trainer: training complete at 2024-03-02 11:43:30.031283.
Browse files- README.md +31 -31
- meta_data/README_s42_e16.md +31 -31
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: full_labels
|
20 |
-
split: train[
|
21 |
args: full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: full_labels
|
20 |
+
split: train[80%:100%]
|
21 |
args: full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8485100836380752
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6830
|
36 |
+
- B-claim: {'precision': 0.5970695970695971, 'recall': 0.6014760147601476, 'f1-score': 0.5992647058823529, 'support': 271.0}
|
37 |
+
- B-majorclaim: {'precision': 0.6627218934911243, 'recall': 0.8057553956834532, 'f1-score': 0.7272727272727272, 'support': 139.0}
|
38 |
+
- B-premise: {'precision': 0.7686567164179104, 'recall': 0.8135860979462876, 'f1-score': 0.7904834996162702, 'support': 633.0}
|
39 |
+
- I-claim: {'precision': 0.6353591160220995, 'recall': 0.6035991002249438, 'f1-score': 0.6190720328120995, 'support': 4001.0}
|
40 |
+
- I-majorclaim: {'precision': 0.783796740172579, 'recall': 0.812220566318927, 'f1-score': 0.7977555501341791, 'support': 2013.0}
|
41 |
+
- I-premise: {'precision': 0.8706603131381893, 'recall': 0.9026111503175723, 'f1-score': 0.8863478863478863, 'support': 11336.0}
|
42 |
+
- O: {'precision': 0.9430536761389264, 'recall': 0.9064600043355734, 'f1-score': 0.92439482701448, 'support': 9226.0}
|
43 |
+
- Accuracy: 0.8485
|
44 |
+
- Macro avg: {'precision': 0.751616864635775, 'recall': 0.7779583327981293, 'f1-score': 0.7635130327257136, 'support': 27619.0}
|
45 |
+
- Weighted avg: {'precision': 0.848356460858747, 'recall': 0.8485100836380752, 'f1-score': 0.8480670241145107, 'support': 27619.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.6934 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 271.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 139.0} | {'precision': 0.780952380952381, 'recall': 0.12954186413902052, 'f1-score': 0.22222222222222218, 'support': 633.0} | {'precision': 0.42653061224489797, 'recall': 0.26118470382404396, 'f1-score': 0.3239807781739265, 'support': 4001.0} | {'precision': 0.5735174654752234, 'recall': 0.35072031793343267, 'f1-score': 0.43526510480887787, 'support': 2013.0} | {'precision': 0.7484180515958556, 'recall': 0.9494530698659139, 'f1-score': 0.8370338686471983, 'support': 11336.0} | {'precision': 0.8500846381718155, 'recall': 0.8709083026230219, 'f1-score': 0.8603704893457543, 'support': 9226.0} | 0.7470 | {'precision': 0.48278616406288194, 'recall': 0.3659726083407761, 'f1-score': 0.3826960661711399, 'support': 27619.0} | {'precision': 0.7126373293529855, 'recall': 0.7469857706651218, 'f1-score': 0.7147071394985115, 'support': 27619.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.5074 | {'precision': 0.15789473684210525, 'recall': 0.02214022140221402, 'f1-score': 0.038834951456310676, 'support': 271.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 139.0} | {'precision': 0.5579937304075235, 'recall': 0.8436018957345972, 'f1-score': 0.6716981132075472, 'support': 633.0} | {'precision': 0.5924329501915708, 'recall': 0.3091727068232942, 'f1-score': 0.4063064542617836, 'support': 4001.0} | {'precision': 0.6722197208464655, 'recall': 0.741679085941381, 'f1-score': 0.7052432687765706, 'support': 2013.0} | {'precision': 0.7885760494008675, 'recall': 0.9462773465067043, 'f1-score': 0.8602590320381731, 'support': 11336.0} | {'precision': 0.928374655647383, 'recall': 0.8766529373509646, 'f1-score': 0.9017727728843795, 'support': 9226.0} | 0.7996 | {'precision': 0.5282131204765593, 'recall': 0.5342177419655937, 'f1-score': 0.5120163703749664, 'support': 27619.0} | {'precision': 0.7829387271741762, 'recall': 0.7996306890184294, 'f1-score': 0.7803558416622501, 'support': 27619.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.4456 | {'precision': 0.4748427672955975, 'recall': 0.5571955719557196, 'f1-score': 0.5127334465195247, 'support': 271.0} | {'precision': 0.6712328767123288, 'recall': 0.35251798561151076, 'f1-score': 0.4622641509433962, 'support': 139.0} | {'precision': 0.7294117647058823, 'recall': 0.7835703001579779, 'f1-score': 0.7555217060167556, 'support': 633.0} | {'precision': 0.5786846103755156, 'recall': 0.6663334166458386, 'f1-score': 0.6194237918215614, 'support': 4001.0} | {'precision': 0.7035775127768313, 'recall': 0.8206656731246895, 'f1-score': 0.7576243980738363, 'support': 2013.0} | {'precision': 0.8988648090815273, 'recall': 0.8451834862385321, 'f1-score': 0.8711979995453512, 'support': 11336.0} | {'precision': 0.9345198119543318, 'recall': 0.9049425536527206, 'f1-score': 0.9194933920704845, 'support': 9226.0} | 0.8307 | {'precision': 0.7130191647002879, 'recall': 0.704344141055284, 'f1-score': 0.6997512692844158, 'support': 27619.0} | {'precision': 0.8409693083395489, 'recall': 0.8307324667801151, 'f1-score': 0.8343535169045084, 'support': 27619.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.4313 | {'precision': 0.5757575757575758, 'recall': 0.5608856088560885, 'f1-score': 0.5682242990654206, 'support': 271.0} | {'precision': 0.6643835616438356, 'recall': 0.697841726618705, 'f1-score': 0.6807017543859649, 'support': 139.0} | {'precision': 0.7650695517774343, 'recall': 0.7819905213270142, 'f1-score': 0.7734375, 'support': 633.0} | {'precision': 0.650827067669173, 'recall': 0.540864783804049, 'f1-score': 0.5907725907725908, 'support': 4001.0} | {'precision': 0.7433227704843821, 'recall': 0.8156979632389468, 'f1-score': 0.7778304121269539, 'support': 2013.0} | {'precision': 0.8642255892255892, 'recall': 0.9056986591390261, 'f1-score': 0.8844762232942798, 'support': 11336.0} | {'precision': 0.925120244862265, 'recall': 0.917298937784522, 'f1-score': 0.921192990094699, 'support': 9226.0} | 0.8429 | {'precision': 0.7412437659171793, 'recall': 0.7457540286811932, 'f1-score': 0.7423765385342728, 'support': 27619.0} | {'precision': 0.8387326527993001, 'recall': 0.8428980049965603, 'f1-score': 0.8397478190947073, 'support': 27619.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.4380 | {'precision': 0.5848375451263538, 'recall': 0.5977859778597786, 'f1-score': 0.5912408759124088, 'support': 271.0} | {'precision': 0.654320987654321, 'recall': 0.762589928057554, 'f1-score': 0.7043189368770765, 'support': 139.0} | {'precision': 0.7932148626817448, 'recall': 0.7756714060031595, 'f1-score': 0.7843450479233227, 'support': 633.0} | {'precision': 0.6200329179402775, 'recall': 0.6590852286928268, 'f1-score': 0.6389629270656652, 'support': 4001.0} | {'precision': 0.7448522829006267, 'recall': 0.8266269249875807, 'f1-score': 0.7836119613845066, 'support': 2013.0} | {'precision': 0.8884649511978705, 'recall': 0.8832921665490473, 'f1-score': 0.8858710076970716, 'support': 11336.0} | {'precision': 0.9446842344388914, 'recall': 0.9014740949490571, 'f1-score': 0.922573488630061, 'support': 9226.0} | 0.8469 | {'precision': 0.7472011117057266, 'recall': 0.7723608181570006, 'f1-score': 0.7587034636414446, 'support': 27619.0} | {'precision': 0.851550794162027, 'recall': 0.846880770484087, 'f1-score': 0.8487785699607272, 'support': 27619.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.4586 | {'precision': 0.5868055555555556, 'recall': 0.6236162361623616, 'f1-score': 0.6046511627906976, 'support': 271.0} | {'precision': 0.6733333333333333, 'recall': 0.7266187050359713, 'f1-score': 0.698961937716263, 'support': 139.0} | {'precision': 0.7458893871449925, 'recall': 0.7883096366508688, 'f1-score': 0.7665130568356375, 'support': 633.0} | {'precision': 0.6227261989133003, 'recall': 0.6588352911772057, 'f1-score': 0.640272042749575, 'support': 4001.0} | {'precision': 0.8159871244635193, 'recall': 0.7555886736214605, 'f1-score': 0.7846272891410886, 'support': 2013.0} | {'precision': 0.8951378809869376, 'recall': 0.870501058574453, 'f1-score': 0.8826475849731664, 'support': 11336.0} | {'precision': 0.9149185390267277, 'recall': 0.9312811619336657, 'f1-score': 0.923027340602675, 'support': 9226.0} | 0.8467 | {'precision': 0.750685431346338, 'recall': 0.7649643947365695, 'f1-score': 0.7572429164013005, 'support': 27619.0} | {'precision': 0.8489516884853674, 'recall': 0.846735942648177, 'f1-score': 0.8475667251954796, 'support': 27619.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.5199 | {'precision': 0.6106194690265486, 'recall': 0.5092250922509225, 'f1-score': 0.5553319919517101, 'support': 271.0} | {'precision': 0.6687898089171974, 'recall': 0.7553956834532374, 'f1-score': 0.7094594594594595, 'support': 139.0} | {'precision': 0.7169811320754716, 'recall': 0.8404423380726699, 'f1-score': 0.7738181818181818, 'support': 633.0} | {'precision': 0.6686178861788618, 'recall': 0.5138715321169708, 'f1-score': 0.58111927642736, 'support': 4001.0} | {'precision': 0.825, 'recall': 0.7704918032786885, 'f1-score': 0.7968147957873105, 'support': 2013.0} | {'precision': 0.8428010576075635, 'recall': 0.9279287226534932, 'f1-score': 0.8833186379476844, 'support': 11336.0} | {'precision': 0.9325458158533892, 'recall': 0.9155647084326902, 'f1-score': 0.9239772478669874, 'support': 9226.0} | 0.8454 | {'precision': 0.752193595665576, 'recall': 0.747559982894096, 'f1-score': 0.7462627987512419, 'support': 27619.0} | {'precision': 0.8402119687481008, 'recall': 0.8453600782070314, 'f1-score': 0.8402149723478831, 'support': 27619.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.5409 | {'precision': 0.5830258302583026, 'recall': 0.5830258302583026, 'f1-score': 0.5830258302583026, 'support': 271.0} | {'precision': 0.6145251396648045, 'recall': 0.7913669064748201, 'f1-score': 0.6918238993710691, 'support': 139.0} | {'precision': 0.7553956834532374, 'recall': 0.8293838862559242, 'f1-score': 0.7906626506024096, 'support': 633.0} | {'precision': 0.6144920061887571, 'recall': 0.5956010997250687, 'f1-score': 0.604899098870415, 'support': 4001.0} | {'precision': 0.7724268177525968, 'recall': 0.8127173373075013, 'f1-score': 0.7920600338900993, 'support': 2013.0} | {'precision': 0.8602069139540752, 'recall': 0.9021700776287932, 'f1-score': 0.8806889128094725, 'support': 11336.0} | {'precision': 0.9516823844452207, 'recall': 0.8859744201170605, 'f1-score': 0.9176536626438395, 'support': 9226.0} | 0.8405 | {'precision': 0.7359649679595704, 'recall': 0.7714627939667815, 'f1-score': 0.751544869777944, 'support': 27619.0} | {'precision': 0.842412448619121, 'recall': 0.8404721387450668, 'f1-score': 0.8406905872698305, 'support': 27619.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.5502 | {'precision': 0.5793103448275863, 'recall': 0.6199261992619927, 'f1-score': 0.5989304812834225, 'support': 271.0} | {'precision': 0.6503067484662577, 'recall': 0.762589928057554, 'f1-score': 0.7019867549668876, 'support': 139.0} | {'precision': 0.7593423019431988, 'recall': 0.8025276461295419, 'f1-score': 0.7803379416282642, 'support': 633.0} | {'precision': 0.6140224934194783, 'recall': 0.6413396650837291, 'f1-score': 0.6273838630806847, 'support': 4001.0} | {'precision': 0.7911111111111111, 'recall': 0.7958271236959762, 'f1-score': 0.7934621099554235, 'support': 2013.0} | {'precision': 0.8799437510986113, 'recall': 0.8832039520112914, 'f1-score': 0.8815708373690234, 'support': 11336.0} | {'precision': 0.9401009534492428, 'recall': 0.9084110123563841, 'f1-score': 0.9239843448541977, 'support': 9226.0} | 0.8452 | {'precision': 0.7448768149022124, 'recall': 0.7734036466566385, 'f1-score': 0.7582366190197004, 'support': 27619.0} | {'precision': 0.8481724117610957, 'recall': 0.8451790434121438, 'f1-score': 0.8464972981637662, 'support': 27619.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.6131 | {'precision': 0.5976095617529881, 'recall': 0.5535055350553506, 'f1-score': 0.5747126436781611, 'support': 271.0} | {'precision': 0.6494252873563219, 'recall': 0.8129496402877698, 'f1-score': 0.7220447284345047, 'support': 139.0} | {'precision': 0.7667682926829268, 'recall': 0.7946287519747235, 'f1-score': 0.7804499612102405, 'support': 633.0} | {'precision': 0.6487764182424917, 'recall': 0.583104223944014, 'f1-score': 0.6141898117678031, 'support': 4001.0} | {'precision': 0.7791783380018674, 'recall': 0.829110779930452, 'f1-score': 0.8033694344163658, 'support': 2013.0} | {'precision': 0.8636249476768523, 'recall': 0.9100211714890614, 'f1-score': 0.8862162278252652, 'support': 11336.0} | {'precision': 0.9387916431394693, 'recall': 0.901040537611099, 'f1-score': 0.919528787124606, 'support': 9226.0} | 0.8471 | {'precision': 0.7491677841218453, 'recall': 0.7691943771846387, 'f1-score': 0.7572159420652781, 'support': 27619.0} | {'precision': 0.8455473111155869, 'recall': 0.8471342191969297, 'f1-score': 0.845592238174344, 'support': 27619.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.6233 | {'precision': 0.5868055555555556, 'recall': 0.6236162361623616, 'f1-score': 0.6046511627906976, 'support': 271.0} | {'precision': 0.6549707602339181, 'recall': 0.8057553956834532, 'f1-score': 0.7225806451612903, 'support': 139.0} | {'precision': 0.7620481927710844, 'recall': 0.7993680884676145, 'f1-score': 0.7802621434078643, 'support': 633.0} | {'precision': 0.6177835051546392, 'recall': 0.599100224943764, 'f1-score': 0.6082984392843548, 'support': 4001.0} | {'precision': 0.7816593886462883, 'recall': 0.8002980625931445, 'f1-score': 0.7908689248895435, 'support': 2013.0} | {'precision': 0.8624830852503383, 'recall': 0.8996118560338744, 'f1-score': 0.8806563039723663, 'support': 11336.0} | {'precision': 0.9492612530065284, 'recall': 0.8983308042488619, 'f1-score': 0.9230940580275101, 'support': 9226.0} | 0.8429 | {'precision': 0.7450016772311931, 'recall': 0.7751543811618677, 'f1-score': 0.758630239647661, 'support': 27619.0} | {'precision': 0.8440807587297484, 'recall': 0.8429342119555379, 'f1-score': 0.8430287828720368, 'support': 27619.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.6488 | {'precision': 0.5888888888888889, 'recall': 0.5867158671586716, 'f1-score': 0.5878003696857672, 'support': 271.0} | {'precision': 0.6728395061728395, 'recall': 0.7841726618705036, 'f1-score': 0.7242524916943521, 'support': 139.0} | {'precision': 0.7496382054992764, 'recall': 0.8183254344391785, 'f1-score': 0.782477341389728, 'support': 633.0} | {'precision': 0.6320602474448628, 'recall': 0.5873531617095726, 'f1-score': 0.6088871615494235, 'support': 4001.0} | {'precision': 0.7818969667790082, 'recall': 0.8067560854446101, 'f1-score': 0.7941320293398534, 'support': 2013.0} | {'precision': 0.8592370481425954, 'recall': 0.9100211714890614, 'f1-score': 0.8839002656156285, 'support': 11336.0} | {'precision': 0.948821161587119, 'recall': 0.8942120095382614, 'f1-score': 0.9207075498019084, 'support': 9226.0} | 0.8446 | {'precision': 0.7476260035020843, 'recall': 0.7696509130928371, 'f1-score': 0.7574510298680944, 'support': 27619.0} | {'precision': 0.8445128868904818, 'recall': 0.844563525109526, 'f1-score': 0.8437799966523624, 'support': 27619.0} |
|
88 |
+
| 0.3135 | 13.0 | 533 | 0.6540 | {'precision': 0.5909090909090909, 'recall': 0.5756457564575646, 'f1-score': 0.5831775700934578, 'support': 271.0} | {'precision': 0.675, 'recall': 0.7769784172661871, 'f1-score': 0.7224080267558529, 'support': 139.0} | {'precision': 0.7463976945244957, 'recall': 0.8183254344391785, 'f1-score': 0.7807083647324792, 'support': 633.0} | {'precision': 0.6368118323746919, 'recall': 0.5811047238190452, 'f1-score': 0.6076842655514898, 'support': 4001.0} | {'precision': 0.7928642220019821, 'recall': 0.7948335817188277, 'f1-score': 0.7938476804763087, 'support': 2013.0} | {'precision': 0.8642820903094875, 'recall': 0.9016407904022583, 'f1-score': 0.8825662723426302, 'support': 11336.0} | {'precision': 0.9345991561181435, 'recall': 0.9123130283980057, 'f1-score': 0.9233216322948662, 'support': 9226.0} | 0.8453 | {'precision': 0.7486948694625559, 'recall': 0.7658345332144382, 'f1-score': 0.756244830321012, 'support': 27619.0} | {'precision': 0.8432768932468896, 'recall': 0.8452514573300989, 'f1-score': 0.8438155256232617, 'support': 27619.0} |
|
89 |
+
| 0.3135 | 14.0 | 574 | 0.6714 | {'precision': 0.6029411764705882, 'recall': 0.6051660516605166, 'f1-score': 0.6040515653775324, 'support': 271.0} | {'precision': 0.6608187134502924, 'recall': 0.8129496402877698, 'f1-score': 0.7290322580645162, 'support': 139.0} | {'precision': 0.7786259541984732, 'recall': 0.8056872037914692, 'f1-score': 0.7919254658385093, 'support': 633.0} | {'precision': 0.6342872144919927, 'recall': 0.6038490377405649, 'f1-score': 0.6186939820742638, 'support': 4001.0} | {'precision': 0.78125, 'recall': 0.819672131147541, 'f1-score': 0.8, 'support': 2013.0} | {'precision': 0.8721188321666382, 'recall': 0.9011997177134792, 'f1-score': 0.8864208242950109, 'support': 11336.0} | {'precision': 0.9428314202115687, 'recall': 0.9080858443529157, 'f1-score': 0.9251325088339223, 'support': 9226.0} | 0.8489 | {'precision': 0.7532676158556504, 'recall': 0.7795156609563223, 'f1-score': 0.7650366577833936, 'support': 27619.0} | {'precision': 0.8488164759222332, 'recall': 0.8489445671458055, 'f1-score': 0.8485410728467069, 'support': 27619.0} |
|
90 |
+
| 0.3135 | 15.0 | 615 | 0.6882 | {'precision': 0.5955882352941176, 'recall': 0.5977859778597786, 'f1-score': 0.5966850828729282, 'support': 271.0} | {'precision': 0.6511627906976745, 'recall': 0.8057553956834532, 'f1-score': 0.7202572347266881, 'support': 139.0} | {'precision': 0.7690014903129657, 'recall': 0.8151658767772512, 'f1-score': 0.7914110429447854, 'support': 633.0} | {'precision': 0.6307486631016043, 'recall': 0.5896025993501625, 'f1-score': 0.6094819790724713, 'support': 4001.0} | {'precision': 0.7757889778615167, 'recall': 0.8181818181818182, 'f1-score': 0.7964216634429401, 'support': 2013.0} | {'precision': 0.8646648162166709, 'recall': 0.9068454481298518, 'f1-score': 0.8852529601722283, 'support': 11336.0} | {'precision': 0.948583180987203, 'recall': 0.8998482549317147, 'f1-score': 0.9235732562020248, 'support': 9226.0} | 0.8464 | {'precision': 0.7479340220673932, 'recall': 0.7761693387020043, 'f1-score': 0.7604404599191524, 'support': 27619.0} | {'precision': 0.84642642314945, 'recall': 0.8464462869763568, 'f1-score': 0.8458173441573364, 'support': 27619.0} |
|
91 |
+
| 0.3135 | 16.0 | 656 | 0.6830 | {'precision': 0.5970695970695971, 'recall': 0.6014760147601476, 'f1-score': 0.5992647058823529, 'support': 271.0} | {'precision': 0.6627218934911243, 'recall': 0.8057553956834532, 'f1-score': 0.7272727272727272, 'support': 139.0} | {'precision': 0.7686567164179104, 'recall': 0.8135860979462876, 'f1-score': 0.7904834996162702, 'support': 633.0} | {'precision': 0.6353591160220995, 'recall': 0.6035991002249438, 'f1-score': 0.6190720328120995, 'support': 4001.0} | {'precision': 0.783796740172579, 'recall': 0.812220566318927, 'f1-score': 0.7977555501341791, 'support': 2013.0} | {'precision': 0.8706603131381893, 'recall': 0.9026111503175723, 'f1-score': 0.8863478863478863, 'support': 11336.0} | {'precision': 0.9430536761389264, 'recall': 0.9064600043355734, 'f1-score': 0.92439482701448, 'support': 9226.0} | 0.8485 | {'precision': 0.751616864635775, 'recall': 0.7779583327981293, 'f1-score': 0.7635130327257136, 'support': 27619.0} | {'precision': 0.848356460858747, 'recall': 0.8485100836380752, 'f1-score': 0.8480670241145107, 'support': 27619.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
meta_data/README_s42_e16.md
CHANGED
@@ -17,12 +17,12 @@ model-index:
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: full_labels
|
20 |
-
split: train[
|
21 |
args: full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,17 +32,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- B-claim: {'precision': 0.
|
37 |
-
- B-majorclaim: {'precision': 0.
|
38 |
-
- B-premise: {'precision': 0.
|
39 |
-
- I-claim: {'precision': 0.
|
40 |
-
- I-majorclaim: {'precision': 0.
|
41 |
-
- I-premise: {'precision': 0.
|
42 |
-
- O: {'precision': 0.
|
43 |
-
- Accuracy: 0.
|
44 |
-
- Macro avg: {'precision': 0.
|
45 |
-
- Weighted avg: {'precision': 0.
|
46 |
|
47 |
## Model description
|
48 |
|
@@ -71,24 +71,24 @@ The following hyperparameters were used during training:
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
75 |
-
|
76 |
-
| No log | 1.0 | 41 | 0.
|
77 |
-
| No log | 2.0 | 82 | 0.
|
78 |
-
| No log | 3.0 | 123 | 0.
|
79 |
-
| No log | 4.0 | 164 | 0.
|
80 |
-
| No log | 5.0 | 205 | 0.
|
81 |
-
| No log | 6.0 | 246 | 0.
|
82 |
-
| No log | 7.0 | 287 | 0.
|
83 |
-
| No log | 8.0 | 328 | 0.
|
84 |
-
| No log | 9.0 | 369 | 0.
|
85 |
-
| No log | 10.0 | 410 | 0.
|
86 |
-
| No log | 11.0 | 451 | 0.
|
87 |
-
| No log | 12.0 | 492 | 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
17 |
name: essays_su_g
|
18 |
type: essays_su_g
|
19 |
config: full_labels
|
20 |
+
split: train[80%:100%]
|
21 |
args: full_labels
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8485100836380752
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6830
|
36 |
+
- B-claim: {'precision': 0.5970695970695971, 'recall': 0.6014760147601476, 'f1-score': 0.5992647058823529, 'support': 271.0}
|
37 |
+
- B-majorclaim: {'precision': 0.6627218934911243, 'recall': 0.8057553956834532, 'f1-score': 0.7272727272727272, 'support': 139.0}
|
38 |
+
- B-premise: {'precision': 0.7686567164179104, 'recall': 0.8135860979462876, 'f1-score': 0.7904834996162702, 'support': 633.0}
|
39 |
+
- I-claim: {'precision': 0.6353591160220995, 'recall': 0.6035991002249438, 'f1-score': 0.6190720328120995, 'support': 4001.0}
|
40 |
+
- I-majorclaim: {'precision': 0.783796740172579, 'recall': 0.812220566318927, 'f1-score': 0.7977555501341791, 'support': 2013.0}
|
41 |
+
- I-premise: {'precision': 0.8706603131381893, 'recall': 0.9026111503175723, 'f1-score': 0.8863478863478863, 'support': 11336.0}
|
42 |
+
- O: {'precision': 0.9430536761389264, 'recall': 0.9064600043355734, 'f1-score': 0.92439482701448, 'support': 9226.0}
|
43 |
+
- Accuracy: 0.8485
|
44 |
+
- Macro avg: {'precision': 0.751616864635775, 'recall': 0.7779583327981293, 'f1-score': 0.7635130327257136, 'support': 27619.0}
|
45 |
+
- Weighted avg: {'precision': 0.848356460858747, 'recall': 0.8485100836380752, 'f1-score': 0.8480670241145107, 'support': 27619.0}
|
46 |
|
47 |
## Model description
|
48 |
|
|
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
76 |
+
| No log | 1.0 | 41 | 0.6934 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 271.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 139.0} | {'precision': 0.780952380952381, 'recall': 0.12954186413902052, 'f1-score': 0.22222222222222218, 'support': 633.0} | {'precision': 0.42653061224489797, 'recall': 0.26118470382404396, 'f1-score': 0.3239807781739265, 'support': 4001.0} | {'precision': 0.5735174654752234, 'recall': 0.35072031793343267, 'f1-score': 0.43526510480887787, 'support': 2013.0} | {'precision': 0.7484180515958556, 'recall': 0.9494530698659139, 'f1-score': 0.8370338686471983, 'support': 11336.0} | {'precision': 0.8500846381718155, 'recall': 0.8709083026230219, 'f1-score': 0.8603704893457543, 'support': 9226.0} | 0.7470 | {'precision': 0.48278616406288194, 'recall': 0.3659726083407761, 'f1-score': 0.3826960661711399, 'support': 27619.0} | {'precision': 0.7126373293529855, 'recall': 0.7469857706651218, 'f1-score': 0.7147071394985115, 'support': 27619.0} |
|
77 |
+
| No log | 2.0 | 82 | 0.5074 | {'precision': 0.15789473684210525, 'recall': 0.02214022140221402, 'f1-score': 0.038834951456310676, 'support': 271.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 139.0} | {'precision': 0.5579937304075235, 'recall': 0.8436018957345972, 'f1-score': 0.6716981132075472, 'support': 633.0} | {'precision': 0.5924329501915708, 'recall': 0.3091727068232942, 'f1-score': 0.4063064542617836, 'support': 4001.0} | {'precision': 0.6722197208464655, 'recall': 0.741679085941381, 'f1-score': 0.7052432687765706, 'support': 2013.0} | {'precision': 0.7885760494008675, 'recall': 0.9462773465067043, 'f1-score': 0.8602590320381731, 'support': 11336.0} | {'precision': 0.928374655647383, 'recall': 0.8766529373509646, 'f1-score': 0.9017727728843795, 'support': 9226.0} | 0.7996 | {'precision': 0.5282131204765593, 'recall': 0.5342177419655937, 'f1-score': 0.5120163703749664, 'support': 27619.0} | {'precision': 0.7829387271741762, 'recall': 0.7996306890184294, 'f1-score': 0.7803558416622501, 'support': 27619.0} |
|
78 |
+
| No log | 3.0 | 123 | 0.4456 | {'precision': 0.4748427672955975, 'recall': 0.5571955719557196, 'f1-score': 0.5127334465195247, 'support': 271.0} | {'precision': 0.6712328767123288, 'recall': 0.35251798561151076, 'f1-score': 0.4622641509433962, 'support': 139.0} | {'precision': 0.7294117647058823, 'recall': 0.7835703001579779, 'f1-score': 0.7555217060167556, 'support': 633.0} | {'precision': 0.5786846103755156, 'recall': 0.6663334166458386, 'f1-score': 0.6194237918215614, 'support': 4001.0} | {'precision': 0.7035775127768313, 'recall': 0.8206656731246895, 'f1-score': 0.7576243980738363, 'support': 2013.0} | {'precision': 0.8988648090815273, 'recall': 0.8451834862385321, 'f1-score': 0.8711979995453512, 'support': 11336.0} | {'precision': 0.9345198119543318, 'recall': 0.9049425536527206, 'f1-score': 0.9194933920704845, 'support': 9226.0} | 0.8307 | {'precision': 0.7130191647002879, 'recall': 0.704344141055284, 'f1-score': 0.6997512692844158, 'support': 27619.0} | {'precision': 0.8409693083395489, 'recall': 0.8307324667801151, 'f1-score': 0.8343535169045084, 'support': 27619.0} |
|
79 |
+
| No log | 4.0 | 164 | 0.4313 | {'precision': 0.5757575757575758, 'recall': 0.5608856088560885, 'f1-score': 0.5682242990654206, 'support': 271.0} | {'precision': 0.6643835616438356, 'recall': 0.697841726618705, 'f1-score': 0.6807017543859649, 'support': 139.0} | {'precision': 0.7650695517774343, 'recall': 0.7819905213270142, 'f1-score': 0.7734375, 'support': 633.0} | {'precision': 0.650827067669173, 'recall': 0.540864783804049, 'f1-score': 0.5907725907725908, 'support': 4001.0} | {'precision': 0.7433227704843821, 'recall': 0.8156979632389468, 'f1-score': 0.7778304121269539, 'support': 2013.0} | {'precision': 0.8642255892255892, 'recall': 0.9056986591390261, 'f1-score': 0.8844762232942798, 'support': 11336.0} | {'precision': 0.925120244862265, 'recall': 0.917298937784522, 'f1-score': 0.921192990094699, 'support': 9226.0} | 0.8429 | {'precision': 0.7412437659171793, 'recall': 0.7457540286811932, 'f1-score': 0.7423765385342728, 'support': 27619.0} | {'precision': 0.8387326527993001, 'recall': 0.8428980049965603, 'f1-score': 0.8397478190947073, 'support': 27619.0} |
|
80 |
+
| No log | 5.0 | 205 | 0.4380 | {'precision': 0.5848375451263538, 'recall': 0.5977859778597786, 'f1-score': 0.5912408759124088, 'support': 271.0} | {'precision': 0.654320987654321, 'recall': 0.762589928057554, 'f1-score': 0.7043189368770765, 'support': 139.0} | {'precision': 0.7932148626817448, 'recall': 0.7756714060031595, 'f1-score': 0.7843450479233227, 'support': 633.0} | {'precision': 0.6200329179402775, 'recall': 0.6590852286928268, 'f1-score': 0.6389629270656652, 'support': 4001.0} | {'precision': 0.7448522829006267, 'recall': 0.8266269249875807, 'f1-score': 0.7836119613845066, 'support': 2013.0} | {'precision': 0.8884649511978705, 'recall': 0.8832921665490473, 'f1-score': 0.8858710076970716, 'support': 11336.0} | {'precision': 0.9446842344388914, 'recall': 0.9014740949490571, 'f1-score': 0.922573488630061, 'support': 9226.0} | 0.8469 | {'precision': 0.7472011117057266, 'recall': 0.7723608181570006, 'f1-score': 0.7587034636414446, 'support': 27619.0} | {'precision': 0.851550794162027, 'recall': 0.846880770484087, 'f1-score': 0.8487785699607272, 'support': 27619.0} |
|
81 |
+
| No log | 6.0 | 246 | 0.4586 | {'precision': 0.5868055555555556, 'recall': 0.6236162361623616, 'f1-score': 0.6046511627906976, 'support': 271.0} | {'precision': 0.6733333333333333, 'recall': 0.7266187050359713, 'f1-score': 0.698961937716263, 'support': 139.0} | {'precision': 0.7458893871449925, 'recall': 0.7883096366508688, 'f1-score': 0.7665130568356375, 'support': 633.0} | {'precision': 0.6227261989133003, 'recall': 0.6588352911772057, 'f1-score': 0.640272042749575, 'support': 4001.0} | {'precision': 0.8159871244635193, 'recall': 0.7555886736214605, 'f1-score': 0.7846272891410886, 'support': 2013.0} | {'precision': 0.8951378809869376, 'recall': 0.870501058574453, 'f1-score': 0.8826475849731664, 'support': 11336.0} | {'precision': 0.9149185390267277, 'recall': 0.9312811619336657, 'f1-score': 0.923027340602675, 'support': 9226.0} | 0.8467 | {'precision': 0.750685431346338, 'recall': 0.7649643947365695, 'f1-score': 0.7572429164013005, 'support': 27619.0} | {'precision': 0.8489516884853674, 'recall': 0.846735942648177, 'f1-score': 0.8475667251954796, 'support': 27619.0} |
|
82 |
+
| No log | 7.0 | 287 | 0.5199 | {'precision': 0.6106194690265486, 'recall': 0.5092250922509225, 'f1-score': 0.5553319919517101, 'support': 271.0} | {'precision': 0.6687898089171974, 'recall': 0.7553956834532374, 'f1-score': 0.7094594594594595, 'support': 139.0} | {'precision': 0.7169811320754716, 'recall': 0.8404423380726699, 'f1-score': 0.7738181818181818, 'support': 633.0} | {'precision': 0.6686178861788618, 'recall': 0.5138715321169708, 'f1-score': 0.58111927642736, 'support': 4001.0} | {'precision': 0.825, 'recall': 0.7704918032786885, 'f1-score': 0.7968147957873105, 'support': 2013.0} | {'precision': 0.8428010576075635, 'recall': 0.9279287226534932, 'f1-score': 0.8833186379476844, 'support': 11336.0} | {'precision': 0.9325458158533892, 'recall': 0.9155647084326902, 'f1-score': 0.9239772478669874, 'support': 9226.0} | 0.8454 | {'precision': 0.752193595665576, 'recall': 0.747559982894096, 'f1-score': 0.7462627987512419, 'support': 27619.0} | {'precision': 0.8402119687481008, 'recall': 0.8453600782070314, 'f1-score': 0.8402149723478831, 'support': 27619.0} |
|
83 |
+
| No log | 8.0 | 328 | 0.5409 | {'precision': 0.5830258302583026, 'recall': 0.5830258302583026, 'f1-score': 0.5830258302583026, 'support': 271.0} | {'precision': 0.6145251396648045, 'recall': 0.7913669064748201, 'f1-score': 0.6918238993710691, 'support': 139.0} | {'precision': 0.7553956834532374, 'recall': 0.8293838862559242, 'f1-score': 0.7906626506024096, 'support': 633.0} | {'precision': 0.6144920061887571, 'recall': 0.5956010997250687, 'f1-score': 0.604899098870415, 'support': 4001.0} | {'precision': 0.7724268177525968, 'recall': 0.8127173373075013, 'f1-score': 0.7920600338900993, 'support': 2013.0} | {'precision': 0.8602069139540752, 'recall': 0.9021700776287932, 'f1-score': 0.8806889128094725, 'support': 11336.0} | {'precision': 0.9516823844452207, 'recall': 0.8859744201170605, 'f1-score': 0.9176536626438395, 'support': 9226.0} | 0.8405 | {'precision': 0.7359649679595704, 'recall': 0.7714627939667815, 'f1-score': 0.751544869777944, 'support': 27619.0} | {'precision': 0.842412448619121, 'recall': 0.8404721387450668, 'f1-score': 0.8406905872698305, 'support': 27619.0} |
|
84 |
+
| No log | 9.0 | 369 | 0.5502 | {'precision': 0.5793103448275863, 'recall': 0.6199261992619927, 'f1-score': 0.5989304812834225, 'support': 271.0} | {'precision': 0.6503067484662577, 'recall': 0.762589928057554, 'f1-score': 0.7019867549668876, 'support': 139.0} | {'precision': 0.7593423019431988, 'recall': 0.8025276461295419, 'f1-score': 0.7803379416282642, 'support': 633.0} | {'precision': 0.6140224934194783, 'recall': 0.6413396650837291, 'f1-score': 0.6273838630806847, 'support': 4001.0} | {'precision': 0.7911111111111111, 'recall': 0.7958271236959762, 'f1-score': 0.7934621099554235, 'support': 2013.0} | {'precision': 0.8799437510986113, 'recall': 0.8832039520112914, 'f1-score': 0.8815708373690234, 'support': 11336.0} | {'precision': 0.9401009534492428, 'recall': 0.9084110123563841, 'f1-score': 0.9239843448541977, 'support': 9226.0} | 0.8452 | {'precision': 0.7448768149022124, 'recall': 0.7734036466566385, 'f1-score': 0.7582366190197004, 'support': 27619.0} | {'precision': 0.8481724117610957, 'recall': 0.8451790434121438, 'f1-score': 0.8464972981637662, 'support': 27619.0} |
|
85 |
+
| No log | 10.0 | 410 | 0.6131 | {'precision': 0.5976095617529881, 'recall': 0.5535055350553506, 'f1-score': 0.5747126436781611, 'support': 271.0} | {'precision': 0.6494252873563219, 'recall': 0.8129496402877698, 'f1-score': 0.7220447284345047, 'support': 139.0} | {'precision': 0.7667682926829268, 'recall': 0.7946287519747235, 'f1-score': 0.7804499612102405, 'support': 633.0} | {'precision': 0.6487764182424917, 'recall': 0.583104223944014, 'f1-score': 0.6141898117678031, 'support': 4001.0} | {'precision': 0.7791783380018674, 'recall': 0.829110779930452, 'f1-score': 0.8033694344163658, 'support': 2013.0} | {'precision': 0.8636249476768523, 'recall': 0.9100211714890614, 'f1-score': 0.8862162278252652, 'support': 11336.0} | {'precision': 0.9387916431394693, 'recall': 0.901040537611099, 'f1-score': 0.919528787124606, 'support': 9226.0} | 0.8471 | {'precision': 0.7491677841218453, 'recall': 0.7691943771846387, 'f1-score': 0.7572159420652781, 'support': 27619.0} | {'precision': 0.8455473111155869, 'recall': 0.8471342191969297, 'f1-score': 0.845592238174344, 'support': 27619.0} |
|
86 |
+
| No log | 11.0 | 451 | 0.6233 | {'precision': 0.5868055555555556, 'recall': 0.6236162361623616, 'f1-score': 0.6046511627906976, 'support': 271.0} | {'precision': 0.6549707602339181, 'recall': 0.8057553956834532, 'f1-score': 0.7225806451612903, 'support': 139.0} | {'precision': 0.7620481927710844, 'recall': 0.7993680884676145, 'f1-score': 0.7802621434078643, 'support': 633.0} | {'precision': 0.6177835051546392, 'recall': 0.599100224943764, 'f1-score': 0.6082984392843548, 'support': 4001.0} | {'precision': 0.7816593886462883, 'recall': 0.8002980625931445, 'f1-score': 0.7908689248895435, 'support': 2013.0} | {'precision': 0.8624830852503383, 'recall': 0.8996118560338744, 'f1-score': 0.8806563039723663, 'support': 11336.0} | {'precision': 0.9492612530065284, 'recall': 0.8983308042488619, 'f1-score': 0.9230940580275101, 'support': 9226.0} | 0.8429 | {'precision': 0.7450016772311931, 'recall': 0.7751543811618677, 'f1-score': 0.758630239647661, 'support': 27619.0} | {'precision': 0.8440807587297484, 'recall': 0.8429342119555379, 'f1-score': 0.8430287828720368, 'support': 27619.0} |
|
87 |
+
| No log | 12.0 | 492 | 0.6488 | {'precision': 0.5888888888888889, 'recall': 0.5867158671586716, 'f1-score': 0.5878003696857672, 'support': 271.0} | {'precision': 0.6728395061728395, 'recall': 0.7841726618705036, 'f1-score': 0.7242524916943521, 'support': 139.0} | {'precision': 0.7496382054992764, 'recall': 0.8183254344391785, 'f1-score': 0.782477341389728, 'support': 633.0} | {'precision': 0.6320602474448628, 'recall': 0.5873531617095726, 'f1-score': 0.6088871615494235, 'support': 4001.0} | {'precision': 0.7818969667790082, 'recall': 0.8067560854446101, 'f1-score': 0.7941320293398534, 'support': 2013.0} | {'precision': 0.8592370481425954, 'recall': 0.9100211714890614, 'f1-score': 0.8839002656156285, 'support': 11336.0} | {'precision': 0.948821161587119, 'recall': 0.8942120095382614, 'f1-score': 0.9207075498019084, 'support': 9226.0} | 0.8446 | {'precision': 0.7476260035020843, 'recall': 0.7696509130928371, 'f1-score': 0.7574510298680944, 'support': 27619.0} | {'precision': 0.8445128868904818, 'recall': 0.844563525109526, 'f1-score': 0.8437799966523624, 'support': 27619.0} |
|
88 |
+
| 0.3135 | 13.0 | 533 | 0.6540 | {'precision': 0.5909090909090909, 'recall': 0.5756457564575646, 'f1-score': 0.5831775700934578, 'support': 271.0} | {'precision': 0.675, 'recall': 0.7769784172661871, 'f1-score': 0.7224080267558529, 'support': 139.0} | {'precision': 0.7463976945244957, 'recall': 0.8183254344391785, 'f1-score': 0.7807083647324792, 'support': 633.0} | {'precision': 0.6368118323746919, 'recall': 0.5811047238190452, 'f1-score': 0.6076842655514898, 'support': 4001.0} | {'precision': 0.7928642220019821, 'recall': 0.7948335817188277, 'f1-score': 0.7938476804763087, 'support': 2013.0} | {'precision': 0.8642820903094875, 'recall': 0.9016407904022583, 'f1-score': 0.8825662723426302, 'support': 11336.0} | {'precision': 0.9345991561181435, 'recall': 0.9123130283980057, 'f1-score': 0.9233216322948662, 'support': 9226.0} | 0.8453 | {'precision': 0.7486948694625559, 'recall': 0.7658345332144382, 'f1-score': 0.756244830321012, 'support': 27619.0} | {'precision': 0.8432768932468896, 'recall': 0.8452514573300989, 'f1-score': 0.8438155256232617, 'support': 27619.0} |
|
89 |
+
| 0.3135 | 14.0 | 574 | 0.6714 | {'precision': 0.6029411764705882, 'recall': 0.6051660516605166, 'f1-score': 0.6040515653775324, 'support': 271.0} | {'precision': 0.6608187134502924, 'recall': 0.8129496402877698, 'f1-score': 0.7290322580645162, 'support': 139.0} | {'precision': 0.7786259541984732, 'recall': 0.8056872037914692, 'f1-score': 0.7919254658385093, 'support': 633.0} | {'precision': 0.6342872144919927, 'recall': 0.6038490377405649, 'f1-score': 0.6186939820742638, 'support': 4001.0} | {'precision': 0.78125, 'recall': 0.819672131147541, 'f1-score': 0.8, 'support': 2013.0} | {'precision': 0.8721188321666382, 'recall': 0.9011997177134792, 'f1-score': 0.8864208242950109, 'support': 11336.0} | {'precision': 0.9428314202115687, 'recall': 0.9080858443529157, 'f1-score': 0.9251325088339223, 'support': 9226.0} | 0.8489 | {'precision': 0.7532676158556504, 'recall': 0.7795156609563223, 'f1-score': 0.7650366577833936, 'support': 27619.0} | {'precision': 0.8488164759222332, 'recall': 0.8489445671458055, 'f1-score': 0.8485410728467069, 'support': 27619.0} |
|
90 |
+
| 0.3135 | 15.0 | 615 | 0.6882 | {'precision': 0.5955882352941176, 'recall': 0.5977859778597786, 'f1-score': 0.5966850828729282, 'support': 271.0} | {'precision': 0.6511627906976745, 'recall': 0.8057553956834532, 'f1-score': 0.7202572347266881, 'support': 139.0} | {'precision': 0.7690014903129657, 'recall': 0.8151658767772512, 'f1-score': 0.7914110429447854, 'support': 633.0} | {'precision': 0.6307486631016043, 'recall': 0.5896025993501625, 'f1-score': 0.6094819790724713, 'support': 4001.0} | {'precision': 0.7757889778615167, 'recall': 0.8181818181818182, 'f1-score': 0.7964216634429401, 'support': 2013.0} | {'precision': 0.8646648162166709, 'recall': 0.9068454481298518, 'f1-score': 0.8852529601722283, 'support': 11336.0} | {'precision': 0.948583180987203, 'recall': 0.8998482549317147, 'f1-score': 0.9235732562020248, 'support': 9226.0} | 0.8464 | {'precision': 0.7479340220673932, 'recall': 0.7761693387020043, 'f1-score': 0.7604404599191524, 'support': 27619.0} | {'precision': 0.84642642314945, 'recall': 0.8464462869763568, 'f1-score': 0.8458173441573364, 'support': 27619.0} |
|
91 |
+
| 0.3135 | 16.0 | 656 | 0.6830 | {'precision': 0.5970695970695971, 'recall': 0.6014760147601476, 'f1-score': 0.5992647058823529, 'support': 271.0} | {'precision': 0.6627218934911243, 'recall': 0.8057553956834532, 'f1-score': 0.7272727272727272, 'support': 139.0} | {'precision': 0.7686567164179104, 'recall': 0.8135860979462876, 'f1-score': 0.7904834996162702, 'support': 633.0} | {'precision': 0.6353591160220995, 'recall': 0.6035991002249438, 'f1-score': 0.6190720328120995, 'support': 4001.0} | {'precision': 0.783796740172579, 'recall': 0.812220566318927, 'f1-score': 0.7977555501341791, 'support': 2013.0} | {'precision': 0.8706603131381893, 'recall': 0.9026111503175723, 'f1-score': 0.8863478863478863, 'support': 11336.0} | {'precision': 0.9430536761389264, 'recall': 0.9064600043355734, 'f1-score': 0.92439482701448, 'support': 9226.0} | 0.8485 | {'precision': 0.751616864635775, 'recall': 0.7779583327981293, 'f1-score': 0.7635130327257136, 'support': 27619.0} | {'precision': 0.848356460858747, 'recall': 0.8485100836380752, 'f1-score': 0.8480670241145107, 'support': 27619.0} |
|
92 |
|
93 |
|
94 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592330980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab8532077404a7781d27eed9b2e486c0874686f20e259a378ccd4b3ca2928c24
|
3 |
size 592330980
|