--- license: apache-2.0 base_model: - Qwen/Qwen2.5-7B-Instruct pipeline_tag: any-to-any language: - en - zh --- # Ola-7B ## Model Summary The Ola-7B model is developed by people from Tencent, Tsinghua University and Nanyang Technological University. Based on Qwen2.5 language model, it is trained on text, image, video and audio data with a context window of 32K tokens. It can take both image/video, text and audio as input and output text. Ola offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths. - **Repository:** https://github.com/Ola-Omni/Ola - **Languages:** English, Chinese - **Paper:** https://huggingface.co/papers/2502.04328 ## Use 1. Download the speech encoder at https://huggingface.co/THUdyh/Ola_speech_encoders. 2. Replace the path in config.json with local path of speech encoders. We provide a simple generation process for using our model. For more details, please refer to our [Github Repo](https://github.com/Ola-Omni/Ola) ``` import os os.environ['LOWRES_RESIZE'] = '384x32' os.environ['HIGHRES_BASE'] = '0x32' os.environ['VIDEO_RESIZE'] = "0x64" os.environ['VIDEO_MAXRES'] = "480" os.environ['VIDEO_MINRES'] = "288" os.environ['MAXRES'] = '1536' os.environ['MINRES'] = '0' os.environ['REGIONAL_POOL'] = '2x' os.environ['FORCE_NO_DOWNSAMPLE'] = '1' os.environ['LOAD_VISION_EARLY'] = '1' os.environ['SKIP_LOAD_VIT'] = '1' import gradio as gr import torch import re from decord import VideoReader, cpu from PIL import Image import numpy as np import transformers import moviepy.editor as mp from typing import Dict, Optional, Sequence, List import librosa import whisper from ola.conversation import conv_templates, SeparatorStyle from ola.model.builder import load_pretrained_model from ola.utils import disable_torch_init from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN model_path = "" tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None) model = model.to('cuda').eval() model = model.bfloat16() USE_SPEECH=False cur_dir = os.path.dirname(os.path.abspath(__file__)) def load_audio(audio_file_name): speech_wav, samplerate = librosa.load(audio_file_name, sr=16000) if len(speech_wav.shape) > 1: speech_wav = speech_wav[:, 0] speech_wav = speech_wav.astype(np.float32) CHUNK_LIM = 480000 SAMPLE_RATE = 16000 speechs = [] speech_wavs = [] if len(speech_wav) <= CHUNK_LIM: speech = whisper.pad_or_trim(speech_wav) speech_wav = whisper.pad_or_trim(speech_wav) speechs.append(speech) speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0)) else: for i in range(0, len(speech_wav), CHUNK_LIM): chunk = speech_wav[i : i + CHUNK_LIM] if len(chunk) < CHUNK_LIM: chunk = whisper.pad_or_trim(chunk) speechs.append(chunk) speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0)) mels = [] for chunk in speechs: chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0) mels.append(chunk) mels = torch.cat(mels, dim=0) speech_wavs = torch.cat(speech_wavs, dim=0) if mels.shape[0] > 25: mels = mels[:25] speech_wavs = speech_wavs[:25] speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0]) speech_chunks = torch.LongTensor([mels.shape[0]]) return mels, speech_length, speech_chunks, speech_wavs def extract_audio(videos_file_path): my_clip = mp.VideoFileClip(videos_file_path) return my_clip.audio def ola_inference(multimodal, audio_path): visual, text = multimodal["files"][0], multimodal["text"] if visual.endswith("image2.png"): modality = "video" visual = f"{cur_dir}/case/case1.mp4" if visual.endswith(".mp4"): modality = "video" else: modality = "image" # input audio and video, do not parse audio in the video, else parse audio in the video if audio_path: USE_SPEECH = True elif modality == "video": USE_SPEECH = True else: USE_SPEECH = False speechs = [] speech_lengths = [] speech_wavs = [] speech_chunks = [] if modality == "video": vr = VideoReader(visual, ctx=cpu(0)) total_frame_num = len(vr) fps = round(vr.get_avg_fps()) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int) frame_idx = uniform_sampled_frames.tolist() spare_frames = vr.get_batch(frame_idx).asnumpy() video = [Image.fromarray(frame) for frame in spare_frames] else: image = [Image.open(visual)] image_sizes = [image[0].size] if USE_SPEECH and audio_path: audio_path = audio_path speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path) speechs.append(speech.bfloat16().to('cuda')) speech_lengths.append(speech_length.to('cuda')) speech_chunks.append(speech_chunk.to('cuda')) speech_wavs.append(speech_wav.to('cuda')) print('load audio') elif USE_SPEECH and not audio_path: # parse audio in the video audio = extract_audio(visual) audio.write_audiofile("./video_audio.wav") video_audio_path = './video_audio.wav' speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path) speechs.append(speech.bfloat16().to('cuda')) speech_lengths.append(speech_length.to('cuda')) speech_chunks.append(speech_chunk.to('cuda')) speech_wavs.append(speech_wav.to('cuda')) else: speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')] speech_lengths = [torch.LongTensor([3000]).to('cuda')] speech_wavs = [torch.zeros([1, 480000]).to('cuda')] speech_chunks = [torch.LongTensor([1]).to('cuda')] conv_mode = "qwen_1_5" if text: qs = text else: qs = '' if USE_SPEECH and audio_path: qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n' elif USE_SPEECH: qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if USE_SPEECH and audio_path: input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') elif USE_SPEECH: input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') else: input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') if modality == "video": video_processed = [] for idx, frame in enumerate(video): image_processor.do_resize = False image_processor.do_center_crop = False frame = process_anyres_video(frame, image_processor) if frame_idx is not None and idx in frame_idx: video_processed.append(frame.unsqueeze(0)) elif frame_idx is None: video_processed.append(frame.unsqueeze(0)) if frame_idx is None: frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda") video_processed = (video_processed, video_processed) video_data = (video_processed, (384, 384), "video") else: image_processor.do_resize = False image_processor.do_center_crop = False image_tensor, image_highres_tensor = [], [] for visual in image: image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor) image_tensor.append(image_tensor_) image_highres_tensor.append(image_highres_tensor_) if all(x.shape == image_tensor[0].shape for x in image_tensor): image_tensor = torch.stack(image_tensor, dim=0) if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): image_highres_tensor = torch.stack(image_highres_tensor, dim=0) if type(image_tensor) is list: image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor] else: image_tensor = image_tensor.bfloat16().to("cuda") if type(image_highres_tensor) is list: image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor] else: image_highres_tensor = image_highres_tensor.bfloat16().to("cuda") pad_token_ids = 151643 attention_masks = input_ids.ne(pad_token_ids).long().to('cuda') stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) gen_kwargs = {} if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0.2 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 with torch.inference_mode(): if modality == "video": output_ids = model.generate( inputs=input_ids, images=video_data[0][0], images_highres=video_data[0][1], modalities=video_data[2], speech=speechs, speech_lengths=speech_lengths, speech_chunks=speech_chunks, speech_wav=speech_wavs, attention_mask=attention_masks, use_cache=True, stopping_criteria=[stopping_criteria], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) else: output_ids = model.generate( inputs=input_ids, images=image_tensor, images_highres=image_highres_tensor, image_sizes=image_sizes, modalities=['image'], speech=speechs, speech_lengths=speech_lengths, speech_chunks=speech_chunks, speech_wav=speech_wavs, attention_mask=attention_masks, use_cache=True, stopping_criteria=[stopping_criteria], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[:-len(stop_str)] outputs = outputs.strip() return outputs, None ``` ### Model Architecture - **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Qwen2.5-7B - **Data:** a mixture of more than 5M image/video/audio data, training for 3 stage. - **Precision:** BFloat16 #### Hardware & Software - **Hardware:** 64 \* NVIDIA Tesla A100 - **Orchestration:** HuggingFace Trainer - **Code:** Pytorch ## Citation @article{liu2025ola, title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment}, author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, journal={arXiv preprint arXiv:2502.04328}, year={2025} } # File information The repository contains the following file information: Filename: generation_config.json Content: { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.7, "top_k": 20, "top_p": 0.8, "transformers_version": "4.43.4" } Filename: merges.txt Content: "Content of the file is larger than 50 KB, too long to display." Filename: special_tokens_map.json Content: { "additional_special_tokens": [ "<|im_start|>", "<|im_end|>", "<|object_ref_start|>", "<|object_ref_end|>", "<|box_start|>", "<|box_end|>", "<|quad_start|>", "<|quad_end|>", "<|vision_start|>", "<|vision_end|>", "<|vision_pad|>", "<|image_pad|>", "<|video_pad|>" ], "eos_token": { "content": "<|im_end|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false }, "pad_token": "<|mm_pad|>" } Filename: model.safetensors.index.json Content: "Content of the file is larger than 50 KB, too long to display." Filename: config.json Content: "Content of the file is larger than 50 KB, too long to display." Filename: vocab.json Content: "Content of the file is larger than 50 KB, too long to display." Filename: tokenizer_config.json Content: "Content of the file is larger than 50 KB, too long to display." # Project page The project page URL we found has the following URL: # Github README The Github README we found contains the following content:
# OLA: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment Join our [WeChat](http://imagebind-llm.opengvlab.com/qrcode/) [[Project Page](https://ola-omni.github.io/)] [[Demo](http://106.14.2.150:10020/)]
## 🚀 News * [2025/02/07] 🎉🎉🎉 Initial codebase for eval and training will be released ASAP! Thanks for your attention. ## ⚡ Model Zoo 1. Speech-Visual Data * [ ] image+text with local audio caption. * [ ] videos from webvid2.5m with audio caption. 2. Visual Tokenizer * [ ] Imagebind small. * [ ] Oryx-ViT 18B-1152. 3. Training Pipeline * [ ] image+text stage. * [ ] audio+image+text stage. * [ ] video+audio+image+text stage ## TODO - [ ] Multi Stage Training ## ⚙️ Installation See [INSTALL.md](docs/INSTALL.md) for detailed instructions. ## 🛴 Quick Inference Code - Check out the [quick inference script](example/inference/image_audio.ipynb) using a visual and audio data! ## 📃 Citation ``` @article{liu2025ola, title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment}, author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, journal={arXiv preprint arXiv:2502.04328}, year={2025} } ``` ## Acknowledgement - This project has been built using the great codebase of [Qwen](https://github.com/QwenLM/Qwen), [Video-LLaVA](https://github.com/mbai-xiao/Video-LLaVA), [OpenFlamingo](https://github.com/mlfoundations/open_flamingo). We thank the authors for their wonderful works. ## Contact - If you have any questions, feel free to open issues or pull requests. Format your response as markdown, like this: ## reasoning A reasoning section regarding which metadata is most appropriate for the given model to put in the `content` section as YAML, given the available context about the paper (abstract, Github README content and project page content if provided). Formatted as plain text. ## Title The title of your Hugging Face pull request formatted as plain text ## Comment The comment of your Hugging Face pull request formatted as markdown ## Metadata The metadata of the new/updated model card formatted as YAML. ## Content The content of the new/updated README.md (model card) formatted as markdown Start your answer directly with a "## Reasoning" section followed by "## Title", "## Comment", "## Metadata" and "## Content" sections that are filled in with relevant info for the given paper. Only format the Metadata section using ```yaml and ``` markers. In case there is already an Arxiv link present, there is no need to replace it with a Hugging Face paper page link. In case there is already a Github or project page URL present, there is no need to mention in the comment that you added it.