File size: 12,411 Bytes
42d2938
 
117219c
 
b70a751
117219c
 
 
42d2938
 
117219c
 
 
 
365bbd5
c32c2e1
117219c
 
 
cdcf37e
117219c
c32c2e1
117219c
 
42d2938
 
117219c
 
c32c2e1
117219c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c32c2e1
117219c
c32c2e1
117219c
c32c2e1
117219c
c32c2e1
117219c
 
 
c32c2e1
 
 
 
 
117219c
 
cdcf37e
 
 
 
 
aa1adf7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: any-to-any
language:
- en
- zh
---

# Ola-7B

## Model Summary

The Ola-7B model is developed by people from Tencent, Tsinghua University and Nanyang Technological University.
Based on Qwen2.5 language model, it is trained on text, image, video and audio data with a context window of 32K tokens. It can take both image/video, text and audio as input and output text.

Ola offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths.

- **Repository:** https://github.com/Ola-Omni/Ola
- **Languages:** English, Chinese
- **Paper:** https://huggingface.co/papers/2502.04328

## Use

1. Download the speech encoder at https://huggingface.co/THUdyh/Ola_speech_encoders.
2. Replace the path in config.json with local path of speech encoders.

We provide a simple generation process for using our model. For more details, please refer to our [Github Repo](https://github.com/Ola-Omni/Ola)

```
import os
os.environ['LOWRES_RESIZE'] = '384x32'
os.environ['HIGHRES_BASE'] = '0x32'
os.environ['VIDEO_RESIZE'] = "0x64"
os.environ['VIDEO_MAXRES'] = "480"
os.environ['VIDEO_MINRES'] = "288"
os.environ['MAXRES'] = '1536'
os.environ['MINRES'] = '0'
os.environ['REGIONAL_POOL'] = '2x'
os.environ['FORCE_NO_DOWNSAMPLE'] = '1'
os.environ['LOAD_VISION_EARLY'] = '1'
os.environ['SKIP_LOAD_VIT'] = '1'
    

import gradio as gr
import torch
import re
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import moviepy.editor as mp
from typing import Dict, Optional, Sequence, List
import librosa
import whisper
from ola.conversation import conv_templates, SeparatorStyle
from ola.model.builder import load_pretrained_model
from ola.utils import disable_torch_init
from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token
from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli
from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN

model_path = ""
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None)
model = model.to('cuda').eval()
model = model.bfloat16()

USE_SPEECH=False
cur_dir = os.path.dirname(os.path.abspath(__file__))


def load_audio(audio_file_name):
    speech_wav, samplerate = librosa.load(audio_file_name, sr=16000)
    if len(speech_wav.shape) > 1:
        speech_wav = speech_wav[:, 0]
    speech_wav = speech_wav.astype(np.float32)
    CHUNK_LIM = 480000
    SAMPLE_RATE = 16000
    speechs = []
    speech_wavs = []

    if len(speech_wav) <= CHUNK_LIM:
        speech = whisper.pad_or_trim(speech_wav)
        speech_wav = whisper.pad_or_trim(speech_wav)
        speechs.append(speech)
        speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0))
    else:
        for i in range(0, len(speech_wav), CHUNK_LIM):
            chunk = speech_wav[i : i + CHUNK_LIM]
            if len(chunk) < CHUNK_LIM:
                chunk = whisper.pad_or_trim(chunk)
            speechs.append(chunk)
            speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0))
    mels = []
    for chunk in speechs:
        chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0)
        mels.append(chunk)

    mels = torch.cat(mels, dim=0)
    speech_wavs = torch.cat(speech_wavs, dim=0)
    if mels.shape[0] > 25:
        mels = mels[:25]
        speech_wavs = speech_wavs[:25]

    speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0])
    speech_chunks = torch.LongTensor([mels.shape[0]])
    return mels, speech_length, speech_chunks, speech_wavs

def extract_audio(videos_file_path):
    my_clip = mp.VideoFileClip(videos_file_path)
    return my_clip.audio

def ola_inference(multimodal, audio_path):
    visual, text = multimodal["files"][0], multimodal["text"]
    if visual.endswith("image2.png"):
        modality = "video"
        visual = f"{cur_dir}/case/case1.mp4"
    if visual.endswith(".mp4"):
        modality = "video"
    else:
        modality = "image"
    
    # input audio and video, do not parse audio in the video, else parse audio in the video
    if audio_path:
        USE_SPEECH = True
    elif modality == "video":
        USE_SPEECH = True
    else:
        USE_SPEECH = False
    
    speechs = []
    speech_lengths = []
    speech_wavs = []
    speech_chunks = []
    if modality == "video":
        vr = VideoReader(visual, ctx=cpu(0))
        total_frame_num = len(vr)
        fps = round(vr.get_avg_fps())
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        spare_frames = vr.get_batch(frame_idx).asnumpy()
        video = [Image.fromarray(frame) for frame in spare_frames]
    else:
        image = [Image.open(visual)]
        image_sizes = [image[0].size]

    if USE_SPEECH and audio_path:
        audio_path = audio_path
        speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path)
        speechs.append(speech.bfloat16().to('cuda'))
        speech_lengths.append(speech_length.to('cuda'))
        speech_chunks.append(speech_chunk.to('cuda'))
        speech_wavs.append(speech_wav.to('cuda'))
        print('load audio')
    elif USE_SPEECH and not audio_path:
        # parse audio in the video
        audio = extract_audio(visual)
        audio.write_audiofile("./video_audio.wav")
        video_audio_path = './video_audio.wav'
        speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path)
        speechs.append(speech.bfloat16().to('cuda'))
        speech_lengths.append(speech_length.to('cuda'))
        speech_chunks.append(speech_chunk.to('cuda'))
        speech_wavs.append(speech_wav.to('cuda'))
    else:
        speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')]
        speech_lengths = [torch.LongTensor([3000]).to('cuda')]
        speech_wavs = [torch.zeros([1, 480000]).to('cuda')]
        speech_chunks = [torch.LongTensor([1]).to('cuda')]
    
    conv_mode = "qwen_1_5"
    if text:
        qs = text
    else:
        qs = ''
    if USE_SPEECH and audio_path:
        qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n'
    elif USE_SPEECH:
        qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs
    else:
        qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    if USE_SPEECH and audio_path:
        input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
    elif USE_SPEECH:
        input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
    else:
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')

    if modality == "video":
        video_processed = []
        for idx, frame in enumerate(video):
            image_processor.do_resize = False
            image_processor.do_center_crop = False
            frame = process_anyres_video(frame, image_processor)

            if frame_idx is not None and idx in frame_idx:
                video_processed.append(frame.unsqueeze(0))
            elif frame_idx is None:
                video_processed.append(frame.unsqueeze(0))
        
        if frame_idx is None:
            frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
        
        video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda")
        video_processed = (video_processed, video_processed)

        video_data = (video_processed, (384, 384), "video")
    else:
        image_processor.do_resize = False
        image_processor.do_center_crop = False
        image_tensor, image_highres_tensor = [], []
        for visual in image:
            image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
            image_tensor.append(image_tensor_)
            image_highres_tensor.append(image_highres_tensor_)
        if all(x.shape == image_tensor[0].shape for x in image_tensor):
            image_tensor = torch.stack(image_tensor, dim=0)
        if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
            image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
        if type(image_tensor) is list:
            image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor]
        else:
            image_tensor = image_tensor.bfloat16().to("cuda")
        if type(image_highres_tensor) is list:
            image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor]
        else:
            image_highres_tensor = image_highres_tensor.bfloat16().to("cuda")

    pad_token_ids = 151643

    attention_masks = input_ids.ne(pad_token_ids).long().to('cuda')
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    gen_kwargs = {}

    if "max_new_tokens" not in gen_kwargs:
        gen_kwargs["max_new_tokens"] = 1024
    if "temperature" not in gen_kwargs:
        gen_kwargs["temperature"] = 0.2
    if "top_p" not in gen_kwargs:
        gen_kwargs["top_p"] = None
    if "num_beams" not in gen_kwargs:
        gen_kwargs["num_beams"] = 1

    with torch.inference_mode():
        if modality == "video":
            output_ids = model.generate(
                inputs=input_ids,
                images=video_data[0][0],
                images_highres=video_data[0][1],
                modalities=video_data[2],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )
        else:
            output_ids = model.generate(
                inputs=input_ids,
                images=image_tensor,
                images_highres=image_highres_tensor,
                image_sizes=image_sizes,
                modalities=['image'],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )

    outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()
    return outputs, None
```

### Model Architecture

-   **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Qwen2.5-7B

-   **Data:** a mixture of more than 5M image/video/audio data, training for 3 stage.

-   **Precision:** BFloat16

#### Hardware & Software

-   **Hardware:** 64 \* NVIDIA Tesla A100

-   **Orchestration:** HuggingFace Trainer

-   **Code:** Pytorch

## Citation
@article{liu2025ola,
title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment},
author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2502.04328},
year={2025}
}