TheBloke commited on
Commit
72b8b1d
·
1 Parent(s): 2996f5d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +421 -0
README.md ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: GOAT-AI/GOAT-70B-Storytelling
3
+ inference: false
4
+ license: llama2
5
+ model_creator: GOAT.AI
6
+ model_name: Goat 70B Storytelling
7
+ model_type: llama
8
+ prompt_template: 'You are a helpful assistant for fiction writing. Always cut the
9
+ bullshit and provide concise outlines with useful details. Do not turn your stories
10
+ into fairy tales, be realistic.
11
+
12
+ ### USER: {prompt}
13
+
14
+ ### ASSISTANT:
15
+
16
+ '
17
+ quantized_by: TheBloke
18
+ tags:
19
+ - facebook
20
+ - meta
21
+ - pytorch
22
+ - llama
23
+ - llama-2
24
+ - Storywriter
25
+ ---
26
+ <!-- markdownlint-disable MD041 -->
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Goat 70B Storytelling - AWQ
46
+ - Model creator: [GOAT.AI](https://huggingface.co/GOAT-AI)
47
+ - Original model: [Goat 70B Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains AWQ model files for [GOAT.AI's Goat 70B Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling).
53
+
54
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
55
+
56
+
57
+ ### About AWQ
58
+
59
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
60
+
61
+ It is supported by:
62
+
63
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
64
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
65
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
66
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
67
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
68
+
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/GOAT-70B-Storytelling-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GOAT-70B-Storytelling-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GOAT-70B-Storytelling-GGUF)
76
+ * [GOAT.AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: GOAT
81
+
82
+ ```
83
+ You are a helpful assistant for fiction writing. Always cut the bullshit and provide concise outlines with useful details. Do not turn your stories into fairy tales, be realistic.
84
+ ### USER: {prompt}
85
+ ### ASSISTANT:
86
+
87
+ ```
88
+
89
+ <!-- prompt-template end -->
90
+
91
+
92
+ <!-- README_AWQ.md-provided-files start -->
93
+ ## Provided files, and AWQ parameters
94
+
95
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
96
+
97
+ Models are released as sharded safetensors files.
98
+
99
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
100
+ | ------ | ---- | -- | ----------- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/GOAT-70B-Storytelling-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 4096 | 36.61 GB
102
+
103
+ <!-- README_AWQ.md-provided-files end -->
104
+
105
+ <!-- README_AWQ.md-text-generation-webui start -->
106
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
107
+
108
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
+
110
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
111
+
112
+ 1. Click the **Model tab**.
113
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/GOAT-70B-Storytelling-AWQ`.
114
+ 3. Click **Download**.
115
+ 4. The model will start downloading. Once it's finished it will say "Done".
116
+ 5. In the top left, click the refresh icon next to **Model**.
117
+ 6. In the **Model** dropdown, choose the model you just downloaded: `GOAT-70B-Storytelling-AWQ`
118
+ 7. Select **Loader: AutoAWQ**.
119
+ 8. Click Load, and the model will load and is now ready for use.
120
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
122
+ <!-- README_AWQ.md-text-generation-webui end -->
123
+
124
+ <!-- README_AWQ.md-use-from-vllm start -->
125
+ ## Multi-user inference server: vLLM
126
+
127
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
128
+
129
+ - Please ensure you are using vLLM version 0.2 or later.
130
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
131
+
132
+ For example:
133
+
134
+ ```shell
135
+ python3 -m vllm.entrypoints.api_server --model TheBloke/GOAT-70B-Storytelling-AWQ --quantization awq --dtype auto
136
+ ```
137
+
138
+ - When using vLLM from Python code, again set `quantization=awq`.
139
+
140
+ For example:
141
+
142
+ ```python
143
+ from vllm import LLM, SamplingParams
144
+
145
+ prompts = [
146
+ "Tell me about AI",
147
+ "Write a story about llamas",
148
+ "What is 291 - 150?",
149
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
150
+ ]
151
+ prompt_template=f'''You are a helpful assistant for fiction writing. Always cut the bullshit and provide concise outlines with useful details. Do not turn your stories into fairy tales, be realistic.
152
+ ### USER: {prompt}
153
+ ### ASSISTANT:
154
+ '''
155
+
156
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
157
+
158
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
159
+
160
+ llm = LLM(model="TheBloke/GOAT-70B-Storytelling-AWQ", quantization="awq", dtype="auto")
161
+
162
+ outputs = llm.generate(prompts, sampling_params)
163
+
164
+ # Print the outputs.
165
+ for output in outputs:
166
+ prompt = output.prompt
167
+ generated_text = output.outputs[0].text
168
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
169
+ ```
170
+ <!-- README_AWQ.md-use-from-vllm start -->
171
+
172
+ <!-- README_AWQ.md-use-from-tgi start -->
173
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
174
+
175
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
176
+
177
+ Example Docker parameters:
178
+
179
+ ```shell
180
+ --model-id TheBloke/GOAT-70B-Storytelling-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
181
+ ```
182
+
183
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
184
+
185
+ ```shell
186
+ pip3 install huggingface-hub
187
+ ```
188
+
189
+ ```python
190
+ from huggingface_hub import InferenceClient
191
+
192
+ endpoint_url = "https://your-endpoint-url-here"
193
+
194
+ prompt = "Tell me about AI"
195
+ prompt_template=f'''You are a helpful assistant for fiction writing. Always cut the bullshit and provide concise outlines with useful details. Do not turn your stories into fairy tales, be realistic.
196
+ ### USER: {prompt}
197
+ ### ASSISTANT:
198
+ '''
199
+
200
+ client = InferenceClient(endpoint_url)
201
+ response = client.text_generation(prompt,
202
+ max_new_tokens=128,
203
+ do_sample=True,
204
+ temperature=0.7,
205
+ top_p=0.95,
206
+ top_k=40,
207
+ repetition_penalty=1.1)
208
+
209
+ print(f"Model output: ", response)
210
+ ```
211
+ <!-- README_AWQ.md-use-from-tgi end -->
212
+
213
+ <!-- README_AWQ.md-use-from-python start -->
214
+ ## Inference from Python code using Transformers
215
+
216
+ ### Install the necessary packages
217
+
218
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
219
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
220
+
221
+ ```shell
222
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
223
+ ```
224
+
225
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
226
+
227
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
228
+
229
+ ```shell
230
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
231
+ ```
232
+
233
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
234
+
235
+ ```shell
236
+ pip3 uninstall -y autoawq
237
+ git clone https://github.com/casper-hansen/AutoAWQ
238
+ cd AutoAWQ
239
+ pip3 install .
240
+ ```
241
+
242
+ ### Transformers example code (requires Transformers 4.35.0 and later)
243
+
244
+ ```python
245
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
246
+
247
+ model_name_or_path = "TheBloke/GOAT-70B-Storytelling-AWQ"
248
+
249
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
250
+ model = AutoModelForCausalLM.from_pretrained(
251
+ model_name_or_path,
252
+ low_cpu_mem_usage=True,
253
+ device_map="cuda:0"
254
+ )
255
+
256
+ # Using the text streamer to stream output one token at a time
257
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''You are a helpful assistant for fiction writing. Always cut the bullshit and provide concise outlines with useful details. Do not turn your stories into fairy tales, be realistic.
261
+ ### USER: {prompt}
262
+ ### ASSISTANT:
263
+ '''
264
+
265
+ # Convert prompt to tokens
266
+ tokens = tokenizer(
267
+ prompt_template,
268
+ return_tensors='pt'
269
+ ).input_ids.cuda()
270
+
271
+ generation_params = {
272
+ "do_sample": True,
273
+ "temperature": 0.7,
274
+ "top_p": 0.95,
275
+ "top_k": 40,
276
+ "max_new_tokens": 512,
277
+ "repetition_penalty": 1.1
278
+ }
279
+
280
+ # Generate streamed output, visible one token at a time
281
+ generation_output = model.generate(
282
+ tokens,
283
+ streamer=streamer,
284
+ **generation_params
285
+ )
286
+
287
+ # Generation without a streamer, which will include the prompt in the output
288
+ generation_output = model.generate(
289
+ tokens,
290
+ **generation_params
291
+ )
292
+
293
+ # Get the tokens from the output, decode them, print them
294
+ token_output = generation_output[0]
295
+ text_output = tokenizer.decode(token_output)
296
+ print("model.generate output: ", text_output)
297
+
298
+ # Inference is also possible via Transformers' pipeline
299
+ from transformers import pipeline
300
+
301
+ pipe = pipeline(
302
+ "text-generation",
303
+ model=model,
304
+ tokenizer=tokenizer,
305
+ **generation_params
306
+ )
307
+
308
+ pipe_output = pipe(prompt_template)[0]['generated_text']
309
+ print("pipeline output: ", pipe_output)
310
+
311
+ ```
312
+ <!-- README_AWQ.md-use-from-python end -->
313
+
314
+ <!-- README_AWQ.md-compatibility start -->
315
+ ## Compatibility
316
+
317
+ The files provided are tested to work with:
318
+
319
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
320
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
321
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
322
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
323
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
324
+
325
+ <!-- README_AWQ.md-compatibility end -->
326
+
327
+ <!-- footer start -->
328
+ <!-- 200823 -->
329
+ ## Discord
330
+
331
+ For further support, and discussions on these models and AI in general, join us at:
332
+
333
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
334
+
335
+ ## Thanks, and how to contribute
336
+
337
+ Thanks to the [chirper.ai](https://chirper.ai) team!
338
+
339
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
340
+
341
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
342
+
343
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
344
+
345
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
346
+
347
+ * Patreon: https://patreon.com/TheBlokeAI
348
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
349
+
350
+ **Special thanks to**: Aemon Algiz.
351
+
352
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
353
+
354
+
355
+ Thank you to all my generous patrons and donaters!
356
+
357
+ And thank you again to a16z for their generous grant.
358
+
359
+ <!-- footer end -->
360
+
361
+ # Original model card: GOAT.AI's Goat 70B Storytelling
362
+
363
+
364
+ ![GOAT-70B-Storytelling](https://assets.adapt.ws/files/20231117_ehznrqludevtapck.png)
365
+ # GOAT-70B-Storytelling model
366
+ GOAT-70B-Storytelling model trained by GOAT.AI lab as a core model for an autonomous story-writing agent.
367
+
368
+ # GOAT-Storytelling-Agent
369
+ This agent facilitates the generation of high-quality, cohesive, and captivating narratives, including stories and books. It achieves this by utilizing inputs such as plot outlines, character profiles, their interrelationships, and other relevant details. Examples are provided below.
370
+
371
+ # Model description
372
+ - **Base Architecture:** LLaMA 2 70B
373
+ - **License:** llama2
374
+ - **Context window length:** 4096 tokens
375
+
376
+ ### Training details
377
+ Training was performed on a GPU cluster of 64xH100s. FSDP ZeRO-3 sharding is employed for efficient training. We instruction finetune on a dataset of 18K examples for one epoch with batch size of 336, AdamW optimizer with learning rate 1e-5.
378
+
379
+ ### Learn more
380
+ - **Blogpost:** [GOAT-Storytelling: Arbitrarily Long Story Writing Agent](https://www.blog.goat.ai/goat-st/)
381
+ - **GitHub:** [here](https://github.com/GOAT-AI-lab/GOAT-Storytelling-Agent)
382
+ - **Generated examples:** [here](https://huggingface.co/datasets/GOAT-AI/generated-novels/tree/main/generated-books)
383
+
384
+ ## Uses
385
+ The main purpose of GOAT-70B-Storytelling is to generate books, novels, movie scripts and etc. as an agent in coping with our GOAT-Storytelling-Agent. It is specifically designed for storywriters.
386
+
387
+ ## Usage
388
+ Usage can be either self-hosted via `transformers` or used with Spaces
389
+
390
+ ```python
391
+ import torch
392
+
393
+ from transformers import AutoTokenizer, AutoModelForCausalLM
394
+
395
+ model_name = "GOAT-AI/GOAT-70B-Storytelling"
396
+
397
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
398
+ model = AutoModelForCausalLM.from_pretrained(
399
+ model_name,
400
+ torch_dtype=torch.bfloat16
401
+ )
402
+ ```
403
+ Currently, we support LLM endpoint generation, where you need to send a post request to the generation endpoint (we recommend using Text Generation Inference by HuggingFace)
404
+
405
+ First, modify `config.py` and add your generation endpoint.
406
+
407
+ Then you can use it inside via GOAT-Storytelling-Agent:
408
+
409
+ ```python
410
+ from goat_storytelling_agent import storytelling_agent as goat
411
+
412
+ novel_scenes = goat.generate_story('treasure hunt in a jungle', form='novel')
413
+ ```
414
+
415
+ ## License
416
+ GOAT-70B-Storytelling model is based on [Meta's LLaMA-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf), and using own datasets.
417
+
418
+ GOAT-70B-Storytelling model weights are available under LLAMA-2 license.
419
+
420
+ ### Risks and Biases
421
+ GOAT-70B-Storytelling model can produce factually incorrect output and should not be relied on to deliver factually accurate information. Therefore, the GOAT-70B-Storytelling model could possibly generate wrong, biased, or otherwise offensive outputs.