Initial GGML model commit
Browse files
README.md
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: other
|
4 |
+
model_creator: nRuaif
|
5 |
+
model_link: https://huggingface.co/nRuaif/Kimiko_13B
|
6 |
+
model_name: Kimiko 13B
|
7 |
+
model_type: llama
|
8 |
+
quantized_by: TheBloke
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- header start -->
|
12 |
+
<div style="width: 100%;">
|
13 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
14 |
+
</div>
|
15 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
16 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
17 |
+
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
|
18 |
+
</div>
|
19 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
20 |
+
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
21 |
+
</div>
|
22 |
+
</div>
|
23 |
+
<!-- header end -->
|
24 |
+
|
25 |
+
# Kimiko 13B - GGML
|
26 |
+
- Model creator: [nRuaif](https://huggingface.co/nRuaif)
|
27 |
+
- Original model: [Kimiko 13B](https://huggingface.co/nRuaif/Kimiko_13B)
|
28 |
+
|
29 |
+
## Description
|
30 |
+
|
31 |
+
This repo contains GGML format model files for [nRuaif's Kimiko 13B](https://huggingface.co/nRuaif/Kimiko_13B).
|
32 |
+
|
33 |
+
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
34 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
|
35 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
|
36 |
+
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
|
37 |
+
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
|
38 |
+
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
|
39 |
+
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
40 |
+
|
41 |
+
## Repositories available
|
42 |
+
|
43 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Kimiko-13B-GPTQ)
|
44 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Kimiko-13B-GGML)
|
45 |
+
* [nRuaif's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Kimiko-13B-fp16)
|
46 |
+
|
47 |
+
## Prompt template: Kimiko
|
48 |
+
|
49 |
+
```
|
50 |
+
<<HUMAN>>
|
51 |
+
{prompt}
|
52 |
+
|
53 |
+
<<AIBOT>>
|
54 |
+
```
|
55 |
+
|
56 |
+
<!-- compatibility_ggml start -->
|
57 |
+
## Compatibility
|
58 |
+
|
59 |
+
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
|
60 |
+
|
61 |
+
These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
|
62 |
+
|
63 |
+
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
|
64 |
+
|
65 |
+
These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
|
66 |
+
|
67 |
+
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
|
68 |
+
|
69 |
+
## Explanation of the new k-quant methods
|
70 |
+
<details>
|
71 |
+
<summary>Click to see details</summary>
|
72 |
+
|
73 |
+
The new methods available are:
|
74 |
+
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
|
75 |
+
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
|
76 |
+
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
|
77 |
+
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
|
78 |
+
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
|
79 |
+
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
|
80 |
+
|
81 |
+
Refer to the Provided Files table below to see what files use which methods, and how.
|
82 |
+
</details>
|
83 |
+
<!-- compatibility_ggml end -->
|
84 |
+
|
85 |
+
## Provided files
|
86 |
+
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
87 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
88 |
+
| [kimiko-13b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q2_K.bin) | q2_K | 2 | 5.51 GB| 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
89 |
+
| [kimiko-13b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 6.93 GB| 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
90 |
+
| [kimiko-13b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 6.31 GB| 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
91 |
+
| [kimiko-13b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 5.66 GB| 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
92 |
+
| [kimiko-13b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q4_0.bin) | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
|
93 |
+
| [kimiko-13b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q4_1.bin) | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
94 |
+
| [kimiko-13b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 7.87 GB| 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
95 |
+
| [kimiko-13b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 7.37 GB| 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
96 |
+
| [kimiko-13b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q5_0.bin) | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
97 |
+
| [kimiko-13b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q5_1.bin) | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
98 |
+
| [kimiko-13b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 9.23 GB| 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
99 |
+
| [kimiko-13b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 8.97 GB| 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
100 |
+
| [kimiko-13b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q6_K.bin) | q6_K | 6 | 10.68 GB| 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
|
101 |
+
| [kimiko-13b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/Kimiko-13B-GGML/blob/main/kimiko-13b.ggmlv3.q8_0.bin) | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
102 |
+
|
103 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
104 |
+
|
105 |
+
## How to run in `llama.cpp`
|
106 |
+
|
107 |
+
I use the following command line; adjust for your tastes and needs:
|
108 |
+
|
109 |
+
```
|
110 |
+
./main -t 10 -ngl 32 -m kimiko-13b.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
|
111 |
+
```
|
112 |
+
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
113 |
+
|
114 |
+
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
115 |
+
|
116 |
+
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
117 |
+
|
118 |
+
## How to run in `text-generation-webui`
|
119 |
+
|
120 |
+
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
|
121 |
+
|
122 |
+
<!-- footer start -->
|
123 |
+
## Discord
|
124 |
+
|
125 |
+
For further support, and discussions on these models and AI in general, join us at:
|
126 |
+
|
127 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
128 |
+
|
129 |
+
## Thanks, and how to contribute.
|
130 |
+
|
131 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
132 |
+
|
133 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
134 |
+
|
135 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
136 |
+
|
137 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
138 |
+
|
139 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
140 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
141 |
+
|
142 |
+
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
|
143 |
+
|
144 |
+
**Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
|
145 |
+
|
146 |
+
|
147 |
+
Thank you to all my generous patrons and donaters!
|
148 |
+
|
149 |
+
<!-- footer end -->
|
150 |
+
|
151 |
+
# Original model card: nRuaif's Kimiko 13B
|
152 |
+
|
153 |
+
|
154 |
+
# Model Card for Kimiko_13B
|
155 |
+
|
156 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
157 |
+
|
158 |
+
This is my new Kimiko models, trained with LLaMA2-13B for...purpose
|
159 |
+
|
160 |
+
## Model Details
|
161 |
+
|
162 |
+
### Model Description
|
163 |
+
|
164 |
+
<!-- Provide a longer summary of what this model is. -->
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
- **Developed by:** nRuaif
|
169 |
+
- **Model type:** Decoder only
|
170 |
+
- **License:** CC BY-NC-SA
|
171 |
+
- **Finetuned from model [optional]:** LLaMA 2
|
172 |
+
|
173 |
+
### Model Sources [optional]
|
174 |
+
|
175 |
+
<!-- Provide the basic links for the model. -->
|
176 |
+
|
177 |
+
- **Repository:** https://github.com/OpenAccess-AI-Collective/axolotl
|
178 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
179 |
+
## Uses
|
180 |
+
|
181 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
182 |
+
|
183 |
+
|
184 |
+
### Direct Use
|
185 |
+
|
186 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
187 |
+
|
188 |
+
This model is trained on 3k examples of instructions dataset, high quality roleplay, for best result follow this format
|
189 |
+
```
|
190 |
+
<<HUMAN>>
|
191 |
+
How to do abc
|
192 |
+
|
193 |
+
<<AIBOT>>
|
194 |
+
Here is how
|
195 |
+
|
196 |
+
Or with system prompting for roleplay
|
197 |
+
|
198 |
+
<<SYSTEM>>
|
199 |
+
A's Persona:
|
200 |
+
B's Persona:
|
201 |
+
Scenario:
|
202 |
+
Add some instruction here on how you want your RP to go.
|
203 |
+
```
|
204 |
+
|
205 |
+
|
206 |
+
## Bias, Risks, and Limitations
|
207 |
+
|
208 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
209 |
+
|
210 |
+
All bias of this model come from LlaMA2 with an exception of NSFW bias.....
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
## Training Details
|
216 |
+
|
217 |
+
### Training Data
|
218 |
+
|
219 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
220 |
+
|
221 |
+
3000 examples from LIMAERP, LIMA and I sample 1000 good instruction from Airboro
|
222 |
+
|
223 |
+
### Training Procedure
|
224 |
+
|
225 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
226 |
+
|
227 |
+
Model is trained with 1 L4 from GCP costing a whooping 2.5USD
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
#### Training Hyperparameters
|
234 |
+
|
235 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
236 |
+
|
237 |
+
3 epochs with 0.0002 lr, full 4096 ctx token, QLoRA
|
238 |
+
|
239 |
+
#### Speeds, Sizes, Times [optional]
|
240 |
+
|
241 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
242 |
+
|
243 |
+
It takes 18 hours to train this model with xformers enable
|
244 |
+
|
245 |
+
[More Information Needed]
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
[More Information Needed]
|
254 |
+
|
255 |
+
## Environmental Impact
|
256 |
+
|
257 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
258 |
+
|
259 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
260 |
+
|
261 |
+
- **Hardware Type:** L4 with 12CPUs 48gb ram
|
262 |
+
- **Hours used:** 5
|
263 |
+
- **Cloud Provider:** GCP
|
264 |
+
- **Compute Region:** US
|
265 |
+
- **Carbon Emitted:** 0.5KG
|
266 |
+
|
267 |
+
|