKA+yr7SIiIiLiGD5ZfoA9KVkE+now/pYGRseRMsxkMl1cbZ+x7giZuQUGJ3IeKtqlVFzYIv/zjmTO5hUanEZEREREdidn8tEy+2zt8bc0IKicp8GJpKzrVj+EWsHlyMor5JsNiUbHcRoq2qVUtKhWgRqVfMnJL2LBtuNGxxERERFxaYVF9m3xhVYbPRuEcFPjMKMjiRMwm03c39HeSX7K6gRyC4oMTuQcVLRLqTCZTAyOtq+2z9qkLfIiIiIiRpq86hA7kzIJ8HbnlVsbYjKZjI4kTuLWphGEBXhxMiuPeZoeVSxUtEupua15BBazia2J6ew/kWV0HBERERGXdCA1i/eX7AfghZuiCPb3MjiROBMPNzP3tI8E7OPfiqyaHnW9VLRLqQn286JrvWAAZmu1XURERKTUFVltPDF3O/lFVrrUrUS/5hFGRxInNKRVVfy93Eg4lc3iXSlGxynzVLRLqbqwRf77LUnkF1oNTiMiIiLiWqavO8LWxHT8PN14vV8jbYuXElHO043hbasDMGnFQWw2rbZfDxXtUqo6161EJT9PTmfns2xPqtFxRERERJxekdXGhoQ0fj9u4p3F9m3x/+5Tn7AAb4OTiTMb3rY6nm5mth3LYN3B00bHKdNUtEupcrOY6d+8MqAt8iIiIiIlbdHOZNq/uYxhX2zihyMWCqw2PCxmArzdjY4mTq5iOU8Gnd9lO3HFQYPTlG0q2qXUDYq2F+3L96aSkpFrcBoRERER57RoZzJjZmwh+Q/vt/KLrDzw9RYW7Uw2KJm4ilEda2Axm1i1/xQ7kzKMjlNmqWiXUlejUjlaVQ/EaoPvthwzOo6IiIiI0ymy2hg/P56/O5N4/Px4dfaWElUl0Ic+jcIA+7ntcm1UtIshBkb/b4u8GlOIiIiIFK+NCWl/WmH//2xAckYuGxPSSi+UuKT7O9UAYOGOZI6czjY4Tdmkol0M0adxGOU83ThyOocN+mMhIiIiUqxSs67sFMQrvZ/ItWoQHkCnOpWw2uCzVYeMjlMmqWgXQ/h4uHFzE/tWmdmxakgnIiIiUpyC/Tyv8H5eJZxEBEZ3qgnAnE3HOJmVZ3CaskdFuxjmQjfJhTuTycwtMDiNiIiIiPPYeTzzb283AWEBXrSKDCydQOLS2tQIpEmV8uQVWpm2NsHoOGWOinYxTNMq5akdXI7cAivztx03Oo6IiIiIU1i8K4XXF+6++LXpD7df+PrFm6OwmP94q0jxM5lMjDl/bvtX645wNq/Q4ERli4p2MYzJZGJwS/tqu7bIi4iIiFy/7cfSeejbOGw2GNq6KhOHNic04NIt8KEBXkwc1pxeDcMMSimuqEdUKDUq+ZKZW8jMDYlGxylTVLSLoW5rFoGb2cS2YxnsSfn7bVwiIiIi8teS0s9xz/RNnCsoolOdSoy/pQG9G4Wx+qmuzBgZzV21i5gxMprVT3VVwS6lzmw2cX9H+2r756sPkVdYZHCiskNFuxgqqJwn3eqHADA7VjPbRURERK5FZm4BI6fGcjIrj3qhfnx0RzPcLPa3+hazidaRgbSoaKN1ZKC2xIth+jaLIMTfkxOZefy4VafHXikV7WK4C1vk5209pk/cRERERK5SQZGVsV9vYe+JLIL9PPliREv8vNyNjiXyJ55uFu5pHwnApJUHsVptBicqG1S0i+E61qlEqL8XZ3IKWBqfanQcERERkTLDZrPxwo87WbX/FN7uFr4Y0ZLw8t5GxxL5S7e3qoqflxuHTmazZPcJo+OUCSraxXAWs4kBLSoDMGuTGtKJiIiIXKnJKw8xc+NRTCb48PZmNIwIMDqSyN/y83LnzjbVAJi4/CA2m1bb/4mKdnEIA6PtRfuq/Sc5nn7O4DQiIiIijm/hjmQm/LIHgBduiqJbVIjBiUSuzN3tIvFwMxN3NJ0NCWlGx3F4KtrFIVQL8qVNjUBsNpi7WQ3pRERERP7OlsQzPDIrDoARbatzd7tIYwOJXIVKfp4MPL/TdtKKgwancXwq2sVhXJzZvumomlKIiIiI/IWjaTncN30TeYVWbqgXzPM3RRkdSeSqjepYA7MJlu89SfxxjX7+OyraxWH0ahCGn6cbx86cY/2h00bHEREREXE4GTkFjJi6kdPZ+TQI9+eD25tphJuUSdWCfOndKAyAT1dqtf3vqGgXh+HtYeGWpuGAGtKJiIiI/FF+oZUxX2/m4MlswgK8+GJES3w93YyOJXLNxnSqCcCC7ckcTcsxOI3jUtEuDuXCFvlfdqaQkVNgcBoRERERx2Cz2Xh23g7WHjyNr4eFKcNbEuLvZXQskevSMCKADrUrUmS18fmqQ0bHcVgq2sWhNIoIoF6oH/mFVn7clmR0HBERERGH8PHvB5i7+RgWs4mPhjYnKtzf6EgixWL0+dX2WZuOcvpsnsFpHJOKdnEoJpOJQdH/a0gnIiIi4up+jEvincX7AHjplgZ0qRtscCKR4tO2ZhCNIgLILbAyfe1ho+M4JBXt4nBuaxaBh8XMzqRMdh3PMDqOiIiIiGFiD6fxxJztANzXIZI721QzOJFI8TKZTIzpbF9tn77uCNl5hQYncjwq2sXhVPD1oHuDEABmx2q1XURERFzT4VPZjPpyE/lFVno2COGZ3vWNjiRSIno2CCWyoi8Z5wqYuTHR6DgOR0W7OKTB57fI/xB3nNyCIoPTSGkrstpYd/A0P8Ylse7gaYqsNqMjiYiTKbLa2JCQxuZTJjYkpOl1RhzOmex87p4Wy5mcAppUDuD9wc0wa7SbOCmL2cR9HWoAMGV1AvmFVoMTORZDi/YJEybQsmVL/Pz8CA4Opm/fvuzdu/eS++Tm5jJ27FiCgoIoV64c/fv358SJE5fcJzExkT59+uDj40NwcDBPPPEEhYXaVlGWtatVkfAALzLOFbA4/sQ/f4M4jUU7k2n/5jJu/2w9D30bx+2fraf9m8tYtDPZ6Ggi4iQuvM4M+2ITX+63MOyLTXqdEYeSV1jE/V9tJuFUNhHlvflseDTeHhajY4mUqH7NI6jk50lyRi4/bTtudByHYmjRvmLFCsaOHcv69etZsmQJBQUF9OjRg+zs7Iv3eeSRR5g/fz5z5sxhxYoVHD9+nH79+l28vaioiD59+pCfn8/atWuZPn0606ZN44UXXjDiR5JiYjGbGHChIZ22yLuMRTuTGTNjC8kZuZdcn5KRy5gZW/SGWkSum15nxNHZbDaemrudjYfT8PN0Y+rdLQn202g3cX5e7hZGtosE4NMVB7FqB9RFhhbtixYtYsSIETRo0IAmTZowbdo0EhMT2bx5MwAZGRlMmTKF9957j65du9KiRQumTp3K2rVrWb9+PQCLFy8mPj6eGTNm0LRpU3r37s0rr7zCxx9/TH5+vpE/nlyngS0qA7D6wCmOpuUYnEZKWpHVxvj58Vzu5fnCdePnx2sLq4hcM73OSFnw/tL9/BB3HDeziYnDWlAnxM/oSCKlZmibqvh5urE/9Sy/7Uk1Oo7DcDM6wP+XkWHvFB4YGAjA5s2bKSgooFu3bhfvU69ePapWrcq6deto06YN69ato1GjRoSEhFy8T8+ePRkzZgy7du2iWbNmf3qevLw88vL+NwMwMzMTgIKCAgoKCkrkZ5OrF+rnTtsagaw9lMbs2CP8q2stQ3JcOCZ0bJSsDQlpf1r5+v9sQHJGLusOpNI6MrD0grkYHe/izPQ6I45u3tbj/Pe3/QCMv7k+rasHFNvrsV7fpSzwtsCQlpX5bPVhJi4/QOfaV/9aXJaO9SvN6DBFu9Vq5eGHH6Zdu3Y0bNgQgJSUFDw8PChfvvwl9w0JCSElJeXiff5/wX7h9gu3Xc6ECRMYP378n65fvHgxPj4+1/ujSDGqZTGxFgsz1hykxrl9GNl/ZcmSJcY9uQvYfMoE/PP5eotXbeD0bq2ClTQd7+KM9Dojjmx/homJu82AiW7hVsqlbmfhwu3F/jx6fRdHVyUfLCYLWxLT+fDbhdT0v7bHKQvHek7Ole0mdpiifezYsezcuZPVq1eX+HM988wzPProoxe/zszMpEqVKvTo0QN//2s8KqRE3FBQxI9vr+DMuUIC6raiQ62KpZ6hoKCAJUuW0L17d9zd3Uv9+V2F776TfLl/6z/ez1wxku496+Bu0fCLkqDjXZzajhS+3P/PRVCPDq210i6l6uDJbJ6fvIEiWyE3NgzhPwMbF3uneL2+S1myy7SLWZuS2F4QyoM3Nr+q7y1Lx/qFHd//xCGK9nHjxrFgwQJWrlxJ5cqVL14fGhpKfn4+6enpl6y2nzhxgtDQ0Iv32bhx4yWPd6G7/IX7/JGnpyeenp5/ut7d3d3h/8e6Gnd3d/o2jWD6uiN8vzWZrvXDDM2i46NknD6bxwfLDl7RfaetS2TF/tM83qMuNzYKxWTS+JuSoONdnM2+E1lMWLT3H+9XwcedmFrBWDRaS0rJ6bN5jJqxlczcQppXLc97g5vh6V5yneL1+i5lwf2dajF7cxLL953i0Olc6oZefW+HsnCsX2k+Q5eqbDYb48aNY968eSxbtozIyMhLbm/RogXu7u789ttvF6/bu3cviYmJxMTEABATE8OOHTtITf1fo4IlS5bg7+9PVFRU6fwgUqIGnu8iv3jXCc5kq7mgszlyOpv+E9eyPSkT3/PjbP74Vtl0/jIoujJBvh4knMpm7DdbuPXjNaw9cKq0I4tIGbMxIY0BE9eSkplHiL/9Q/u/KsnP5BQwY/2R0gsnLi23oIj7vtxEYloOVQN9+OyuaLxKsGAXKStqVCpH74b2BdhPV1zZwo4zM7RoHzt2LDNmzOCbb77Bz8+PlJQUUlJSOHfuHAABAQHcc889PProo/z+++9s3ryZu+++m5iYGNq0aQNAjx49iIqK4s4772Tbtm38+uuvPPfcc4wdO/ayq+lS9jSMCKBBuD/5RVZ+iEsyOo4Uox3HMug/cS2HT+dQuYI3Pz3YnknDmhMacOlom9AALyYOa85bA5qw4skuPNytNr4eFrYfy+COzzdw55QN7EzKMOinEBFHtmhnMsOmbCAzt5AW1Sqw6KGOl32dCQvwokNt+ylYL/60izcX7cFm03ntUnKsVhuPzdnGlsR0/L3c+GJES4LK6b2ryAWjO9UE4Kdtxzl2xrUnSRm6PX7ixIkAdO7c+ZLrp06dyogRIwD4z3/+g9lspn///uTl5dGzZ08++eSTi/e1WCwsWLCAMWPGEBMTg6+vL8OHD+fll18urR9DSsHgllV44cddzIo9yoi21bUl2gms2HeSMTM2k5NfRFSYP9Pubkmwvxc1K5Wje1QoGxPSSM3KJdjPi1aRgRe3qpbzdOPhbnUY1qYaHy07wNcbjrBq/ylW7V/NzU3CebxHHaoF+Rr804mII/hy3WFe/GkXNht0jwrhw9ub4eVuoVfDMLpHhbLuQCqLV22gR4fWxNQKxmyCj5Yd4N0l+5i4/CAnMnN5s39j9dCQEvHO4r38vD0Zd4uJT++MplZwOaMjiTiUxpXL07ZmEGsPnubzVQm8dEsDoyMZxtCi/Uo+wfby8uLjjz/m448//sv7VKtWjYULFxZnNHEwtzaJ4NWfd7MnJYudSZk0qhxgdCS5Dt9vOcaTc7dTaLXRvlZFJg5rjp/X/87psZhNxNQM+tvHqFjOk5duacDIdpG8u2QvP8YdZ/624/yyI5k7Wlflwa61qeSnFQsRV2Sz2Xj71718sty+pfKO1lV5+ZYGuP2/4ttiNtE6MpDTu220/n8fDD54Q21C/L14Zt4Ovt+SxKmz+Uwc2hxfT4doAyROYlZs4sXj841+jf/xb56IqxrdqSZrD55mVuxRHrqhNhV8PYyOZAh9dCxlQoCPO70a2M9rmbUp0eA0cq1sNhsTlx/k0dnbKLTauLVpOF+MaHlJwX61qgb58N8hzfj5X+3pVKcShVYbX647Qqe3f+e9JfvIynX8GZ0iUnwKiqw8Pmf7xYLose51eK1vw0sK9n8yqGUVPrurBd7uFlbuO8mQyes5mZVXUpHFxazef4p/z9sJwL9uqE3/FpX/4TtEXFeH2hVpEO7PuYIipq87bHQcw6holzJjcEt7Q7of446TW1BkcBq5WkVWGy+dP08UYFTHGvxnUFM83IrnZahBeADTR7bim/ta06RyADn5RXzw2346vb2cqWsSyCvUMSPi7LLzCrl3+ia+23IMi9nEm/0b8eANta/plKqu9UKYOaoNgb4e7Eg633/jVHYJpBZXsu9EFmNmbL74wfUj3WobHUnEoZlMpovntk9be5ic/EKDExlDRbuUGTE1gqhcwZus3EIW7UwxOo5chdyCIh6cuYXp645gMsHzN0Xx7I31i30GLUDbmhX5YWw7PhnanBoVfUnLzmf8/HhueHcF87Yew2pVYykRZ3TqbB63f7aeFftO4uVu5rO7WjC4ZdXresymVcozd3QMVQK9SUzLof/EtWw7ml48gcXlpGblcvfUWLLyCmlVPZC3BjRWjx6RK9C7YShVA31IzylgVuxRo+MYQkW7lBlms4mBLeyr7a76C1sWZeQUcNcXG1m4IwUPi5kPb2/GPe0j//kbr4PJZOLGRmH8+khHXr+tEcF+nhw7c45HZm2jz4er+X1vqrpCiziRw6fOj448lkGgrwcz72tD13ohxfLYNSqV47sxbWkY4c/p7HyGTF7P73tT//kbRf6fc/lF3Dd9E0np54is6Mund7bA002j3USuhJvFzKiONQD4fFUCBUVWgxOVPhXtUqYMiK6MyQTrDp3myGltU3R0yRnnGPjpWjYmpOHn6ca0kS25qXF4qT2/u8XMHa2rsuKJLjzRsy5+Xm7sTs7k7qmxDJm8nq2JZ0oti4iUjO3H0uk/cS1HTudQJdCbuaNjaFa1QrE+R7CfF9+OiqFD7YqcKyji3umbmLNJHx7LlbFabTw8ayvbjmVQwcedqSNaumwzLZFrNaBFZSqW8yAp/RwLth83Ok6pU9EuZUpEeW861K4EwJxNxwxOI39n34ks+n2yln0nzhLs58ns0TG0rVnRkCzeHhbGdqnFyie6MKpjDTzczGxISOO2T9Yy+qvNHEg9a0guEbk+y/emMmTyek5n59Mg3J/vxrSlRqWSGZtVztONKcNbcluzCIqsNp6Yu52Plu3Xrh35RxN+2c2vu07gYTEz+a5oqlfUWFKRq+XlbuHudvadmpOWH3K5114V7VLmDI62b5Gfu/kYRTo/2SFtTEhjwMS1JGfkUiu4HN8/0Jb6Yf5Gx6KCrwfP3lif3x/vzMAWlTGbYNGuFHq+v5Jnvt9OSkau0RFF5ArN3XyMe6dvIie/iA61KzLr/hiC/bxK9Dk93My8O7DJxaZI7yzexws/7tLfIvlLX60/wmerEgB4e2BjWlYPNDiRSNk1rHU1fD0s7D2R5XKnKalolzKnW1QwFXzcScnMZeX+k0bHkT/4ZUcyw6ZsIDO3kBbVKjB3dAyVK/gYHesSEeW9eXtgExY93JFu9UMostqYufEond7+nTd+2UNGjsbEiTgqm83Gx78f4PE59tGRtzWLYMrwlpQrpTnqZrOJp3vX46WbozCZ7EXZA19v1lQT+ZPf96by4o/20W6Pda/DrU0jDE4kUrYF+LgztE01wL7a7kpUtEuZ4+lmoW8z+x++2WpI51Cmrz3MA99sIb/QSo+oEL6+tzXlfRz3vL06IX58PjyauaNjiK5WgbxCK5NWHKTj27/z6YqDehMu4mCKrDZe+HEXb/+6F4D7O9Xg3YFNim105NUY0S6Sj25vjofFzK+7TjDs8w2k5+SXeg5xTPHHMxn39RasNvu5uOO61jI6kohTGNkuEneLiY2H09h8JM3oOKVGRbuUSRdmti/dfYLTZ/MMTiM2m423Fu3hxZ92YbPB0NZVmTisBV7uZaMzbnT1QOaMjuHzu6KpE1KOjHMFTPhlD13eWc7s2KMUumCXUhFHk1tQxNivt/DVevvoyBdvjuKZ3iUzOvJK9Wkcxpf3tMLPy41NR84wYNI6ktLPGZZHHMOJzFzumR5Ldn4RMTWCeP22RhrtJlJMQgO8uO384t1EF1ptV9EuZVK9UH8aVw6goMjGvK1JRsdxaQVFVh6bs41Plh8E7FsAX+3bEIuBb6SvhclkoltUCL881JG3BzQmPMCL5IxcnvxuO73+u4pfd6W4XNMTEUeRkVPAnVM2sGjX/0ZHXmhIZLQ2NYKYMzqGUH8vDqSepf8na9mTkml0LDFIdl4hI6fFkpyRS81Kvkwa1sKQnSAizmxUx5qYTPbFu/0nsoyOUyr0KiJl1qDzDelmbzqqYsog2XmF3DN9E99vScJiNvFW/8Y8eEPtMr2iYDGbGBhdhWWPd+a5PvUp7+POgdSz3P/VZvpPtI+vE5HSczz9HAMmrSX28Bn8vNyYPrJVqY6OvBL1Qv35/oG21A4uR0pmLgMnrmPdwdNGx5JSVmS18a+ZW9l1PJMgXw+mjmhFgI+70bFEnE6t4HL0iAoB4NOVrrHarqJdyqxbmobj5W5m34mzxB1NNzqOyzmZlceQyetZue8k3u4WPrurBYPOn7bgDLzcLdzboQYrn+zC2C418XI3syUxnUGfrmPktFitpImUgj0pmfT7ZC37U88S4u/JnNExxNQMMjrWZYWX92bO6BhaVq9AVl4hw7/YyM/bk42OJaXolQXx/LYnFU83M58Nj6ZqkGM1YRVxJhemePywNYnjLnBakop2KbP8vdy5sWEYALM1s71UHT6VzYBJa9mRlEGgrwczR7Wha70Qo2OVCH8vd57oWY8VT3ThjtZVsZhNLNuTSu//ruLR2XEcO5NjdEQRp7T+0GkGTlpHSmYutYPL8f0D7agXavzoyL9T3seDr+5pTa8GoeQXWRk3cwtT1yQYHUtKwdQ1CUxbexiA/wxuSvOqFYwNJOLkmlWtQOvIQAqtNqasdv7XWRXtUqYNPL9Ffv624+TkFxqcxjVsO5pO/4lrOXI6hyqB3nw3pi1Nq5Q3OlaJC/H34vXbGrHkkY70aRSGzQbfb0mi6zsreGVBPGnZ6hotUlx+3p7MXVM2kpVbSMvqFZgzOoaI8t5Gx7oiXu4WPh7anDvbVMNmg/Hz45mwcDdWzXJ3WkvjT/DKgngAnu5djxsbhRmcSMQ1jOlsX22fuTHR6ad3qGiXMq1NjUCqBflwNq+QhTtSjI7j9H7fm8qQyes5nZ1Pwwh/vh/TjsiKvkbHKlU1KpXj46HN+XFsO2JqBJFfZGXK6gQ6vfU7Hy3brw+PRK7TtDUJjJu5hfwiKz0bhPDVPY49OvJyLGYTL9/agCd61gXs51w+OjuO/EJNonA2O45l8ODMrVhtcHurKtzfsYbRkURcRqc6lagf5k9OfhFfrjtidJwSpaJdyjSTyfS/hnSa2V6i5mw6yr3TN3GuoIgOtSvy7agYKvl5Gh3LME2qlOeb+1ozfWQrosL8ycor5J3F++j09nK+Wn+EAo2JE7kqVquNN37Zw0vz47HZ4M421fhkaNkZHflHJpOJsV1q8faAxljMJn6IO84902M5m6cP9pzF8fRz3DM99uLfxZdvbVimG7GKlDUmk4nRnewflE1be5hz+UUGJyo5KtqlzOvfvDJmE2w8nMahk2eNjuN0bDYbH/9+gCfmbqfIauO2ZhFMGd6Scp5uRkcznMlkolOdSix4sD3/HdKUqoE+nMzK4/kfdtL9vRUs2H5cW2JFrkB+oX105KQV9tGRT/Ssy8u3NihzoyMvZ2B0FaYMj8bHw8Kq/acY/Ok6UrNyjY4l1ykrt4CR02JJzcqjbogfHw9tjrtFb6tFSlufRmFUruBNWnY+czY77wKeXl2kzAsN8KJTnUoAzNmshnTFqchq44Ufd/H2r3sBe6fO9wY10czZPzCbTdzaNIKlj3Zi/C0NqFjOg8Oncxj3zVZu/XgNaw6cMjqiiMM6m1fIPdNjmbfVPjry7QGNGdulllOtWHauG8zM+9oQ5OvBruOZ9J+4Vh8yl2GFRVbGfbOVPSlZVPLz5Iu7W+LvpdFuIkZws5gZdf60lMkrD1HopDsd9c5bnMLg86PGvtt8zGl/WUtbbkERY7/ewlfrj2AywUs3R/F073pO9Ua6uHm4mRnetjrLn+jCI93q4OthYUdSBkM/38CdUzawMynD6IgiDiU1K5chk9exav8pvN0tfD48+mKDUWfTpEp5vhvTlmpBPhxNO8eASevYmnjG6FhylWw2Gy/+tIsV+07i5W5myvDoMtMkUcRZDWxRhUBfD46dOcfPO5xz1KaKdnEKXeuFEOTrQWpWHiv2nTQ6TpmXnpPPnVM2sGhXCh4WMx/d3pwR7SKNjlVmlPN046FutVnxZBdGtK2Ou8XEqv2nuOnD1Tw4cytHTmcbHVHEcAmnsuk/cS07kzIJ8vXg21Ft6FI32OhYJap6RV++G9OWxpUDSMvO547PNrBszwmjY8lV+HxVAl9vSMRkgv8OaUbjyuWNjiTi8rw9LIxoWx2ASSsOYbM536mJKtrFKXi4mbmtWQQAs9SQ7rokpdtXgGIPn8HPy40v72lFn8YaX3MtKpbz5KVbGvDbo53p2zQck8k+nvCGd1fwwo87OZmVZ3REEUPEnR8deTTtHFUDffhuTFuauMDoSLC/Lsy8rw0d61TiXEER9325mVmxiUbHkiuwaGcyr/+yG4B/31ifng1CDU4kIhfcFVMNHw8Lu5Mz+Wz1YTafMrEhIY0iJ+ktpKJdnMaFLfLL9qSqGLpGe1Iy6f/JWg6kniXU34s5o2NoUyPI6FhlXtUgH94f0owFD7anU51KFFptfLnuCJ3e/p33Fu8lK7fA6IgipWbZnhPcPnk9adn5NIoI4LsxbanuYqMjfT3dmDI8mn7NIyiy2njqux188Nt+p1wdchZxR9N5eFYcNpu9OLinvXafiTiS8j4exJx/z/r24v18ud/CsC820f7NZSzaWfa3zKtoF6dRO8SPZlXLU2i18f0WNaS7WusPnWbgpHWkZOZSO7gc3z/Qlnqh/kbHcioNwgOYPrIVM+9rQ5Mq5cnJL+KDZQfo9PZyvlidQF6h844qEQH7aM77vtzMuYIiOtapxLej2rjs6Eh3i5l3BzZhbJeaALy3ZB///mGn06wKOZOjaTncOz2W3AIrXepW4oWbotTfRcTBLNqZzG97Uv90fUpGLmNmbCnzhbuKdnEqgy/MbN90VCsWV+Hn7cncNWUjWbmFtKxegTmjYwhXY50SE1MziB8eaMukYc2pUdGXtOx8Xl4Qzw3vruD7Lcf0pl2cjs1m48Pf9vPkd/bRkf2aRzBleDS+Lj460mQy8UTPerx8awNMJvhmQyKjZ2x26lnDZU3GOftot1Nn86kf5s+HdzTHTaPdRBxKkdXG+Pnxl73twjuq8fPjy/T7K73qiFPp0zgMb3cLB09ms0Vdea/I1DUJjJu5hfwiK70ahPLVPa0p7+NhdCynZzKZ6NUwjMWPdGRCv0YE+3ly7Mw5Hp29jT4frOL3Pan64EmcQpHVxnM/7OTdJfsAeKBzTd4d2EQzrf+fu2Kq88kdzfFwM7Mk/gRDP1/Pmex8o2O5vIIiKw98vZn9qWcJ8ffkixHRlHPxD5pEHNHGhDSSM3L/8nYbkJyRy8aEtNILVcz0F1Ocip+X+8WmaWpI9/esVhsTftnN+Pnx2GxwZ5tqfDy0OV7uFqOjuRQ3i5nbW1VlxRNdeLJXXfy83NiTksXd02IZMnm9PnySMi23oIgxMzZf7LY9/pYGPNlLoyMvp3ejMGbc0xp/Lze2JKYzYNJajp3JMTqWy7LZbDw3bydrDpzGx8PCFyNaEhagHWgijig1668L9mu5nyNS0S5O50JDugXbk8nOKzQ4jWPKL7Ty2JxtfLriEABP9KzLy7c2wGLWG2mjeHtYeKBzLVY92YVRHWvg4WZmQ0Ia/T5Zy/1fbeJA6lmjI4pclfScfIZ+voHF8SfwcDPz8R3NGX5+JI9cXqvIQOaOaUtYgBcHT2bT75O1xB/PNDqWS5q44iCzNh3FbIKP7mhGg/AAoyOJyF8I9vMq1vs5IhXt4nSiq1WgRkVfcvKL+Hl72W46URLO5hVyz/RY5m1NwmI28c7AJoztUksrXw6ivI8Hz95Yn+WPd2Zgi8qYTfDrrhP0+M8Knv5uOyl/s/1LxFEcO5ND/4lr2XzkDP5ebnw1shU3NtLoyCtRJ8SP7x9oS90QP1Kz8hj86TrWHjhldCyXMn/bcd5atBeAl25pQNd6IQYnEpG/0yoykLAAL/7qnawJCAvwolVkYGnGKlYq2sXpmEwmBp5vSDdrk7bI/3+pWbkMmbyOVftP4eNhYcrwaAa0qGx0LLmM8PLevD2wCYse7kj3qBCsNvg29iid3v6dN37ZQ0aOxsSJY9qdnEn/iWs5eDKbsAAv5o5pS2uNjrwqYQHezB4dQ6vIQLLyChk+dSM/bTtudCyXsPlIGo/N2QbAyHaR3BVT3dhAIvKPLGYTL94cBfCnwv3C1y/eHFWmd5SqaBen1L9FBBazic1HznAgNcvoOA4h4VQ2/SeuZWdSJkG+Hsy8rw2d6wYbHUv+QZ0QPz67K5rvxsTQsnoF8gqtTFpxkA5vLWPSioPkFqjLtDiOtQdPMWjSOk5k5lEnpBzfjWlLnRA/o2OVSQHe7nw5shU3NgqloMjGv2Zu5fNVh4yO5dSOnM7mvi83k19opXtUCP/uU9/oSCJyhXo1DGPisOaEBly6BT40wIuJw5rTq2HZ3u2lol2cUrCfF13OF6RzNmlme9zRdPpPXMvRtHNUC/LhuzFtaVKlvNGx5Cq0qBbI7PtjmDI8mrohfmTmFvLGL3vo/PZyZsUmUlhkNTqiuLj5244z4otYsvIKaRUZyJz722p05HXycrfw4e3NGXG+F8CrP+/mtZ/jsZbhsUWOKj0nn7unxZKWnU+jiAD+O6RpmV6VE3FFvRqGsfqprswYGc1dtYuYMTKa1U91LfMFO6hoFyc2KNq+7fu7LccocOGCZtmeE9w+eT1p2fk0rhzAd2PaUr2ir9Gx5BqYTCZuqB/Cwoc68M7AJkSU9yYlM5envttBr/+u4tddKRoTJ4aYsjqBB2duJb/ISu+GoXw5shUBPu5Gx3IKF7Z9PtWrHgCfrUrg4Vlx5Be67t+14pZXWMT9X23m0MlswgO8mDI8Gh8PjXYTKYssZhOtIwNpUdFG68hAp/nwTUW7OK0u9YKpWM6TU2fzWbYn1eg4hpgde5T7vtzMuYIiOtapxMz72lCxnKfRseQ6WcwmBrSozG+PdeK5PvUp7+POgdSz3P/VZvpPXMuGQ6eNjiguwmq18drP8byyIB6A4THV+OgOjY4sbiaTiTGda/LeoCa4mU38tO04d0/bSFaueltcL5vNxjPf7WBDQhrlPN344u6WBPuX3Q7TIuKcVLSL03K3mOnfIgKwF6+uxGaz8cFv+3nyu+0UWW30b16ZKcOj8fXUyoEz8XK3cG+HGqx8sgvjutTCy93MlsR0Bk9ez8hpsexJ0agoKTn5hVYemR3HZ6sSAHiyV11eukWjI0tSv+aV+WJES3w8LKw5cJpBn64nNVMTJa7HB78d4Pvz01Q+GdqceqH+RkcSEfkTFe3i1Aad7yL/+95UTrjIG5siq41//7CT95bsA2Bsl5q8M7Ax7hb9ujsrfy93Hu9Zl5VPdGFo66pYzCaW7Uml939X8ejsOI6dyTE6ojiZrNwC7p62kR/jjuNmNvHuwCY80FmjI0tDxzqVmDUqhorlPNidnMltn6zl4MmzRscqk+ZtPcZ/ltr/Vr7atyEd61QyOJGIyOXpXbw4tZqVyhFdrQJWm/3cdmeXW1DE6Bmb+WZDIiYTvHxrA57oWU9vpF1EsL8Xr93WiKWPdqJP4zBsNvh+SxJd31nBy/PjScvONzqiOIHUzFwGf7qeNQdO20dHjmhJf42OLFWNKgfw/Zh2VA/yISn9HP0nrmXzkTNGxypTNhw6zVNzdwBwf6ca3N6qqsGJRET+mop2cXqDWtpX2+dsOubUTbrOZOcz9PMNLIk/gYebmU/uaK75si4qsqIvH9/RnJ/GtaNtzSDyi6x8sSaBjm/9zoe/7Scnv9DoiFJGHTx5ln4T1xKfnEnFch58O6oNnbQ6aYiqFyaBVA4gPaeAoZ+vZ0n8CaNjlQmHTp7l/hmbLzZOfKpnPaMjiYj8LRXt4vT6NArD18NCwqlsYg8750rEsTM5DJhkX2nx93Jjxj2t6d2o7I+3kOvTuHJ5vr63NV+ObEWDcH/O5hXy7pJ9dHxrOV+tP/KnqQpFVhsbEtLYfMrEhoQ0ijRWSv6fLYlnGDBxLcfOnKP6+YKxceXyRsdyaUHlPJk5qg1d6lYit8DK/V9tYubGRKNjObS0bPtot/ScAppWKc9/BjfFrD4MIuLgVLSL0/P1dOOmxuEAzHLChnTxxzPp98laDp7MJizAi7lj2tIqMtDoWOIgTCYTHetUYv649nxwezOqBvpw6mwez/+wk+7vrWD+tuNYrTYW7Uym/ZvLGPbFJr7cb2HYF5to/+YyFu1MNvpHEAewNP4Ed3y2njM5BTSpHMDcMW2pFqTRkY7Ax8ONyXdFM7BFZaw2eOb7HfxnyT6n3ll2rXILihj15SaOnM6hcgVvPrsrWpMORKRMUNEuLuHCFvmFO5KdakTO2oOnGPzpOlKz8qgb4sf3D7SlToif0bHEAZnNJm5pEs7SRzvx8q0NqFjOg8Onc3hw5lY6v7Oc0TO2kJxxabPGlIxcxszYosLdxX27MZFRX20it8BK57qV+EajIx2Ou8XMWwMa82DXWgD897f9PDtvB4VFmuV+gdVq44m529l05Ax+Xm5Mu7sllfx0HItI2aCiXVxC86rlqRVcjnMFRczf5hwFyPxtxxnxRSxZeYW0igxk9ugYwgK8jY4lDs7DzcxdMdVZ8UQXHulWBx93M4lpl+8uf2Gdbvz8eG2Vd0E2m433l+7j6e93YLXBgBaV+ewujY50VCaTicd61OXVvg0xm2DmxqOMnrGZc/lFRkdzCO8t2cf8bfZpB58Oa0GtYH3ALSJlh4p2cQkmk4nB58e/zd5U9rfIf77qEA/O3Ep+kZUbG4Xy5chWBHi7Gx1LyhBfTzce6lab/wxu+rf3swHJGblsTEgrlVziGAqLrDw7bwfvL90PwLgutXh7gEZHlgXD2lRj4rAWeLqZWbo7lTs+X+/ykyNmbzrKR78fAOD1fo1oW6uiwYlERK6O/vqKy7iteQRuZhNxR9PZdyLL6DjXxGq18drP8bz6824ARrStzoe3N9c5eXLNcguvbPtsSsa5Ek4ijuJcvn105MyNRzGZ4JW+DXm8Z12NjixDejYI5et7WxPg7c7WxHQGTFzL0b/YUePs1h44xbPf20e7jetSi0HnP8AXESlLVLSLy6hYzpMb6gcDZbMhXX6hlUdmx/HZqgQAnupVjxdvjsKirrdyHYL9vK7ofi/+tIuXftpF3NF0NbhyYmnZ+dzx+XqW7k7Fw83MxKEtuLNNNaNjyTWIrh7Id2NiiCjvzaFT2fSbuJadSRlGxypVB1KzuH/GZgqtNm5pEs5jPeoYHUlE5JqoaBeXMvh8Q7p5W5PIv8IVRkeQlVvA3dM28mOc/Xy89wY1YUznmlr5kuvWKjKQsAAv/u5IMpsgM7eQaWsP0/fjNXR5ZznvL93H4VPZpZZTSt7RNPvoyK2J6QR4u/P1va3p1TDU6FhyHWoF+/HdmLbUC/XjZFYeQyavZ/X+U0bHKhUns/IYMTWWrNxCoqtV4K0BjfU3U0TKLBXt4lI61q5EsJ8nadn5/Lb7hNFxrkhqZi6DP13PmgOn8fGw8MWIlvRrXtnoWOIkLGYTL94cBfCnwt10/vLB7c2YendLbm0ajre7hcOnc3h/6X46v7Ocvh+vYfraw5w+m1fa0aUY7TqeQb+Jazl0MpvwAC/mjo6hZXWNjnQGoQFezLo/hjY1AjmbV3j+A+Ako2OVqHP5Rdz75SaOnTlHtSAfJmu0m4iUcSraxaW4WcwMaGEveGeVgYZ0B0+epd/EtcQnZ1KxnAezRsXQsU4lo2OJk+nVMIyJw5oTGnDpVvnQAC8mDmvOTY3D6VI3mP8Oacam57rxn8FN6FSnEmYTxB1N58WfdtHq9d+4e6q9GMjJLzToJ5FrsebAKQZ/up6TWXnUC/Xj+wfaUVujI51KgLc700e2ok/jMAqKbDz0bRyfrTxkdKwSYbXaeHR2HNuO2neMTB3RkkBfD6NjiYhcF81tEZczKLoKnyw/yMp9J0nOOOewY9K2JJ7hnmmxnMkpoHqQD9NHtqJakK/RscRJ9WoYRveoUNYdSGXxqg306NCamFrBf+qZ4Ovpxm3NKnNbs8qczMpjwfbj/LA1iW3HMvh970l+33sSHw8LPRuE0rdZBO1qBuGmjuMO68e4JB6fs42CIhutIwOZfFe0JlE4KU83Cx8OaUaInxdfrEngtYW7ScnM5d831sfsRL1R3vx1D7/sTMHDYmbynS2oUamc0ZFERK6binZxOdUr+tI6MpANCWl8t/kY47rWNjrSnyyNP8G4mVvILbDSpHIAU0a0pGI5T6NjiZOzmE20jgzk9G57AfdPTQ4r+Xlyd7tI7m4XyaGTZ/khzl7AJ6blMG9rEvO2JlGxnCc3NwnjtmYRNIoI0DmlDuSzlYd4baF9EkWfRmG8O6iJthA7ObPZxPM31Sc0wJPXF+5hyuoETmTm8u6gJni6lf3/999sSOTTFfYdBG8NaEzrGkEGJxIRKR5a/hCXNOjizPZjWK2O1Qn7242JjPpqE7kFVrrUrcTMUW1UsIvDq1GpHI92r8OKJzrz/QNtuSumGoG+Hpw6m8fUNYe55aM13PDuCj74bT+Jp11z9JSjsFptvLIg/mLBfne76nx4ezMV7C7CZDIxqmNN3h/cFHeLiQXbkxnxRSyZuQVGR7suK/ad5PkfdwLwSLc69G0WYXAiEZHio6JdXNKNjcLw83QjMS2H9QmnjY4DgM1m4/2l+3j6+x1YbTCwRWUm3xWNj4c2xEjZYTKZaF61Ai/f2pANz97AFyOiublJOF7uZg6dyua9Jfvo+Pbv9PtkDV+uUwO70pZXWMRDs+KYsto+OvKZ3vV44aYop9oeLVemb7MIpo5oha+HhXWHTjNo0jpOZOYaHeua7EnJZOzXWyiy2ujXLIJ/3VDL6EgiIsVKRbu4JG8PCzc3DQdgzqZjBqeBwiIrz87bwftL9wPwYNdavDWgMe46F1jKMHeLma71Qvjw9mZseq477w5sQofaFTGbYEtiOi/8uIvWr//GyGmx/LTtOOfyi4yO7NQycwsY8UUs87fZR0f+Z3AT7u+k0ZGurH3tisy6P4aK5TzZk5JFv0/WciA1y+hYVyU1M5eRU2M5m1dI68hAJvRvpGNaRJyOKgJxWYPPb5FfuCOZjHPGbQs8l1/E6BmbmbnxKGYTvNq3IY/1qKs3HeJUynm60b9FZb66pzXrn7mB52+KolFEAIVWG8v2pPKvmVuJfnUJj86OY9X+kxQ52GkrZd2JzFwGTVrHukOn8fWwMPXultzWTKMjBRpGBDDvgbbUqOhLUvo5+k9cx+YjaUbHuiI5+YXcM30TxzNyqVHJl0/vbOEU5+aLiPyRinZxWY0rB1A3xI+8Qis/bTtuSIa07Hzu+Hw9S3en4ulmZuKwFgxrU82QLCKlJdjfi3vaRzL/wfYsfbQTD3atReUK3mTnF/H9liTunLKRmAm/8cqCeHYmZWCzqYC/HgdS7Suoe1KyqFjOk1n3x9ChtkZHyv9UCfRh7pi2NK1SnoxzBdzx2QYW70oxOtbfKrLa+NfMOHYkZRDo68HUES0p76PRbiLinFS0i8symUwManm+IV1s6c9sP5qWw4BJa9maaJ8l+/W9renZILTUc4gYqVZwOR7rUZdVT3bhuzExDGtTlQo+7qRm5TFldQI3fbiabu+t4KNl+zmapgZ2V2vzkTQGTFpHUvo5Iiv68v2YtjSMCDA6ljigQF8PvrmvNTfUCyav0MroGZv5esMRo2P9pdd+3s3S3SfwcDPz2V0tNBJVRJyainZxabc1i8DdYmJHUgbxxzNL7Xl3Hc+g38S1HDqZTXiAF3NHxxBdPbDUnl/E0ZhMJlpUC+TVvo3Y8Gw3Pr8rmpsah+HpZubgyWzeWbyPDm/9zoCJa/lq/RHOZOcbHdnhLd6Vwh2fbSA9p4AmVcozd3QMVYN8jI4lDszHw41P72zB4OgqWG3w73k7eXfxXofb7TJ97WG+WGNvpvjuwCa0qKa/nyLi3NSWWlxaoK8H3aNCWLgjhdmbjvLSLQ1K/DnXHDjF/V9t5mxeIfVC/Zh2dytCA7xK/HlFygoPNzPdokLoFhVCVm4Bi3am8GPccdYcPMWmI2fYdOQM43/aRee6lejbLIJu9UM0ruwPvt5whOd/2InVBl3rBfPRHc00iUKuiJvFzBv9GxEa4MV/f9vPh8sOcCIzl9dva4SbAzRHXbbnBOPn7wLgiZ51ublJuMGJRERKnv6Ci8sbFF2FhTtS+CEuiWdurFeiTWx+jEvi8TnbKCiy0aZGIJ/eGU2At3uJPZ9IWefn5c7A6CoMjK5CSkYu87cd54e4JHYdz2Tp7lSW7k6lnKcbvRqGcluzCNrUCMLiwuPLbDYb/1myjw+WHQBgUHRlhym2pOwwmUw80r0OIf5ePPfDDmZvOsbJrDw+Htrc0A9/dh3PYNw3W7Ha7M1kH+hc07AsIiKlSUW7uLwOtSsRHuDF8YxclsSf4KbGJfOp/WcrD/Hawt0A9GkcxnuDmqjLrchVCA3w4r6ONbivYw32n8jih7gkfth6nKT0c8zdfIy5m48R4u/JLU3CubVpBA3C/V1qCsOF0ZGzz4+x/NcNtXmkW22X+m8gxeuO1lWp5OfJuG+28Pvek9z+2Qa+GB5NUDnPUs+SnHGOkdNiyckvol2tIF69raGObRFxGfroXVyexWxiQAv76KNZJdCQzmq18cqC+IsF+8h2kXw4pJkKdpHrUDvEjyd61mPVk12YMzqGO1pXJcDbnROZeXy2yt7Arsd/VvLx7wdcooFdTn4ho77azOxNxzCb4LXbGvJo9zoqauS6dY8K4Zv72lDex51tR9MZMGkdiadL93fqbF4hI6dt4kRmHrWDy/HJ0Ba4a/eIiLgQveKJAANa2LvIrz5wimNniu/NSF5hEQ/NimPKanvDnGdvrMfzN9XH7MLbd0WKk9lsomX1QF6/rREb/30Dk+9swY2NQvFwM7M/9Sxv/7qXDm/9zqBJ6/h6wxHSc5yvgd3ps3nc/tkGlu2xj46cNKwFQ1trdKQUnxbVKjB3dFsiynuTcCqbfhPXsjMpo1Seu7DIyoPfbGF3ciYVy3nyxYiWOq1MRFyOinYRoGqQD21rBmGzwdzNx4rlMTNzCxjxRSzztx3HzWzi/cFNGdWxpla+REqIp5uFHg1C+WRoCzY91423+jembc0gTCbYeDiNf8/bScvXlnLfl5tYuCOZ3IIioyNft8TTOQyYtI5tR9Mp7+PON/e1podGR0oJqBVcju8faEv9MH9Onc1j8KfrWLnvZIk+p81mY/z8eH7fexIvdzOfD4+mSqAmIIiI61HRLnLe4PMz2+dsOobVen3jbU5k5jJo0jrWHTqNr4eFqXe3pG+ziOKIKSJXwN/LnUEtq/DNfW1Y+3RXnr2xHvXD/CkosrEk/gQPfL2Flq8u5cm521h78NR1/84bYWeSfXRkwqlsIsp7M3d0jEZfSYkK8fdi1v1taFsziOz8IkZOi2Xe1uL5oPtypqxO4Kv1RzCZ4P3BzWhapXyJPZeIiCNTIzqR83o2CMXPy42k9HOsPXia9rUrXtPjHEjNYvgXsSSln6NiOU+m3d2ShhEBxZxWRK5UWIA3ozrWZFTHmuxNsTew+3FrEsczcpm96RizNx0j1N+LW5vaG9jVD/Nz+B0xq/afZPRXm8nOL6JeqB/TR7YixF+jI6Xk+Xu5M+3uVjw+Zxs/bTvOI7O2cSIzj/s71ijW35tfd6Vc7AXzbO/69GqoHSQi4rq00i5ynpe7hb5N7avhszZdW0O6zUfSGDBpHUnp54is6Mu8B9qqYBdxIHVD/XiqVz1WP9WVWaPacHurKvh7uZGSmcunKw9x4wer6PX+Kj5ZfoCk9HNGx72seVuPcffUWLLzi4ipEcTs0TEq2KVUebiZeX9wU+7rEAnAG7/sYfz8eIqKacfK9mPpPPTtVmw2GNq6Kveefx4REVelol3k/7mwRf7XXSlX3bBq8a4U7vhsA+k5BTStUp7vxrTVuXciDspsNtG6RhAT+jUm9rluTBrWgl4NQvGwmNl7Iou3Fu2l3RvLGPzpOmZuTCQjp8DoyNhsNiatOMgjs7ZRaLVxc5Nwpo1sib+XmnJJ6TObTfy7TxTP9akPwLS1h3lw5pbr7hVx7EwO90zfRG6BlU51KjH+lgYOv/NFRKSkaXu8yP/TMCKAqDB/4pMz+THuOMPbVr+i7/t6wxGe/2EnVhvcUC+YD+9oho+Hfr1EygJPNwu9GobSq2EoGTkF/LIzmR/iklh/KI0NCfbLiz/uoku9StzWLILOdYPxci/dkY1Wq42XF8Qzbe1hAO5tH8mzN2oShRjv3g41CPb34rHZcSzckcLpsxuZfFf0NXV4z8wt4J5pmziZlUe9UD8+uqMZbhrtJiKilXaRPxoUfeUz2202G+8t3su/59kL9sHRVfj0zhYq2EXKqAAfd4a0qsq3o2JY+3RXnu5dj3qhfuQXWfl11wlGz9hCy9eW8vR321l38HSpNLDLLSjiwZlbLxbs/76xPs/dFKWCXRzGLU3CmX53K8p5urEhIY1Bk9aRnHF1p5cUFFkZ+/UW9p7IItjPPtrNT7tIREQAFe0if9K3WQQebmbikzP/dg5tYZGVp77bzgfLDgDwrxtq80b/RloVEHES4eW9Gd2pJose7sgvD3Xg/k41CAvwIiu3kG9jj3L7Z+tp/+Yy3vhlD3tSMkskQ8a5AoZ/sZGfdyTjbjHx3yFNua9jjRJ5LpHr0bZWRWbfH0Ownyd7T2TR75O17DuRdUXfa7PZeP6HnazafwpvdwtfjGhJeHnvEk4sIlJ2qLoQ+YPyPh70PD/nePZfNKTLyS9k1Febmb3pGGYTvH5bIx7tXkfn3Yk4qfph/jzTuz5rnurKzPvaMDi6Cn5ebhzPyGXSioP0en8Vvd5fyaQVB696hfGvpGTYR0duSEijnKcb0+5uxa1NNTpSHFdUuD/fjWlLjUq+JGfkMmDiWmIPp/3j93268hDfxh7FbIIPb2+mBq4iIn+gol3kMgZH2xvS/bA16U9NdU6fzeP2zzawbE8qnm5mPr0zmjtaVzUipoiUMrPZREzNIN4c0JjYf3dj4tDm9IgKwd1iYk9KFm/8soe2byxjyOR1zIpNJOPctTWw238ii36frGHviSwq+Xky6/42tKt1bWMoRUpTlUAfvhvdluZVy5OZW8jQzzewaGfyX95/4Y5k3vhlDwAv3BRFt6iQ0ooqIlJm6MRbkctoWzOIiPLeJKWf45Plh8g+ZSIoIY2ICuUYOT2WhFPZlPdxZ8rwaFpUCzQ6rogYwMvdQu9GYfRuFEZ6Tj4Ld6TwQ1wSGxPSWH/Ifnn+x13cUC+Yvs0i6Fy3Ep5uf25gV2S1sTEhjdSsXIL9vDCZYNSXm8jMLaRGJV+m391KkyikTKng68HX97bhwZlbWbr7BGO+3sLLtzTgzpjqlxzvGecKeHVBPAAj2lZnRDuNdhMRuRxDi/aVK1fy9ttvs3nzZpKTk5k3bx59+/a9ePuIESOYPn36Jd/Ts2dPFi1adPHrtLQ0HnzwQebPn4/ZbKZ///7897//pVy5cqX1Y4gTMptNNKtanqT0c0xcmQBY+HL/JswmsNogorw300e2olawjjMRsZ9Wc0frqtzRuirHzuTw07bjzNuSxP7Us/yyM4Vfdqbg7+VGn8bh9G0aTsvqgZjNJhbtTGb8/HiSM3L/9JjNqpZnyvCWBPp6GPATiVwfbw8Lk4Y15/kfdzFzYyLP/7iLNQdPEXc0g5Q/HO+NI/x5/qYog5KKiDg+Q4v27OxsmjRpwsiRI+nXr99l79OrVy+mTp168WtPT89Lbh86dCjJycksWbKEgoIC7r77bkaNGsU333xTotnFuS3amcyC7X/eznehUfSDXWupYBeRy6pcwYcHOtdiTKeaF8dH/hiXxInMPGZuTGTmxkQiynvTMMKfX3ed+MvHGdG2ugp2KdPcLGZev60hYQFevLdkH4t2Xv5435GUyZL4FHo1DCvlhCIiZYOhRXvv3r3p3bv3397H09OT0NDQy962e/duFi1aRGxsLNHR0QB8+OGH3HjjjbzzzjuEh4cXe2ZxfkVWG+Pnx//l7Sbgv7/tZ2B0FSwauSQif8FkMtEgPIAG4QE81aseGw6dZt7WJBbtTCEp/RxJ6X/dsM4EvPHLHm5qHK7XGSnTTCYTY7vUYsrqhL/t8TB+fjzdo0J1vIuIXIbDn9O+fPlygoODqVChAl27duXVV18lKCgIgHXr1lG+fPmLBTtAt27dMJvNbNiwgdtuu+2yj5mXl0deXt7FrzMz7aN6CgoKKCi4tqZB4jw2JKRddqvqBTYgOSOXdQdSaR2p89nFuVx4DdRrYfFrWS2AltUCeKFPXSavSuDD3w/95X31OlM6dLyXjg0JaX9bsOt4Lx063sVVlKVj/UozOnTR3qtXL/r160dkZCQHDx7k2WefpXfv3qxbtw6LxUJKSgrBwcGXfI+bmxuBgYGkpKT85eNOmDCB8ePH/+n6xYsX4+OjZj+ubvMpE/DnZlF/tHjVBk7vtpV8IBEDLFmyxOgITi1DrzMORcd7ydLfVcei411cRVk41nNycq7ofg5dtA8ZMuTivzdq1IjGjRtTs2ZNli9fzg033HDNj/vMM8/w6KOPXvw6MzOTKlWq0KNHD/z9/a8rs5R9QQlpfLl/0z/er0eH1loREKdTUFDAkiVL6N69O+7u7kbHcVp6nXEMOt5Lh453x6DjXVxFWTrWL+z4/icOXbT/UY0aNahYsSIHDhzghhtuIDQ0lNTU1EvuU1hYSFpa2l+eBw/28+T/2NAOwN3d3eH/x0rJi6kVTFiAFykZuVzu834TEBrgRUytYJ17J05Lr4clS68zjkXHe8nS8e5YdLyLqygLx/qV5jOXcI5idezYMU6fPk1YmL27aExMDOnp6WzevPnifZYtW4bVaqV169ZGxZQyzmI28eLN9tEzf3zrcOHrF2+O0hsLEblmep0RV6LjXUTk+hhatJ89e5a4uDji4uIASEhIIC4ujsTERM6ePcsTTzzB+vXrOXz4ML/99hu33nortWrVomfPngDUr1+fXr16cd9997Fx40bWrFnDuHHjGDJkiDrHy3Xp1TCMicOaExrgdcn1oQFeTBzWXGNpROS66XVGXImOdxGRa2fo9vhNmzbRpUuXi19fOM98+PDhTJw4ke3btzN9+nTS09MJDw+nR48evPLKK5dsbf/6668ZN24cN9xwA2azmf79+/PBBx+U+s8izqdXwzC6R4Wy7kAqi1dtoEeH1tq6JyLF6sLrzMaENFKzcgn286JVZKBeZ8Qp6XgXEbk2hhbtnTt3xmb76y6hv/766z8+RmBgIN98801xxhK5yGI20ToykNO7bbTWGwsRKQEWs4mYmkFGxxApFTreRUSuXpk6p11ERERERETElahoFxEREREREXFQKtpFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEREREREQclIp2EREREREREQelol1ERERERETEQbkZHcAR2Gw2ADIzMw1OIo6ooKCAnJwcMjMzcXd3NzqOSInS8S6uRMe7uBId7+IqytKxfqH+vFCP/hUV7UBWVhYAVapUMTiJiIiIiIiIuJKsrCwCAgL+8naT7Z/KehdgtVo5fvw4fn5+mEwmo+OIg8nMzKRKlSocPXoUf39/o+OIlCgd7+JKdLyLK9HxLq6iLB3rNpuNrKwswsPDMZv/+sx1rbQDZrOZypUrGx1DHJy/v7/D/+KLFBcd7+JKdLyLK9HxLq6irBzrf7fCfoEa0YmIiIiIiIg4KBXtIiIiIiIiIg5KRbvIP/D09OTFF1/E09PT6CgiJU7Hu7gSHe/iSnS8i6twxmNdjehEREREREREHJRW2kVEREREREQclIp2EREREREREQelol1ERERERETEQaloFxEREREREXFQKtpFLmPChAm0bNkSPz8/goOD6du3L3v37jU6lkipeOONNzCZTDz88MNGRxEpEUlJSQwbNoygoCC8vb1p1KgRmzZtMjqWSLErKiri+eefJzIyEm9vb2rWrMkrr7yC+lCLM1i5ciU333wz4eHhmEwmfvjhh0tut9lsvPDCC4SFheHt7U23bt3Yv3+/MWGvk4p2kctYsWIFY8eOZf369SxZsoSCggJ69OhBdna20dFESlRsbCyffvopjRs3NjqKSIk4c+YM7dq1w93dnV9++YX4+HjeffddKlSoYHQ0kWL35ptvMnHiRD766CN2797Nm2++yVtvvcWHH35odDSR65adnU2TJk34+OOPL3v7W2+9xQcffMCkSZPYsGEDvr6+9OzZk9zc3FJOev008k3kCpw8eZLg4GBWrFhBx44djY4jUiLOnj1L8+bN+eSTT3j11Vdp2rQp77//vtGxRIrV008/zZo1a1i1apXRUURK3E033URISAhTpky5eF3//v3x9vZmxowZBiYTKV4mk4l58+bRt29fwL7KHh4ezmOPPcbjjz8OQEZGBiEhIUybNo0hQ4YYmPbqaaVd5ApkZGQAEBgYaHASkZIzduxY+vTpQ7du3YyOIlJifvrpJ6Kjoxk4cCDBwcE0a9aMzz77zOhYIiWibdu2/Pbbb+zbtw+Abdu2sXr1anr37m1wMpGSlZCQQEpKyiXvaQICAmjdujXr1q0zMNm1cTM6gIijs1qtPPzww7Rr146GDRsaHUekRHz77bds2bKF2NhYo6OIlKhDhw4xceJEHn30UZ599lliY2P517/+hYeHB8OHDzc6nkixevrpp8nMzKRevXpYLBaKiop47bXXGDp0qNHRREpUSkoKACEhIZdcHxIScvG2skRFu8g/GDt2LDt37mT16tVGRxEpEUePHuWhhx5iyZIleHl5GR1HpERZrVaio6N5/fXXAWjWrBk7d+5k0qRJKtrF6cyePZuvv/6ab775hgYNGhAXF8fDDz9MeHi4jneRMkTb40X+xrhx41iwYAG///47lStXNjqOSInYvHkzqampNG/eHDc3N9zc3FixYgUffPABbm5uFBUVGR1RpNiEhYURFRV1yXX169cnMTHRoEQiJeeJJ57g6aefZsiQITRq1Ig777yTRx55hAkTJhgdTaREhYaGAnDixIlLrj9x4sTF28oSFe0il2Gz2Rg3bhzz5s1j2bJlREZGGh1JpMTccMMN7Nixg7i4uIuX6Ohohg4dSlxcHBaLxeiIIsWmXbt2fxrhuW/fPqpVq2ZQIpGSk5OTg9l86dt9i8WC1Wo1KJFI6YiMjCQ0NJTffvvt4nWZmZls2LCBmJgYA5NdG22PF7mMsWPH8s033/Djjz/i5+d38dyXgIAAvL29DU4nUrz8/Pz+1K/B19eXoKAg9XEQp/PII4/Qtm1bXn/9dQYNGsTGjRuZPHkykydPNjqaSLG7+eabee2116hatSoNGjRg69atvPfee4wcOdLoaCLX7ezZsxw4cODi1wkJCcTFxREYGEjVqlV5+OGHefXVV6lduzaRkZE8//zzhIeHX+wwX5Zo5JvIZZhMpsteP3XqVEaMGFG6YUQM0LlzZ418E6e1YMECnnnmGfbv309kZCSPPvoo9913n9GxRIpdVlYWzz//PPPmzSM1NZXw8HBuv/12XnjhBTw8PIyOJ3Jdli9fTpcuXf50/fDhw5k2bRo2m40XX3yRyZMnk56eTvv27fnkk0+oU6eOAWmvj4p2EREREREREQelc9pFREREREREHJSKdhEREREREREHpaJdRERERERExEGpaBcRERERERFxUCraRURERERERByUinYRERERERERB6WiXURERERERMRBqWgXERERERERcVAq2kVEROSyDh8+jMlkIi4ursSeY8SIEfTt27fEHl9ERKSsU9EuIiLipEaMGIHJZPrTpVevXlf0/VWqVCE5OZmGDRuWcFIRERH5K25GBxAREZGS06tXL6ZOnXrJdZ6enlf0vRaLhdDQ0JKIJSIiIldIK+0iIiJOzNPTk9DQ0EsuFSpUAMBkMjFx4kR69+6Nt7c3NWrUYO7cuRe/94/b48+cOcPQoUOpVKkS3t7e1K5d+5IPBHbs2EHXrl3x9vYmKCiIUaNGcfbs2Yu3FxUV8eijj1K+fHmCgoJ48sknsdlsl+S1Wq1MmDCByMhIvL29adKkySWZREREXI2KdhERERf2/PPP079/f7Zt28bQoUMZMmQIu3fv/sv7xsfH88svv7B7924mTpxIxYoVAcjOzqZnz55UqFCB2NhY5syZw9KlSxk3btzF73/33XeZNm0aX3zxBatXryYtLY158+Zd8hwTJkzgyy+/ZNKkSezatYtHHnmEYcOGsWLFipL7jyAiIuLATLY/fsQtIiIiTmHEiBHMmDEDLy+vS65/9tlnefbZZzGZTIwePZqJEydevK1NmzY0b96cTz75hMOHDxMZGcnWrVtp2rQpt9xyCxUrVuSLL77403N99tlnPPXUUxw9ehRfX18AFi5cyM0338zx48cJCQkhPDycRx55hCeeeAKAwsJCIiMjadGiBT/88AN5eXkEBgaydOlSYmJiLj72vffeS05ODt98801J/GcSERFxaDqnXURExIl16dLlkqIcIDAw8OK////i+MLXf9UtfsyYMfTv358tW7bQo0cP+vbtS9u2bQHYvXs3TZo0uViwA7Rr1w6r1crevXvx8vIiOTmZ1q1bX7zdzc2N6Ojoi1vkDxw4QE5ODt27d7/kefPz82nWrNnV//AiIiJOQEW7iIiIE/P19aVWrVrF8li9e/fmyJEjLFy4kCVLlnDDDTcwduxY3nnnnWJ5/Avnv//8889ERERcctuVNs8TERFxNjqnXURExIWtX7/+T1/Xr1//L+9fqVIlhg8fzowZM3j//feZPHkyAPXr12fbtm1kZ2dfvO+aNWswm83UrVuXgIAAwsLC2LBhw8XbCwsL2bx588Wvo6Ki8PT0JDExkVq1al1yqVKlSnH9yCIiImWKVtpFREScWF5eHikpKZdc5+bmdrGB3Jw5c4iOjqZ9+/Z8/fXXbNy4kSlTplz2sV544QVatGhBgwYNyMvLY8GCBRcL/KFDh/Liiy8yfPhwXnrpJU6ePMmDDz7InXfeSUhICAAPPfQQb7zxBrVr16ZevXq89957pKenX3x8Pz8/Hn/8cR555BGsVivt27cnIyODNWvW4O/vz/Dhw0vgv5CIiIhjU9EuIiLixBYtWkRYWNgl19WtW5c9e/YAMH78eL799lseeOABwsLCmDlzJlFRUZd9LA8PD5555hkOHz6Mt7c3HTp04NtvvwXAx8eHX3/9lYceeoiWLVvi4+ND//79ee+99y5+/2OPPUZycjLDhw/HbDYzcuRIbrvtNjIyMi7e55VXXqFSpUpMmDCBQ4cOUb58eZo3b86zzz5b3P9pREREygR1jxcREXFRJpOJefPm0bdvX6OjiIiIyF/QOe0iIiIiIiIiDkpFu4iIiIiIiIiD0jntIiIiLkpnyImIiDg+rbSLiIiIiIiIOCgV7SIiIiIiIiIOSkW7iIiIiIiIiINS0S4iIiIiIiLioFS0i4iIiIiIiDgoFe0iIiIiIiIiDkpFu4iIiIiIiIiDUtEuIiIiIiIi4qD+DxJejuvm+1wFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def evaluate_ppo_agent(env,\n", " actor_critic,\n", " num_episodes=10,\n", " output_dir='eval_gifs'):\n", " if not os.path.exists(output_dir):\n", " os.makedirs(output_dir)\n", " \n", " eval_episode_rwds=[] \n", " for episode in range(num_episodes):\n", " obs=env.reset()\n", " episode_rwds_ppo=np.zeros((2,))\n", " frames_paths=[]\n", " done=False\n", " timestep=0\n", " while not done:\n", " with torch.no_grad():\n", " obs_tensor=torch.tensor(obs,\n", " dtype=torch.float32).unsqueeze(0)\n", " policy_logits,_=actor_critic(obs_tensor)\n", " action1=Categorical(logits=policy_logits).sample().item()\n", " action2=Categorical(logits=policy_logits).sample().item()\n", " next_obs,rewards,done,_=env.step([action1,\n", " action2])\n", " episode_rwds_ppo+=rewards \n", " obs=next_obs\n", " frame_path=os.path.join(output_dir,\n", " f\"episode_{episode+1}_frame_{timestep}.png\")\n", " env.render(save_path=frame_path) \n", " frames_paths.append(frame_path) \n", " timestep+=1\n", " eval_episode_rwds.append(episode_rwds_ppo) \n", " \n", " frames=[imageio.imread(path) for path in frames_paths]\n", " gif_path=os.path.join(output_dir,f\"episode_{episode+1}.gif\")\n", " imageio.mimsave(gif_path,frames,fps=10) \n", " for path in frames_paths:\n", " os.remove(path)\n", " print(f\"Episode {episode+1} evaluated, GIF saved to {gif_path}.\")\n", "\n", " eval_episode_rwds=np.array(eval_episode_rwds) \n", " plt.figure(figsize=(12,6))\n", " for agent_index in range(2):\n", " plt.plot(range(1,num_episodes+1),eval_episode_rwds[:,agent_index],marker='o',label=f'Agent {agent_index+1}')\n", " plt.title('Total Rewards per Episode for Each Agent')\n", " plt.xlabel('Episode')\n", " plt.ylabel('Total Reward')\n", " plt.legend()\n", " plt.grid(True)\n", " plt.savefig(os.path.join(output_dir,'rewards_plot.png'))\n", " plt.show()\n", "\n", "evaluate_ppo_agent(env,actor_critic,num_episodes=10)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }