Upload moondream.py
Browse files- moondream.py +3 -184
moondream.py
CHANGED
|
@@ -1,185 +1,3 @@
|
|
| 1 |
-
"""
|
| 2 |
-
import torch
|
| 3 |
-
from .vision_encoder import VisionEncoder
|
| 4 |
-
from .configuration_moondream import MoondreamConfig
|
| 5 |
-
from transformers import PreTrainedModel, TextIteratorStreamer
|
| 6 |
-
|
| 7 |
-
from .modeling_phi import PhiForCausalLM
|
| 8 |
-
from .configuration_moondream import PhiConfig
|
| 9 |
-
|
| 10 |
-
class Moondream(PreTrainedModel):
|
| 11 |
-
config_class = MoondreamConfig
|
| 12 |
-
_supports_flash_attn_2 = True
|
| 13 |
-
|
| 14 |
-
def __init__(self, config):
|
| 15 |
-
super().__init__(config)
|
| 16 |
-
self.vision_encoder = VisionEncoder(
|
| 17 |
-
use_flash_attn=config._attn_implementation == "flash_attention_2"
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
if type(config.text_config) == dict:
|
| 21 |
-
phi_config = PhiConfig(
|
| 22 |
-
**config.text_config, attn_implementation=config._attn_implementation
|
| 23 |
-
)
|
| 24 |
-
else:
|
| 25 |
-
phi_config = config.text_config
|
| 26 |
-
self.text_model = PhiForCausalLM(phi_config)
|
| 27 |
-
|
| 28 |
-
@property
|
| 29 |
-
def device(self):
|
| 30 |
-
return self.text_model.device
|
| 31 |
-
|
| 32 |
-
def encode_image(self, image):
|
| 33 |
-
with torch.no_grad():
|
| 34 |
-
return self.vision_encoder(image)
|
| 35 |
-
|
| 36 |
-
def input_embeds(self, prompt, image_embeds, tokenizer):
|
| 37 |
-
def _tokenize(txt):
|
| 38 |
-
return tokenizer(
|
| 39 |
-
txt, return_tensors="pt", add_special_tokens=False
|
| 40 |
-
).input_ids.to(self.device)
|
| 41 |
-
|
| 42 |
-
text_emb = self.text_model.get_input_embeddings()
|
| 43 |
-
|
| 44 |
-
# Add BOS token
|
| 45 |
-
embeds = []
|
| 46 |
-
embeds.append(
|
| 47 |
-
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
if "<image>" not in prompt:
|
| 51 |
-
embeds.append(text_emb(_tokenize(prompt)))
|
| 52 |
-
else:
|
| 53 |
-
assert prompt.count("<image>") == 1
|
| 54 |
-
before, after = prompt.split("<image>")
|
| 55 |
-
if len(before) > 0:
|
| 56 |
-
embeds.append(text_emb(_tokenize(before)))
|
| 57 |
-
embeds.append(image_embeds.to(self.device))
|
| 58 |
-
if len(after) > 0:
|
| 59 |
-
embeds.append(text_emb(_tokenize(after)))
|
| 60 |
-
|
| 61 |
-
return torch.cat(embeds, dim=1)
|
| 62 |
-
|
| 63 |
-
def get_input_embeddings(self):
|
| 64 |
-
return self.text_model.get_input_embeddings()
|
| 65 |
-
|
| 66 |
-
def generate(
|
| 67 |
-
self,
|
| 68 |
-
image_embeds,
|
| 69 |
-
prompt,
|
| 70 |
-
tokenizer,
|
| 71 |
-
max_new_tokens=128,
|
| 72 |
-
**kwargs,
|
| 73 |
-
):
|
| 74 |
-
generate_config = {
|
| 75 |
-
"eos_token_id": tokenizer.eos_token_id,
|
| 76 |
-
"bos_token_id": tokenizer.bos_token_id,
|
| 77 |
-
"pad_token_id": tokenizer.bos_token_id,
|
| 78 |
-
"max_new_tokens": max_new_tokens,
|
| 79 |
-
**kwargs,
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
-
with torch.no_grad():
|
| 83 |
-
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 84 |
-
streamer = TextIteratorStreamer(tokenizer)
|
| 85 |
-
output_ids = self.text_model.generate(
|
| 86 |
-
inputs_embeds=inputs_embeds, streamer=streamer, **generate_config
|
| 87 |
-
)
|
| 88 |
-
print("FINISHED")
|
| 89 |
-
|
| 90 |
-
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 91 |
-
|
| 92 |
-
def answer_question(
|
| 93 |
-
self,
|
| 94 |
-
image_embeds,
|
| 95 |
-
question,
|
| 96 |
-
tokenizer,
|
| 97 |
-
chat_history="",
|
| 98 |
-
result_queue=None,
|
| 99 |
-
**kwargs,
|
| 100 |
-
):
|
| 101 |
-
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
|
| 102 |
-
answer = self.generate(
|
| 103 |
-
image_embeds,
|
| 104 |
-
prompt,
|
| 105 |
-
tokenizer=tokenizer,
|
| 106 |
-
max_new_tokens=512,
|
| 107 |
-
**kwargs,
|
| 108 |
-
)[0]
|
| 109 |
-
cleaned_answer = answer.strip()
|
| 110 |
-
|
| 111 |
-
# Use the result_queue to pass the result if it is provided
|
| 112 |
-
if result_queue:
|
| 113 |
-
result_queue.put(cleaned_answer)
|
| 114 |
-
else:
|
| 115 |
-
return cleaned_answer
|
| 116 |
-
|
| 117 |
-
def batch_answer(
|
| 118 |
-
self,
|
| 119 |
-
images,
|
| 120 |
-
prompts,
|
| 121 |
-
tokenizer,
|
| 122 |
-
**kwargs,
|
| 123 |
-
):
|
| 124 |
-
image_embeds = self.encode_image(images)
|
| 125 |
-
|
| 126 |
-
templated_prompts = [
|
| 127 |
-
f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
|
| 128 |
-
]
|
| 129 |
-
prompt_embs = [
|
| 130 |
-
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
| 131 |
-
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
| 132 |
-
]
|
| 133 |
-
|
| 134 |
-
bos_emb = prompt_embs[0][0]
|
| 135 |
-
max_len = max([p.shape[0] for p in prompt_embs])
|
| 136 |
-
|
| 137 |
-
inputs_embeds = torch.cat(
|
| 138 |
-
[
|
| 139 |
-
torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
|
| 140 |
-
for p in prompt_embs
|
| 141 |
-
],
|
| 142 |
-
dim=0,
|
| 143 |
-
)
|
| 144 |
-
attention_mask = torch.cat(
|
| 145 |
-
[
|
| 146 |
-
torch.cat(
|
| 147 |
-
[
|
| 148 |
-
torch.zeros(
|
| 149 |
-
1,
|
| 150 |
-
max_len - p.shape[0],
|
| 151 |
-
device=self.device,
|
| 152 |
-
dtype=torch.long,
|
| 153 |
-
),
|
| 154 |
-
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
|
| 155 |
-
],
|
| 156 |
-
dim=1,
|
| 157 |
-
)
|
| 158 |
-
for p in prompt_embs
|
| 159 |
-
],
|
| 160 |
-
dim=0,
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
generate_config = {
|
| 164 |
-
"eos_token_id": tokenizer.eos_token_id,
|
| 165 |
-
"bos_token_id": tokenizer.bos_token_id,
|
| 166 |
-
"pad_token_id": tokenizer.bos_token_id,
|
| 167 |
-
"max_new_tokens": 512,
|
| 168 |
-
**kwargs,
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
with torch.no_grad():
|
| 172 |
-
output_ids = self.text_model.generate(
|
| 173 |
-
inputs_embeds=inputs_embeds,
|
| 174 |
-
attention_mask=attention_mask,
|
| 175 |
-
**generate_config,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
return [
|
| 179 |
-
x.strip()
|
| 180 |
-
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 181 |
-
]
|
| 182 |
-
"""
|
| 183 |
import torch
|
| 184 |
from .vision_encoder import VisionEncoder
|
| 185 |
from .configuration_moondream import MoondreamConfig
|
|
@@ -189,7 +7,7 @@ from .modeling_phi import PhiForCausalLM
|
|
| 189 |
from .configuration_moondream import PhiConfig
|
| 190 |
|
| 191 |
from threading import Thread
|
| 192 |
-
|
| 193 |
|
| 194 |
|
| 195 |
class Moondream(PreTrainedModel):
|
|
@@ -266,7 +84,7 @@ class Moondream(PreTrainedModel):
|
|
| 266 |
|
| 267 |
with torch.no_grad():
|
| 268 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 269 |
-
streamer = TextIteratorStreamer(tokenizer)
|
| 270 |
|
| 271 |
# Start generation in a separate thread
|
| 272 |
thread = Thread(target=self.text_model.generate, kwargs={
|
|
@@ -278,6 +96,7 @@ class Moondream(PreTrainedModel):
|
|
| 278 |
|
| 279 |
# Yield generated text as it becomes available
|
| 280 |
for new_text in streamer:
|
|
|
|
| 281 |
yield new_text
|
| 282 |
|
| 283 |
thread.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from .vision_encoder import VisionEncoder
|
| 3 |
from .configuration_moondream import MoondreamConfig
|
|
|
|
| 7 |
from .configuration_moondream import PhiConfig
|
| 8 |
|
| 9 |
from threading import Thread
|
| 10 |
+
|
| 11 |
|
| 12 |
|
| 13 |
class Moondream(PreTrainedModel):
|
|
|
|
| 84 |
|
| 85 |
with torch.no_grad():
|
| 86 |
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
| 87 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 88 |
|
| 89 |
# Start generation in a separate thread
|
| 90 |
thread = Thread(target=self.text_model.generate, kwargs={
|
|
|
|
| 96 |
|
| 97 |
# Yield generated text as it becomes available
|
| 98 |
for new_text in streamer:
|
| 99 |
+
print("NEW TEXT" + new_text)
|
| 100 |
yield new_text
|
| 101 |
|
| 102 |
thread.join()
|