Upload TextClassificationPipeline
Browse files- README.md +199 -0
- config.json +57 -0
- configuration_eurobert.py +216 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../models/EuroBERT-210m-Quality/",
|
3 |
+
"architectures": [
|
4 |
+
"EuroBertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_eurobert.EuroBertConfig",
|
10 |
+
"AutoModel": "EuroBERT/EuroBERT-210m--modeling_eurobert.EuroBertModel",
|
11 |
+
"AutoModelForMaskedLM": "EuroBERT/EuroBERT-210m--modeling_eurobert.EuroBertForMaskedLM",
|
12 |
+
"AutoModelForPreTraining": "EuroBERT/EuroBERT-210m--modeling_eurobert.EuroBertPreTrainedModel",
|
13 |
+
"AutoModelForSequenceClassification": "EuroBERT/EuroBERT-210m--modeling_eurobert.EuroBertForSequenceClassification"
|
14 |
+
},
|
15 |
+
"bos_token": "<|begin_of_text|>",
|
16 |
+
"bos_token_id": 128000,
|
17 |
+
"clf_pooling": "late",
|
18 |
+
"eos_token": "<|end_of_text|>",
|
19 |
+
"eos_token_id": 128001,
|
20 |
+
"head_dim": 64,
|
21 |
+
"hidden_act": "silu",
|
22 |
+
"hidden_dropout": 0.0,
|
23 |
+
"hidden_size": 768,
|
24 |
+
"id2label": {
|
25 |
+
"0": "Harmfull",
|
26 |
+
"1": "Low",
|
27 |
+
"2": "Medium",
|
28 |
+
"3": "High"
|
29 |
+
},
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 3072,
|
32 |
+
"label2id": {
|
33 |
+
"Harmfull": 0,
|
34 |
+
"High": 3,
|
35 |
+
"Low": 1,
|
36 |
+
"Medium": 2
|
37 |
+
},
|
38 |
+
"mask_token": "<|mask|>",
|
39 |
+
"mask_token_id": 128002,
|
40 |
+
"max_position_embeddings": 8192,
|
41 |
+
"mlp_bias": false,
|
42 |
+
"model_type": "eurobert",
|
43 |
+
"num_attention_heads": 12,
|
44 |
+
"num_hidden_layers": 12,
|
45 |
+
"num_key_value_heads": 12,
|
46 |
+
"pad_token": "<|end_of_text|>",
|
47 |
+
"pad_token_id": 128001,
|
48 |
+
"pretraining_tp": 1,
|
49 |
+
"rms_norm_eps": 1e-05,
|
50 |
+
"rope_scaling": null,
|
51 |
+
"rope_theta": 250000,
|
52 |
+
"tie_word_embeddings": false,
|
53 |
+
"torch_dtype": "bfloat16",
|
54 |
+
"transformers_version": "4.49.0",
|
55 |
+
"use_cache": false,
|
56 |
+
"vocab_size": 128256
|
57 |
+
}
|
configuration_eurobert.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/eurobert/modular_eurobert.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_eurobert.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 Nicolas Boizard, Duarte M. Alves, Hippolyte Gisserot-Boukhlef and the EuroBert team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
from transformers.utils import logging
|
24 |
+
from transformers.models.llama import LlamaConfig
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class EuroBertConfig(LlamaConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`EuroBertModel`]. It is used to instantiate an EuroBert
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the EuroBERT-210m.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 128256):
|
42 |
+
Vocabulary size of the EuroBert model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`EuroBertModel`]
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
47 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
63 |
+
The maximum sequence length that this model might ever be used with. EuroBert supports up to 8192 tokens,
|
64 |
+
EuroBert-pretrained up to 2048.
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
68 |
+
The epsilon used by the rms normalization layers.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 128000):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 128001):
|
72 |
+
End of stream token id.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 128001):
|
74 |
+
Padding token id.
|
75 |
+
mask_token_id (`int`, *optional*, defaults to 128002):
|
76 |
+
Mask token id.
|
77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
79 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
80 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
81 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to tie weight embeddings
|
84 |
+
rope_theta (`float`, *optional*, defaults to 250000.0):
|
85 |
+
The base period of the RoPE embeddings. EuroBert used base period of 250000.0,
|
86 |
+
EuroBert-pretrained 10000.0.
|
87 |
+
rope_scaling (`Dict`, *optional*):
|
88 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
89 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
90 |
+
accordingly.
|
91 |
+
Expected contents:
|
92 |
+
`rope_type` (`str`):
|
93 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
94 |
+
'eurobert3'], with 'default' being the original RoPE implementation.
|
95 |
+
`factor` (`float`, *optional*):
|
96 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
97 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
98 |
+
original maximum pre-trained length.
|
99 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
100 |
+
Used with 'dynamic', 'longrope' and 'eurobert3'. The original max position embeddings used during
|
101 |
+
pretraining.
|
102 |
+
`attention_factor` (`float`, *optional*):
|
103 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
104 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
105 |
+
`factor` field to infer the suggested value.
|
106 |
+
`beta_fast` (`float`, *optional*):
|
107 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
108 |
+
ramp function. If unspecified, it defaults to 32.
|
109 |
+
`beta_slow` (`float`, *optional*):
|
110 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
111 |
+
ramp function. If unspecified, it defaults to 1.
|
112 |
+
`short_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`long_factor` (`List[float]`, *optional*):
|
117 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
118 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
119 |
+
size divided by the number of attention heads divided by 2
|
120 |
+
`low_freq_factor` (`float`, *optional*):
|
121 |
+
Only used with 'eurobert3'. Scaling factor applied to low frequency components of the RoPE
|
122 |
+
`high_freq_factor` (`float`, *optional*):
|
123 |
+
Only used with 'eurobert3'. Scaling factor applied to high frequency components of the RoPE
|
124 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
126 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
127 |
+
The dropout ratio for the attention probabilities.
|
128 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
129 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
130 |
+
head_dim (`int`, *optional*):
|
131 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
132 |
+
classifier_pooling (`str`, *optional*, defaults to `"late"`):
|
133 |
+
The pooling strategy to use for the classifier. Can be one of ['bos', 'mean', 'late'].
|
134 |
+
|
135 |
+
```python
|
136 |
+
>>> from transformers import EuroBertModel, EuroBertConfig
|
137 |
+
|
138 |
+
>>> # Initializing a EuroBert eurobert-base style configuration
|
139 |
+
>>> configuration = EuroBertConfig()
|
140 |
+
|
141 |
+
>>> # Initializing a model from the eurobert-base style configuration
|
142 |
+
>>> model = EuroBertModel(configuration)
|
143 |
+
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```"""
|
147 |
+
|
148 |
+
model_type = "eurobert"
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
vocab_size=128256,
|
153 |
+
hidden_size=768,
|
154 |
+
intermediate_size=3072,
|
155 |
+
num_hidden_layers=12,
|
156 |
+
num_attention_heads=12,
|
157 |
+
num_key_value_heads=None,
|
158 |
+
hidden_act="silu",
|
159 |
+
max_position_embeddings=8192,
|
160 |
+
initializer_range=0.02,
|
161 |
+
rms_norm_eps=1e-05,
|
162 |
+
bos_token_id=128000,
|
163 |
+
eos_token_id=128001,
|
164 |
+
pad_token_id=128001,
|
165 |
+
mask_token_id=128002,
|
166 |
+
pretraining_tp=1,
|
167 |
+
tie_word_embeddings=False,
|
168 |
+
rope_theta=250000.0,
|
169 |
+
rope_scaling=None,
|
170 |
+
attention_bias=False,
|
171 |
+
attention_dropout=0.0,
|
172 |
+
mlp_bias=False,
|
173 |
+
head_dim=None,
|
174 |
+
classifier_pooling="late",
|
175 |
+
**kwargs,
|
176 |
+
):
|
177 |
+
# use_cache is specific to decoder models and should be set to False for encoder models
|
178 |
+
use_cache = kwargs.pop("use_cache", None)
|
179 |
+
if use_cache:
|
180 |
+
logger.warning_once(
|
181 |
+
"The `use_cache` argument to EuroBertConfig is set to `False`, as caching is never used for encoder models."
|
182 |
+
)
|
183 |
+
|
184 |
+
if num_key_value_heads is None:
|
185 |
+
num_key_value_heads = num_attention_heads
|
186 |
+
|
187 |
+
super().__init__(
|
188 |
+
vocab_size=vocab_size,
|
189 |
+
hidden_size=hidden_size,
|
190 |
+
intermediate_size=intermediate_size,
|
191 |
+
num_hidden_layers=num_hidden_layers,
|
192 |
+
num_attention_heads=num_attention_heads,
|
193 |
+
num_key_value_heads=num_key_value_heads,
|
194 |
+
hidden_act=hidden_act,
|
195 |
+
max_position_embeddings=max_position_embeddings,
|
196 |
+
initializer_range=initializer_range,
|
197 |
+
rms_norm_eps=rms_norm_eps,
|
198 |
+
use_cache=False,
|
199 |
+
bos_token_id=bos_token_id,
|
200 |
+
eos_token_id=eos_token_id,
|
201 |
+
pad_token_id=pad_token_id,
|
202 |
+
pretraining_tp=pretraining_tp,
|
203 |
+
tie_word_embeddings=tie_word_embeddings,
|
204 |
+
rope_theta=rope_theta,
|
205 |
+
rope_scaling=rope_scaling,
|
206 |
+
attention_bias=attention_bias,
|
207 |
+
attention_dropout=attention_dropout,
|
208 |
+
mlp_bias=mlp_bias,
|
209 |
+
head_dim=head_dim,
|
210 |
+
**kwargs,
|
211 |
+
)
|
212 |
+
self.mask_token_id = mask_token_id
|
213 |
+
self.clf_pooling = classifier_pooling
|
214 |
+
|
215 |
+
|
216 |
+
__all__ = ["EuroBertConfig"]
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd9f995bacb9411087ac6f3cb7ec4d76b453395edf81d6e181e27110c255b997
|
3 |
+
size 424732032
|