File size: 30,365 Bytes
58da7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:73
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: thenlper/gte-base
widget:
- source_sentence: What is the maximum value of equipment that can be purchased with
    a CUE Student Research Project Grant?
  sentences:
  - Equipment costs (valued up to $1000).
  - Variable awards to recognize and reward academic achievement at the senior high
    school level and to encourage students to pursue post -secondary studies.
  - The Amazon Future Engineer Scholarship provides students with an opportunity to
    upgrade their careers with a $7,500 CAD/year scholarship available for up to four
    years.
- source_sentence: What is the minimum distance a recipient's hometown must be from
    Concordia University of Edmonton to be eligible for the Alberta Blue Cross Away
    from Home Scholarship?
  sentences:
  - Three awards are available
  - The recipient’s hometown must be at least 100 kilometres from Concordia University
    of Edmonton.
  - 'Application Deadline: September 1'
- source_sentence: According to the selection criteria, what level of subjects are
    used to determine the academic standing of a potential Alberta Blue Cross Away
    from Home Scholarship recipient?
  sentences:
  - Selection is ba sed on the academic standing of 30 -level subjects used for admission.
  - 'These eligible and ineligible lists are not exhaustive. Doubts about the eligibility
    of expenses should be directed to the ORI’s Research Administration Service s
    (RAS): [email protected] .'
  - '*Value: $11000 Master’s; $14,000 Doctoral'
- source_sentence: According to the text, how many days does a grant recipient have
    to submit a final report after the grant ends?
  sentences:
  - All Fall grant recipients are expected to submit an abstract to present an oral
    and/or poster presentation of their work, either in its progression or final stage.
  - a business program offered by an Alberta college, polytechnic, or university that
    offers the prerequisite courses required for entrance into the CPA Professional
    Education Program (CPA PEP).
  - The applicant is required to complete and submit a final report within 5 days
    of the end of the grant.
- source_sentence: In what format should applicants acknowledge the funding provided
    by Concordia University of Edmonton for their Student Project Grant?
  sentences:
  - All oral or poster presentations, publications, including public messages, arising
    from research supported by CUE grants must acknowledge the support of the institution.
    Acknowledgement can be in the written format, such as " This research is funded
    by the generous support of Concordia University of Edmonton through their CUE
    Student Research Project Grants program ", or similar phrasing.
  - This $1,000 scholarship is awarded to post -secondary students who have completed
    at least one year towards their Bachelor of Science with a focus on Computer Science,
    achieved an average GPA of 3.5 or higher, and are still enrolled in post -secondary
    studie s.
  - The recipient will be selected based on the highest grade in MARK320. In the event
    of a tie, preference will be given to the student with the highest cumulative
    GPA.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5555555555555556
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5555555555555556
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5555555555555556
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8214210289682637
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7592592592592592
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7592592592592592
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.4444444444444444
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4444444444444444
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4444444444444444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7678413135022636
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6888888888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6888888888888889
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.4444444444444444
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4444444444444444
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4444444444444444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7658654734127082
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6851851851851851
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6851851851851851
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4444444444444444
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8888888888888888
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8888888888888888
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8888888888888888
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4444444444444444
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2962962962962963
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17777777777777778
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08888888888888889
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4444444444444444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8888888888888888
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8888888888888888
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8888888888888888
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7103099178571526
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6481481481481483
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6521164021164021
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6666666666666666
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6666666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7777777777777778
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8888888888888888
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6666666666666666
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2222222222222222
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15555555555555556
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08888888888888889
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6666666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6666666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7777777777777778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8888888888888888
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7515566546007473
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7103174603174602
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.71494708994709
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision c078288308d8dee004ab72c6191778064285ec0c -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("TatvaRA/gte-base-finetuned-schorlaships-matryonshka")
# Run inference
sentences = [
    'In what format should applicants acknowledge the funding provided by Concordia University of Edmonton for their Student Project Grant?',
    'All oral or poster presentations, publications, including public messages, arising from research supported by CUE grants must acknowledge the support of the institution. Acknowledgement can be in the written format, such as " This research is funded by the generous support of Concordia University of Edmonton through their CUE Student Research Project Grants program ", or similar phrasing.',
    'The recipient will be selected based on the highest grade in MARK320. In the event of a tie, preference will be given to the student with the highest cumulative GPA.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5556     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.5556     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.5556     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.8214** |
| cosine_mrr@10       | 0.7593     |
| cosine_map@100      | 0.7593     |

#### Information Retrieval

* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 512
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4444     |
| cosine_accuracy@3   | 0.8889     |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.4444     |
| cosine_precision@3  | 0.2963     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.4444     |
| cosine_recall@3     | 0.8889     |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.7678** |
| cosine_mrr@10       | 0.6889     |
| cosine_map@100      | 0.6889     |

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4444     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.4444     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.4444     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.7659** |
| cosine_mrr@10       | 0.6852     |
| cosine_map@100      | 0.6852     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4444     |
| cosine_accuracy@3   | 0.8889     |
| cosine_accuracy@5   | 0.8889     |
| cosine_accuracy@10  | 0.8889     |
| cosine_precision@1  | 0.4444     |
| cosine_precision@3  | 0.2963     |
| cosine_precision@5  | 0.1778     |
| cosine_precision@10 | 0.0889     |
| cosine_recall@1     | 0.4444     |
| cosine_recall@3     | 0.8889     |
| cosine_recall@5     | 0.8889     |
| cosine_recall@10    | 0.8889     |
| **cosine_ndcg@10**  | **0.7103** |
| cosine_mrr@10       | 0.6481     |
| cosine_map@100      | 0.6521     |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6667     |
| cosine_accuracy@3   | 0.6667     |
| cosine_accuracy@5   | 0.7778     |
| cosine_accuracy@10  | 0.8889     |
| cosine_precision@1  | 0.6667     |
| cosine_precision@3  | 0.2222     |
| cosine_precision@5  | 0.1556     |
| cosine_precision@10 | 0.0889     |
| cosine_recall@1     | 0.6667     |
| cosine_recall@3     | 0.6667     |
| cosine_recall@5     | 0.7778     |
| cosine_recall@10    | 0.8889     |
| **cosine_ndcg@10**  | **0.7516** |
| cosine_mrr@10       | 0.7103     |
| cosine_map@100      | 0.7149     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 73 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 73 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 14 tokens</li><li>mean: 23.0 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 32.74 tokens</li><li>max: 346 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                              | positive                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What specific type of students are the Alberta Innovates Graduate Student Scholarships designed to support?</code>                            | <code>The Alberta Innovates Graduate Student Scholarships support academically superior graduate students <br>who are receiving training and conducting research in areas that are strategically important to Alberta’s <br>economy.</code>                                                                                                                                                                          |
  | <code>What is the specific date by which students must submit their reports for the Spring 2025 grant period?</code>                                | <code>Report due date April 20th (5 days post grant closure)</code>                                                                                                                                                                                                                                                                                                                                                  |
  | <code>In what format should applicants acknowledge the funding provided by Concordia University of Edmonton for their Student Project Grant?</code> | <code>All oral or poster presentations, publications, including public messages, arising from research supported by CUE grants must acknowledge the support of the institution. Acknowledgement can be in the written format, such as " This research is funded by the generous support of Concordia University of Edmonton through their CUE Student Research Project Grants program ", or similar phrasing.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0     | 1     | 0.7249                 | 0.7249                 | 0.7473                 | 0.7026                 | 0.6686                |
| 2.0     | 2     | 0.7619                 | 0.7249                 | 0.7533                 | 0.7026                 | 0.7480                |
| **3.0** | **3** | **0.7804**             | **0.7619**             | **0.7659**             | **0.7103**             | **0.7496**            |
| 4.0     | 4     | 0.8214                 | 0.7678                 | 0.7659                 | 0.7103                 | 0.7516                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.5.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->