ThilinaGunathilaka commited on
Commit
2071dcc
·
verified ·
1 Parent(s): 565cd30

Update README.md (#1)

Browse files

- Update README.md (a9202b413084cd223cf1c869d2dcf47330d4fcbb)

Files changed (1) hide show
  1. README.md +85 -117
README.md CHANGED
@@ -1,199 +1,167 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
 
135
- ## Model Examination [optional]
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
168
-
169
- [More Information Needed]
 
170
 
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - sinhala
5
+ - bert
6
+ - masked-language-model
7
+ - sinhala-news
8
+ license: apache-2.0
9
+ language:
10
+ - si
11
+ metrics:
12
+ - perplexity
13
+ base_model:
14
+ - Ransaka/sinhala-bert-medium-v2
15
  ---
16
 
17
+ # Model Card for Sinhala-BERT Fine-Tuned MLM
 
 
 
18
 
19
+ This model is a fine-tuned version of `Ransaka/sinhala-bert-medium-v2` on the Sinhala News Corpus dataset for Masked Language Modeling (MLM).
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ This Sinhala-BERT model was fine-tuned specifically for the Sinhala language to improve its capabilities in Masked Language Modeling. It leverages the architecture of BERT and was further optimized on the Sinhala News Corpus dataset, aiming to achieve better contextual language understanding for Sinhala text.
 
 
26
 
27
+ - **Developed by:** [Thilina Gunathilaka]
28
+ - **Model type:** Transformer-based Language Model (BERT)
29
+ - **Language(s) (NLP):** Sinhala (si)
30
+ - **License:** Apache-2.0
31
+ - **Finetuned from model [optional]:** [Ransaka/sinhala-bert-medium-v2](https://huggingface.co/Ransaka/sinhala-bert-medium-v2)
 
 
32
 
33
  ### Model Sources [optional]
34
 
35
+ - **Repository:** [Your Hugging Face Repository URL]
36
+ - **Dataset:** [TestData-CrossLingualDocumentSimilarityMeasurement](https://github.com/UdeshAthukorala/TestData-CrossLingualDocumentSimilarityMeasurement)
 
 
 
37
 
38
  ## Uses
39
 
 
 
40
  ### Direct Use
41
 
42
+ This model can directly be used for:
43
+ - Masked Language Modeling (filling missing words or predicting masked tokens)
44
+ - Feature extraction for Sinhala text
45
 
46
  ### Downstream Use [optional]
47
 
48
+ This model can be fine-tuned further for various downstream NLP tasks in Sinhala, such as:
49
+ - Text Classification
50
+ - Named Entity Recognition (NER)
51
+ - Sentiment Analysis
52
 
53
  ### Out-of-Scope Use
54
 
55
+ - This model is specifically trained for Sinhala. Performance on other languages is likely poor.
56
+ - Not suitable for tasks unrelated to textual data.
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
+ Like any language model, this model may inherit biases from its training data. It's recommended to assess model predictions for biases before deployment in critical applications.
 
 
61
 
62
  ### Recommendations
63
 
64
+ - Evaluate model biases before deployment.
65
+ - Ensure fair and transparent use of this model in sensitive contexts.
 
66
 
67
  ## How to Get Started with the Model
68
 
69
+ Use the code below to get started with this model:
70
+
71
+ ```python
72
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
73
 
74
+ tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
75
+ model = AutoModelForMaskedLM.from_pretrained("your-username/your-model-name")
76
+ ```
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
82
+ The model was trained on the Sinhala News Corpus dataset, comprising Sinhala news articles.
 
 
83
 
84
  ### Training Procedure
85
 
86
+ - **Tokenization**: Sinhala-specific tokenization and text normalization
87
+ - **Max Sequence Length**: 128
88
+ - **MLM Probability**: 15%
 
 
 
89
 
90
  #### Training Hyperparameters
91
 
92
+ - **Epochs:** 25
93
+ - **Batch Size:** 2 (Gradient accumulation steps: 2)
94
+ - **Optimizer:** AdamW
95
+ - **Learning Rate:** 3e-5
96
+ - **Mixed Precision:** FP32
 
 
97
 
98
  ## Evaluation
99
 
 
 
100
  ### Testing Data, Factors & Metrics
101
 
102
  #### Testing Data
103
 
104
+ Sinhala News Corpus dataset test split was used.
 
 
 
 
 
 
 
 
105
 
106
  #### Metrics
107
 
108
+ - **Perplexity:** Used to measure language modeling capability.
109
+ - **Loss (Cross-Entropy):** Lower is better.
 
110
 
111
  ### Results
112
 
113
+ The final evaluation metrics obtained:
 
 
 
 
114
 
115
+ | Metric | Value |
116
+ |---------------|-------|
117
+ | Perplexity | [15.95] |
118
+ | Validation Loss | [2.77] |
119
 
120
+ #### Summary
121
 
122
+ The model achieved strong MLM results on the Sinhala News Corpus dataset, demonstrating improved language understanding.
123
 
124
  ## Environmental Impact
125
 
126
+ Carbon emissions were not explicitly tracked. For estimation, refer to [Machine Learning Impact calculator](https://mlco2.github.io/impact).
 
 
127
 
128
+ - **Hardware Type:** GPU (Tesla T4)
129
+ - **Hours used:** [Approximate training hours]
130
+ - **Cloud Provider:** Kaggle
131
+ - **Compute Region:** [Region used, e.g., us-central]
132
+ - **Carbon Emitted:** [Estimated CO2 emissions]
133
 
134
+ ## Technical Specifications
135
 
136
  ### Model Architecture and Objective
137
 
138
+ Transformer-based BERT architecture optimized for Masked Language Modeling tasks.
139
 
140
  ### Compute Infrastructure
141
 
 
 
142
  #### Hardware
143
+ - NVIDIA Tesla T4 GPU
 
144
 
145
  #### Software
146
+ - Python 3.10
147
+ - Transformers library by Hugging Face
148
+ - PyTorch
149
 
150
  ## Citation [optional]
151
 
152
+ If you use this model, please cite it as:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
+ ```bibtex
155
+ @misc{yourusername2024sinhalabert,
156
+ author = {Your Name},
157
+ title = {Sinhala-BERT Fine-Tuned on Sinhala News Corpus},
158
+ year = {2024},
159
+ publisher = {Hugging Face},
160
+ journal = {Hugging Face Model Hub},
161
+ howpublished = {\url{https://huggingface.co/your-username/your-model-name}}
162
+ }
163
+ ```
164
 
165
+ ## Model Card Authors
166
 
167
+ - [Thilina Gunathilaka]