File size: 7,024 Bytes
e336f2f
 
2ac49cd
 
 
 
 
 
 
 
da5220b
2ac49cd
 
 
 
 
e336f2f
2ac49cd
e336f2f
8b560fe
2ac49cd
da5220b
2ac49cd
 
 
da5220b
2ac49cd
 
 
 
 
1937dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ac49cd
 
 
 
 
 
 
 
e336f2f
00e246b
62021ad
1937dc4
62021ad
 
 
1937dc4
00e246b
62021ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0728e8
 
 
 
 
62021ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e246b
62021ad
 
 
 
 
 
 
1937dc4
00e246b
 
 
62021ad
00e246b
62021ad
 
 
 
 
 
c6bc75b
 
 
 
 
 
 
 
00e246b
2ac49cd
 
 
 
adbbb2e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
library_name: transformers
tags:
- reward
- RM
- Code
- AceCode
- AceCoder
license: mit
datasets:
- TIGER-Lab/AceCode-87K
- TIGER-Lab/AceCodePair-300K
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-32B-Instruct
---
# 🂡 AceCoder

[Paper](https://arxiv.org/abs/2502.01718) | 
[Github](https://github.com/TIGER-AI-Lab/AceCoder) |
[AceCode-87K](https://huggingface.co/datasets/TIGER-Lab/AceCode-87K) |
[AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K) |
[RM/RL Models](https://huggingface.co/collections/TIGER-Lab/acecoder-67a16011a6c7d65cad529eba)

We introduce AceCoder, the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. To do this, we curated the dataset AceCode-87K, where we start from a seed code dataset and prompt powerful LLMs to "imagine" proper test cases for the coding question and filter the noisy ones. We sample inferences from existing coder models and compute their pass rate as the reliable and verifiable rewards for both training the reward model and conducting the reinforcement learning for coder LLM.

**This model is the official AceCodeRM-32B trained from Qwen2.5-Coder-32B-Instruct on [TIGER-Lab/AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K)**

![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png)

## Performance on RM Bench

| Model                                | Code | Chat  | Math  | Safety | Easy  | Normal | Hard | Avg  |
| ------------------------------------ | ---- | ----- | ----- | ------ | ----- | ------ | ---- | ---- |
| Skywork/Skywork-Reward-Llama-3.1-8B  | 54.5 | 69.5  | 60.6  | 95.7   | **89**    | 74.7   | 46.6 | 70.1 |
| LxzGordon/URM-LLaMa-3.1-8B           | 54.1 | 71.2  | 61.8  | 93.1   | 84    | 73.2   | 53   | 70   |
| NVIDIA/Nemotron-340B-Reward          | 59.4 | 71.2  | 59.8  | 87.5   | 81    | 71.4   | 56.1 | 69.5 |
| NCSOFT/Llama-3-OffsetBias-RM-8B      | 53.2 | 71.3  | 61.9  | 89.6   | 84.6  | 72.2   | 50.2 | 69   |
| internlm/internlm2-20b-reward        | 56.7 | 63.1  | 66.8  | 86.5   | 82.6  | 71.6   | 50.7 | 68.3 |
| Ray2333/GRM-llama3-8B-sftreg         | 57.8 | 62.7  | 62.5  | 90     | 83.5  | 72.7   | 48.6 | 68.2 |
| Ray2333/GRM-llama3-8B-distill        | 56.9 | 62.4  | 62.1  | 88.1   | 82.2  | 71.5   | 48.4 | 67.4 |
| Ray2333/GRM-Llama3-8B-rewardmodel-ft | 52.1 | 66.8  | 58.8  | 91.4   | 86.2  | 70.6   | 45.1 | 67.3 |
| LxzGordon/URM-LLLaMa-3-8B            | 52.3 | 68.5  | 57.6  | 90.3   | 80.2  | 69.9   | 51.5 | 67.2 |
| internlm/internlm2-7b-reward*         | 49.7 | 61.7  | **71.4**  | 85.5   | 85.4  | 70.7   | 45.1 | 67.1 |
| Skywork-Reward-Llama-3.1-8B-v0.2*     | 53.4 | 69.2  | 62.1  | **96**     | 88.5  | 74     | 47.9 | 70.1 |
| Skywork-Reward-Gemma-2-27B-v0.2*      | 45.8 | 49.4  | 50.7  | 48.2   | 50.3  | 48.2   | 47   | 48.5 |
| AceCoder-RM-7B                       | 66.9 | 66.7  | 65.3  | 89.9   | 79.9  | 74.4   | 62.2 | 72.2 |
| AceCoder-RM-32B                      | **72.1** | **73.7**  | 70.5  | 88     | 84.5  | **78.3**   | **65.5** | **76.1** |
| Delta (AceCoder 7B - Others)         | 7.5  | \-4.6 | \-6.1 | \-6.1  | \-9.1 | \-0.3  | 6.1  | 2.1  |
| Delta (AceCoder 32B - Others)        | 12.7 | 2.4   | \-0.9 | \-8    | \-4.5 | 3.6    | 9.4  | 6    |

\* These models do not have official results as they are released later than the RM Bench paper; therefore, the authors tried our best to extend the original code base to test these models. Our implementation can be found here:
[Modified Reward Bench / RM Bench Code](https://github.com/wyettzeng/reward-bench)

## Performance on Best-of-N sampling

![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table2.png)

## Usage

- To use the RM to produce rewards, please apply the following example codes:

```python
"""pip install git+https://github.com/TIGER-AI-Lab/AceCoder"""
from acecoder import AceCodeRM
from transformers import AutoTokenizer

model_path = "TIGER-Lab/AceCodeRM-7B"
model = AceCodeRM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

question = """\
Given an array of numbers, write a function runningSum that returns an array where each element at index i is the sum of all elements from index 0 to i (inclusive).
For example:
Input: nums = [1,2,3,4]
Output: [1,3,6,10]
"""

program_with_3_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(1, len(nums)):
        result.append(nums[i])
        current_sum += nums[i]
    return result
"""

program_with_2_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(0, len(nums)):
        result.append(nums[i])
        current_sum += nums[i]
    return result
"""
    
program_with_1_errors = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for i in range(0, len(nums)):
        result.append(current_sum)
        current_sum += nums[i]
    return result
"""
program_correct = """\
def runningSum(nums):
    result = []
    current_sum = 0
    for num in nums:
        current_sum += num
        result.append(current_sum)
    return result
"""

program_chats = [
    [
        {
            "content": question,
            "role": "user",
        },
        {
            "role": "assistant",
            "content": program
        }
    ] for program in [program_with_3_errors, program_with_2_errors, program_with_1_errors, program_correct]
]

input_tokens = tokenizer.apply_chat_template(
    program_chats,
    tokenize=True,
    return_dict=True,
    padding=True,
    return_tensors="pt",
).to(model.device)

rm_scores = model(
    **input_tokens,
    output_hidden_states=True,
    return_dict=True,
    use_cache=False,    
)

print("RM Scores:", rm_scores)
print("Score of program with 3 errors:", rm_scores[0].item())
print("Score of program with 2 errors:", rm_scores[1].item())
print("Score of program with 1 errors:", rm_scores[2].item())
print("Score of correct program:", rm_scores[3].item())
"""
RM Scores: tensor([-20.5058,  -1.7867,   0.4395,  23.0689], device='cuda:0',
       grad_fn=<SqueezeBackward0>)
Score of program with 3 errors: -20.505754470825195
Score of program with 2 errors: -1.7866804599761963
Score of program with 1 errors: 0.43949759006500244
Score of correct program: 23.068859100341797
"""
```


- To use the RM for the RL tuning, please refer to our [Github Code](https://github.com/TIGER-AI-Lab/AceCoder) for more details

## Citation
```bibtex
@article{AceCoder,
    title={AceCoder: Acing Coder RL via Automated Test-Case Synthesis},
    author={Zeng, Huaye and Jiang, Dongfu and Wang, Haozhe and Nie, Ping and Chen, Xiaotong and Chen, Wenhu},
    journal={ArXiv},
    year={2025},
    volume={abs/2207.01780}
}
```