TheBloke commited on
Commit
b59a5c4
·
1 Parent(s): da6d6d1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +472 -0
README.md ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: stabilityai/japanese-stablelm-instruct-gamma-7b
3
+ inference: false
4
+ language:
5
+ - ja
6
+ license: apache-2.0
7
+ model_creator: Stability AI
8
+ model_name: Japanese StableLM Instruct Gamma 7B
9
+ model_type: mistral
10
+ pipeline_tag: text-generation
11
+ prompt_template: "\u4EE5\u4E0B\u306F\u3001\u30BF\u30B9\u30AF\u3092\u8AAC\u660E\u3059\
12
+ \u308B\u6307\u793A\u3068\u3001\u6587\u8108\u306E\u3042\u308B\u5165\u529B\u306E\u7D44\
13
+ \u307F\u5408\u308F\u305B\u3067\u3059\u3002\u8981\u6C42\u3092\u9069\u5207\u306B\u6E80\
14
+ \u305F\u3059\u5FDC\u7B54\u3092\u66F8\u304D\u306A\u3055\u3044\u3002\n\n### \u6307\
15
+ \u793A: \n{prompt}\n\n### \u5165\u529B: \n{input}\n\n### \u5FDC\u7B54: \n"
16
+ quantized_by: TheBloke
17
+ tags:
18
+ - japanese-stablelm
19
+ - causal-lm
20
+ ---
21
+ <!-- markdownlint-disable MD041 -->
22
+
23
+ <!-- header start -->
24
+ <!-- 200823 -->
25
+ <div style="width: auto; margin-left: auto; margin-right: auto">
26
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
27
+ </div>
28
+ <div style="display: flex; justify-content: space-between; width: 100%;">
29
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
31
+ </div>
32
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
34
+ </div>
35
+ </div>
36
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
37
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
+ <!-- header end -->
39
+
40
+ # Japanese StableLM Instruct Gamma 7B - AWQ
41
+ - Model creator: [Stability AI](https://huggingface.co/stabilityai)
42
+ - Original model: [Japanese StableLM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b)
43
+
44
+ <!-- description start -->
45
+ ## Description
46
+
47
+ This repo contains AWQ model files for [Stability AI's Japanese StableLM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b).
48
+
49
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
+
51
+
52
+ ### About AWQ
53
+
54
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
55
+
56
+ It is supported by:
57
+
58
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
59
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
60
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
61
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-gamma-7B-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/japanese-stablelm-instruct-gamma-7B-GGUF)
70
+ * [Stability AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b)
71
+ <!-- repositories-available end -->
72
+
73
+ <!-- prompt-template start -->
74
+ ## Prompt template: Japanese-StableLM-Instruct
75
+
76
+ ```
77
+ 以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
78
+
79
+ ### 指示:
80
+ {prompt}
81
+
82
+ ### 入力:
83
+ {input}
84
+
85
+ ### 応答:
86
+
87
+ ```
88
+
89
+ <!-- prompt-template end -->
90
+
91
+
92
+ <!-- README_AWQ.md-provided-files start -->
93
+ ## Provided files, and AWQ parameters
94
+
95
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
96
+
97
+ Models are released as sharded safetensors files.
98
+
99
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
100
+ | ------ | ---- | -- | ----------- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ/tree/main) | 4 | 128 | japanese | 4096 | 4.15 GB
102
+
103
+ <!-- README_AWQ.md-provided-files end -->
104
+
105
+ <!-- README_AWQ.md-text-generation-webui start -->
106
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
107
+
108
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
+
110
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
111
+
112
+ 1. Click the **Model tab**.
113
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ`.
114
+ 3. Click **Download**.
115
+ 4. The model will start downloading. Once it's finished it will say "Done".
116
+ 5. In the top left, click the refresh icon next to **Model**.
117
+ 6. In the **Model** dropdown, choose the model you just downloaded: `japanese-stablelm-instruct-gamma-7B-AWQ`
118
+ 7. Select **Loader: AutoAWQ**.
119
+ 8. Click Load, and the model will load and is now ready for use.
120
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
122
+ <!-- README_AWQ.md-text-generation-webui end -->
123
+
124
+ <!-- README_AWQ.md-use-from-vllm start -->
125
+ ## Multi-user inference server: vLLM
126
+
127
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
128
+
129
+ - Please ensure you are using vLLM version 0.2 or later.
130
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
131
+
132
+ For example:
133
+
134
+ ```shell
135
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ --quantization awq
136
+ ```
137
+
138
+ - When using vLLM from Python code, again set `quantization=awq`.
139
+
140
+ For example:
141
+
142
+ ```python
143
+ from vllm import LLM, SamplingParams
144
+
145
+ prompts = [
146
+ "Tell me about AI",
147
+ "Write a story about llamas",
148
+ "What is 291 - 150?",
149
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
150
+ ]
151
+ prompt_template=f'''以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
152
+
153
+ ### 指示:
154
+ {prompt}
155
+
156
+ ### 入力:
157
+ {input}
158
+
159
+ ### 応答:
160
+ '''
161
+
162
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
163
+
164
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
165
+
166
+ llm = LLM(model="TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ", quantization="awq", dtype="auto")
167
+
168
+ outputs = llm.generate(prompts, sampling_params)
169
+
170
+ # Print the outputs.
171
+ for output in outputs:
172
+ prompt = output.prompt
173
+ generated_text = output.outputs[0].text
174
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
175
+ ```
176
+ <!-- README_AWQ.md-use-from-vllm start -->
177
+
178
+ <!-- README_AWQ.md-use-from-tgi start -->
179
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
180
+
181
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
182
+
183
+ Example Docker parameters:
184
+
185
+ ```shell
186
+ --model-id TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
187
+ ```
188
+
189
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
190
+
191
+ ```shell
192
+ pip3 install huggingface-hub
193
+ ```
194
+
195
+ ```python
196
+ from huggingface_hub import InferenceClient
197
+
198
+ endpoint_url = "https://your-endpoint-url-here"
199
+
200
+ prompt = "Tell me about AI"
201
+ prompt_template=f'''以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
202
+
203
+ ### 指示:
204
+ {prompt}
205
+
206
+ ### 入力:
207
+ {input}
208
+
209
+ ### 応答:
210
+ '''
211
+
212
+ client = InferenceClient(endpoint_url)
213
+ response = client.text_generation(prompt,
214
+ max_new_tokens=128,
215
+ do_sample=True,
216
+ temperature=0.7,
217
+ top_p=0.95,
218
+ top_k=40,
219
+ repetition_penalty=1.1)
220
+
221
+ print(f"Model output: ", response)
222
+ ```
223
+ <!-- README_AWQ.md-use-from-tgi end -->
224
+
225
+ <!-- README_AWQ.md-use-from-python start -->
226
+ ## Inference from Python code using AutoAWQ
227
+
228
+ ### Install the AutoAWQ package
229
+
230
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
231
+
232
+ ```shell
233
+ pip3 install autoawq
234
+ ```
235
+
236
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
237
+
238
+ ```shell
239
+ pip3 uninstall -y autoawq
240
+ git clone https://github.com/casper-hansen/AutoAWQ
241
+ cd AutoAWQ
242
+ pip3 install .
243
+ ```
244
+
245
+ ### AutoAWQ example code
246
+
247
+ ```python
248
+ from awq import AutoAWQForCausalLM
249
+ from transformers import AutoTokenizer
250
+
251
+ model_name_or_path = "TheBloke/japanese-stablelm-instruct-gamma-7B-AWQ"
252
+
253
+ # Load tokenizer
254
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
255
+ # Load model
256
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
257
+ trust_remote_code=False, safetensors=True)
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
261
+
262
+ ### 指示:
263
+ {prompt}
264
+
265
+ ### 入力:
266
+ {input}
267
+
268
+ ### 応答:
269
+ '''
270
+
271
+ print("*** Running model.generate:")
272
+
273
+ token_input = tokenizer(
274
+ prompt_template,
275
+ return_tensors='pt'
276
+ ).input_ids.cuda()
277
+
278
+ # Generate output
279
+ generation_output = model.generate(
280
+ token_input,
281
+ do_sample=True,
282
+ temperature=0.7,
283
+ top_p=0.95,
284
+ top_k=40,
285
+ max_new_tokens=512
286
+ )
287
+
288
+ # Get the tokens from the output, decode them, print them
289
+ token_output = generation_output[0]
290
+ text_output = tokenizer.decode(token_output)
291
+ print("LLM output: ", text_output)
292
+
293
+ """
294
+ # Inference should be possible with transformers pipeline as well in future
295
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
296
+ from transformers import pipeline
297
+
298
+ print("*** Pipeline:")
299
+ pipe = pipeline(
300
+ "text-generation",
301
+ model=model,
302
+ tokenizer=tokenizer,
303
+ max_new_tokens=512,
304
+ do_sample=True,
305
+ temperature=0.7,
306
+ top_p=0.95,
307
+ top_k=40,
308
+ repetition_penalty=1.1
309
+ )
310
+
311
+ print(pipe(prompt_template)[0]['generated_text'])
312
+ """
313
+ ```
314
+ <!-- README_AWQ.md-use-from-python end -->
315
+
316
+ <!-- README_AWQ.md-compatibility start -->
317
+ ## Compatibility
318
+
319
+ The files provided are tested to work with:
320
+
321
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
322
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
323
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
324
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
325
+
326
+ <!-- README_AWQ.md-compatibility end -->
327
+
328
+ <!-- footer start -->
329
+ <!-- 200823 -->
330
+ ## Discord
331
+
332
+ For further support, and discussions on these models and AI in general, join us at:
333
+
334
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
335
+
336
+ ## Thanks, and how to contribute
337
+
338
+ Thanks to the [chirper.ai](https://chirper.ai) team!
339
+
340
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
341
+
342
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
343
+
344
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
345
+
346
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
347
+
348
+ * Patreon: https://patreon.com/TheBlokeAI
349
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
350
+
351
+ **Special thanks to**: Aemon Algiz.
352
+
353
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
354
+
355
+
356
+ Thank you to all my generous patrons and donaters!
357
+
358
+ And thank you again to a16z for their generous grant.
359
+
360
+ <!-- footer end -->
361
+
362
+ # Original model card: Stability AI's Japanese StableLM Instruct Gamma 7B
363
+
364
+
365
+ # Japanese Stable LM Instruct Gamma 7B
366
+
367
+ ## Model Description
368
+
369
+ This is a 7B-parameter decoder-only Japanese language model fine-tuned on instruction-following datasets, built on top of the base model [Japanese Stable LM Base Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b).
370
+
371
+ *If you are in search of a smaller model, please check [Japanese StableLM-3B-4E1T Instruct](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-base/blob/main/README.md).*
372
+
373
+ ## Usage
374
+
375
+ Ensure you are using Transformers 4.34.0 or newer.
376
+
377
+ ```python
378
+ import torch
379
+ from transformers import AutoTokenizer, AutoModelForCausalLM
380
+
381
+ tokenizer = AutoTokenizer.from_pretrained("stabilityai/japanese-stablelm-instruct-gamma-7b")
382
+ model = AutoModelForCausalLM.from_pretrained(
383
+ "stabilityai/japanese-stablelm-instruct-gamma-7b",
384
+ torch_dtype="auto",
385
+ )
386
+ model.eval()
387
+
388
+ if torch.cuda.is_available():
389
+ model = model.to("cuda")
390
+
391
+ def build_prompt(user_query, inputs="", sep="\n\n### "):
392
+ sys_msg = "以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。"
393
+ p = sys_msg
394
+ roles = ["指示", "応答"]
395
+ msgs = [": \n" + user_query, ": \n"]
396
+ if inputs:
397
+ roles.insert(1, "入力")
398
+ msgs.insert(1, ": \n" + inputs)
399
+ for role, msg in zip(roles, msgs):
400
+ p += sep + role + msg
401
+ return p
402
+
403
+ # Infer with prompt without any additional input
404
+ user_inputs = {
405
+ "user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。",
406
+ "inputs": "情けは人のためならず"
407
+ }
408
+ prompt = build_prompt(**user_inputs)
409
+
410
+ input_ids = tokenizer.encode(
411
+ prompt,
412
+ add_special_tokens=False,
413
+ return_tensors="pt"
414
+ )
415
+
416
+ tokens = model.generate(
417
+ input_ids.to(device=model.device),
418
+ max_new_tokens=256,
419
+ temperature=1,
420
+ top_p=0.95,
421
+ do_sample=True,
422
+ )
423
+
424
+ out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
425
+ print(out)
426
+ ```
427
+
428
+ ## Model Details
429
+
430
+ * **Developed by**: [Stability AI](https://stability.ai/)
431
+ * **Model type**: `Japanese Stable LM Instruct Gamma 7B` model is an auto-regressive language model based on the transformer decoder architecture.
432
+ * **Language(s)**: Japanese
433
+ * **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
434
+ * **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP.
435
+
436
+ ### Model Architecture
437
+
438
+ For details, please see Mistral AI's [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
439
+
440
+
441
+ ### Training Datasets
442
+
443
+ - [Japanese translation of the Databricks Dolly-15k dataset](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
444
+ - [Japanese translation of the subset of the Anthropic HH dataset](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k)
445
+ - [Wikinews](https://ja.wikinews.org/wi) [subset](https://huggingface.co/datasets/fujiki/llm-japanese-dataset_wikinews) of the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset)
446
+
447
+
448
+
449
+ ## Use and Limitations
450
+
451
+ ### Intended Use
452
+
453
+ The model is intended to be used by all individuals as a foundational model for application-specific fine-tuning without strict limitations on commercial use.
454
+
455
+ ### Limitations and bias
456
+
457
+ The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model-generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups.
458
+
459
+ ## Credits
460
+
461
+ The fine-tuning was carried out by [Fujiki Nakamura](https://huggingface.co/fujiki).
462
+ Other aspects, including data preparation and evaluation, were handled by the Language Team of Stability AI Japan, notably [Meng Lee](https://huggingface.co/leemeng), [Makoto Shing](https://huggingface.co/mkshing), [Paul McCann](https://huggingface.co/polm-stability), [Naoki Orii](https://huggingface.co/mrorii), and [Takuya Akiba](https://huggingface.co/iwiwi).
463
+
464
+
465
+ ## Acknowledgements
466
+
467
+ This model is based on Mistral-7B-v0.1 released by the Mistral AI team. We are grateful to the Mistral AI team for providing such an excellent base model.
468
+
469
+ We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang.
470
+
471
+ We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
472
+