--- license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - fine-tuned - multiple-choice-qa - mcqa - question-answering datasets: - custom-mcqa-dataset language: - en pipeline_tag: text-generation --- # MNLP_M2_mcqa_model This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) for Multiple Choice Question Answering (MCQA) tasks. ## Model Details - **Base Model**: Qwen/Qwen3-0.6B-Base - **Task**: Multiple Choice Question Answering - **Model Type**: Classic - **Training Context**: With context - **Evaluation Context**: Without context - **Fine-tuning Method**: Causal Language Modeling ## Training Details - **Epochs**: 5 - **Learning Rate**: 5e-05 - **Batch Size**: 2 - **Training Framework**: Transformers + PyTorch ## Performance | Metric | Baseline | Fine-tuned | Improvement | |--------|----------|------------|-------------| | Accuracy | 68.50% | 71.70% | +3.20% | ## Training Data The model was fine-tuned on a custom MCQA dataset with the following characteristics: - Format: Multiple choice questions with 4 options (A, B, C, D) - Context: Included during training - Evaluation: Without context ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MNLP_M2_mcqa_model", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("MNLP_M2_mcqa_model", trust_remote_code=True) # For MCQA tasks, provide the question and options, then generate the answer prompt = "Question: What is the capital of France?\nA) London\nB) Berlin\nC) Paris\nD) Madrid\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=5) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) ```