---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What are the main components of technology and infrastructure costs?
sentences:
- As of January 29, 2023, from the total aggregate lease obligations of $14.7 billion,
$1.5 billion was payable within 12 months.
- Technology and infrastructure costs include payroll and related expenses for employees
involved in the research and development of new and existing products and services,
development, design, and maintenance of our stores, curation and display of products
and services made available in our online stores, and infrastructure costs.
- '''Note 13 — Commitments and Contingencies — Litigation and Other Legal Matters''
is stated to be part of Part IV, Item 15 of the consolidated financial statements
within an Annual Report on Form 10-K.'
- source_sentence: How is Meta's workforce comprised in terms of diversity as of December
31, 2022?
sentences:
- As of December 31, 2022, our global employee base was composed of 45.4% underrepresented
people, with 47.9% underrepresented people in the U.S., and 43.1% of our leaders
in the U.S. being people of color.
- IBM's 2023 Annual Report to Stockholders includes the Financial Statements and
Supplementary Data on pages 44 through 121.
- Factors affecting the overall effective tax rate include acquisitions, changes
in corporate structures, location of business functions, the mix and amount of
income, agreements with tax authorities, and variations in estimated and actual
pre-tax income.
- source_sentence: What was the valuation allowance against deferred tax assets at
the end of 2023, and what changes may affect its realization?
sentences:
- At December 31, 2020, valuation allowances against deducted assets were $7.0 billion.
The ability to realize deductible benefits in future is contingent on producing
any estimated sufficient values in cash-generating, with effects are modifications
in trade situations, political of force, or those actions meaningfully impacting
on the values.
- Amazon considers its intellectual property essential for its success, utilizing
trademark, copyright, and patent law, trade-secret protection, and confidentiality
and/or license agreements to protect these rights.
- 'During 2023, AMC served as the theatrical distributor for two theatrical releases:
TAYLOR SWIFT | THE ERAS TOUR and RENAISSANCE: A FILM BY BEYONCÉ.'
- source_sentence: What significant services are included in Iron Mountain's service
revenues?
sentences:
- The decrease in net income in 2022 was primarily due to an increase in selling,
general and administrative expenses of $532.4 million, an impairment charge recognized
in 2022 of $407.9 million, an increase in income tax expense of $119.2 million,
partially offset by an increase in gross profit of $883.8 million, a decrease
in acquisition-related expenses of $41.4 million, a gain on disposal of assets
of $10.2 million, and an increase in other income (expense), net of $3.6 million.
- Service revenues include charges for the handling of records, destruction services,
digital solutions, and data center services.
- The total operating expenses for Chipotle Mexican Grill in 2023 amounted to $8,313,836.
- source_sentence: In which part and item of the Annual Report on Form 10-K can the
consolidated financial statements be found?
sentences:
- In order to maintain leadership, we optimize our portfolio with organic and inorganic
innovations and effective resource allocation. These investments not only drive
current performance but will extend our innovation leadership into the future.
- Our Consumer Wireline business unit offers AT&T Internet Air, which is a fixed
wireless access product that provides home internet services delivered over our
5G wireless network where available.
- The consolidated financial statements and accompanying notes listed in Part IV,
Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere in this
Annual Report on For... 10-K.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8110932340412786
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7804977324263039
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.784240984630403
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8116485651477514
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7810300453514737
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7845397715740386
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7128571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8214285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7128571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27380952380952384
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17199999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7128571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8214285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8071701520591847
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7762494331065761
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7797123012827435
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.71
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8442857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.71
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16885714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.71
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8442857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.801264041144764
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7705725623582764
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7744092505881914
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6685714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8257142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8757142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6685714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25999999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16514285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08757142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6685714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8257142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8757142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7698003192070297
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7363242630385484
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7409337390692949
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("TatvaRA/bge-base-financial-matryoshka")
# Run inference
sentences = [
'In which part and item of the Annual Report on Form 10-K can the consolidated financial statements be found?',
'The consolidated financial statements and accompanying notes listed in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere in this Annual Report on For... 10-K.',
'Our Consumer Wireline business unit offers AT&T Internet Air, which is a fixed wireless access product that provides home internet services delivered over our 5G wireless network where available.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7114 |
| cosine_accuracy@3 | 0.8371 |
| cosine_accuracy@5 | 0.87 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.7114 |
| cosine_precision@3 | 0.279 |
| cosine_precision@5 | 0.174 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.7114 |
| cosine_recall@3 | 0.8371 |
| cosine_recall@5 | 0.87 |
| cosine_recall@10 | 0.9057 |
| **cosine_ndcg@10** | **0.8111** |
| cosine_mrr@10 | 0.7805 |
| cosine_map@100 | 0.7842 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7157 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.87 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.7157 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.174 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.7157 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.87 |
| cosine_recall@10 | 0.9071 |
| **cosine_ndcg@10** | **0.8116** |
| cosine_mrr@10 | 0.781 |
| cosine_map@100 | 0.7845 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7129 |
| cosine_accuracy@3 | 0.8214 |
| cosine_accuracy@5 | 0.86 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.7129 |
| cosine_precision@3 | 0.2738 |
| cosine_precision@5 | 0.172 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.7129 |
| cosine_recall@3 | 0.8214 |
| cosine_recall@5 | 0.86 |
| cosine_recall@10 | 0.9043 |
| **cosine_ndcg@10** | **0.8072** |
| cosine_mrr@10 | 0.7762 |
| cosine_map@100 | 0.7797 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.71 |
| cosine_accuracy@3 | 0.81 |
| cosine_accuracy@5 | 0.8443 |
| cosine_accuracy@10 | 0.8986 |
| cosine_precision@1 | 0.71 |
| cosine_precision@3 | 0.27 |
| cosine_precision@5 | 0.1689 |
| cosine_precision@10 | 0.0899 |
| cosine_recall@1 | 0.71 |
| cosine_recall@3 | 0.81 |
| cosine_recall@5 | 0.8443 |
| cosine_recall@10 | 0.8986 |
| **cosine_ndcg@10** | **0.8013** |
| cosine_mrr@10 | 0.7706 |
| cosine_map@100 | 0.7744 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6686 |
| cosine_accuracy@3 | 0.78 |
| cosine_accuracy@5 | 0.8257 |
| cosine_accuracy@10 | 0.8757 |
| cosine_precision@1 | 0.6686 |
| cosine_precision@3 | 0.26 |
| cosine_precision@5 | 0.1651 |
| cosine_precision@10 | 0.0876 |
| cosine_recall@1 | 0.6686 |
| cosine_recall@3 | 0.78 |
| cosine_recall@5 | 0.8257 |
| cosine_recall@10 | 0.8757 |
| **cosine_ndcg@10** | **0.7698** |
| cosine_mrr@10 | 0.7363 |
| cosine_map@100 | 0.7409 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
What percentage of total revenues did STELARA account for in fiscal 2023 for the Company?
| Sales of the Company’s largest product, STELARA (ustekinumab), accounted for approximately 12.8% of the Company's total revenues for fiscal 2023.
|
| What is the effective date for the new accounting standard ASU No. 2022-04 regarding liabilities in supplier finance programs?
| In September 2022, the FASB issued ASU No. 2022-04, “Liabilities—Supplier Finance Programs (Topic 405-50) - Disclosure of Supplier Finance Program Obligations,” which is effective for fiscal years beginning after December 15, 2022, including interim periods within those fiscal years.
|
| What was the pre-tax net favorable prior period development for 2022 and what factors contributed to it?
| The pre-tax net favorable prior period development for 2022 was $876 million. Adverse development factors like molestation claims, primarily reviver statute-related compromising $155 million, and $113 million related to legacy asbestos and environmental exposures significantly influenced this outcome.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters