Commit
·
38749c2
1
Parent(s):
6d8ef97
Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1070.49 +/- 165.67
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b47b06ea1b45243221acd07aeb95873799748f64c8a612a491804f278f73d7d
|
3 |
+
size 129188
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f65561135f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6556113680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6556113710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65561137a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6556113830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f65561138c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6556113950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f65561139e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6556113a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6556113b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6556113b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f655615d930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658413461.081193,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAoqKWPqkv4z8418G/dCycPpneJj83b0I///6IPakXY77VI+8+PTo+PdXxET+2Lqw+kLmgvmxetr/rJwy9dDyTv/yrVz/G7D6/X4e1vh4y7D48qie/sWyXvB4g1z7ivNO+bCh0P3CpAz+4MA8/cmV7P3EEDb/CNay/6xpPvgOKBD+BqHs/3OIUP4OS/T56+5S+0RMoP3X5I75E8pE+vukKvtlUp791hRo/0Qr2PbGRsL8oef+7EOrOPruqZj/6kNA9hfxjPhzXDUBRmhe/yrlPP2wodD9E4fi/uDAPPxFYgr/ixQrAjrGmP+GN1L6sQtK/K9jLvORbEjo2ABc+zfl3P7LTIT+u1B6+AgRrvwpqcTzkcHc/0H76vvQ0HD/cNQI//Zvav2HAib233kY/5n88PkGlm76XJcw+Y2+Xv35LhrpsKHQ/cKkDP7gwDz9yZXs/Hsn7PhZoA0DCBTDArvnNPtXzUL+O2xu/tldePfdebb+8eSU/DdA7P80Isz32Zre+9u1NPlF2jz4/teI+RfwXPjVZnD/Do7a8LfLrvlSHpr1aqOm+3NXmP/YkfD9liWS+TjWGv3CpAz+4MA8/cmV7P5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHw1MzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1m+E7AAAAAIoG5b8AAAAAdCDNPQAAAAAgBgBAAAAAABupE70AAAAA9grlPwAAAAAWXGC9AAAAAOEu+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN1KG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPno0PAAAAABAp+G/AAAAADw+pr0AAAAAOw76PwAAAAAW6P49AAAAAIB69j8AAAAA06yhPQAAAACy3Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArxiQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsjzT0AAAAAuSj7vwAAAAAQrlA8AAAAACIB/D8AAAAAMj1CuwAAAACK++o/AAAAAKgCwz0AAAAACZDcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgvrTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICu3re9AAAAAB/v5r8AAAAArWSCvQAAAAAFUvs/AAAAAA1N9T0AAAAAyZkAQAAAAABdIaS9AAAAALCB578AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2nddeIEbKMAWyUTegDjAF0lEdAp5C4KD0163V9lChoBkdAnzjggHNX5mgHTegDaAhHQKeRiu0TlDF1fZQoaAZHQHY60qlP8AJoB03oA2gIR0Cnk8tYB/7SdX2UKGgGR0CJWu0Mw1ziaAdN6ANoCEdAp5pwtjCpFXV9lChoBkdAko0v2oNutWgHTegDaAhHQKedfzMA3kx1fZQoaAZHQJwU7RCx/utoB03oA2gIR0CnnkrIo3JgdX2UKGgGR0Cc5coLG7z1aAdN6ANoCEdAp6CEYZVGTnV9lChoBkdAhq9ZU1hsqWgHTegDaAhHQKenLot+TeR1fZQoaAZHQIyjDkKeCkJoB03oA2gIR0CnqjIFmnO0dX2UKGgGR0CWbSjEvTPTaAdN6ANoCEdAp6sB42S+xnV9lChoBkdAmce+jVQQ+WgHTegDaAhHQKetLY6GQCF1fZQoaAZHQIXgFpyp71JoB03oA2gIR0Cns/S26TW5dX2UKGgGR0CH5QZWJaaDaAdN6ANoCEdAp7b/1tfoinV9lChoBkdAjsl0/fO2RmgHTegDaAhHQKe3yzvZyuJ1fZQoaAZHQJKawqhDgIhoB03oA2gIR0CnufddVvMsdX2UKGgGR0CHmfqoqCpWaAdN6ANoCEdAp8CBWNm16XV9lChoBkdAkaTW7nPmgmgHTegDaAhHQKfDfiXpnpV1fZQoaAZHQJ8rwWN3np1oB03oA2gIR0CnxEbMHKOldX2UKGgGR0CciK6H0se5aAdN6ANoCEdAp8aL0UXYUXV9lChoBkdAlnpqLKmsNmgHTegDaAhHQKfNC8zyjHp1fZQoaAZHQI4n5uhsZYRoB03oA2gIR0Cn0Asg2ZRbdX2UKGgGR0Ca23NbC79RaAdN6ANoCEdAp9DTN8ma6XV9lChoBkdAne6eI2wV02gHTegDaAhHQKfS7kupS751fZQoaAZHQJSCikcjqwBoB03oA2gIR0Cn2ZNg0CRwdX2UKGgGR0CUwzBUJfICaAdN6ANoCEdAp9yZeiSJTHV9lChoBkdAmus9YOlO5GgHTegDaAhHQKfdXQrMC911fZQoaAZHQJih2Axzq8loB03oA2gIR0Cn33i2MKkVdX2UKGgGR0Cc0ncafjCIaAdN6ANoCEdAp+XuAkLQX3V9lChoBkdAmItv51vETGgHTegDaAhHQKfo6bkwN9Z1fZQoaAZHQJeyqoBJZntoB03oA2gIR0Cn6bSVObiIdX2UKGgGR0Camsru6VdHaAdN6ANoCEdAp+vsGA08/3V9lChoBkdAlfTPNiYsumgHTegDaAhHQKfyatYB/7V1fZQoaAZHQJRAsYyfthNoB03oA2gIR0Cn9VBDPWxydX2UKGgGR0CWpvflp48maAdN6ANoCEdAp/YWxdIGyHV9lChoBkdAmKc7bHp8nmgHTegDaAhHQKf4V/4qPOp1fZQoaAZHQJ+bXV/c32poB03oA2gIR0Cn/skpy6tldX2UKGgGR0CeeuDdP+GXaAdN6ANoCEdAqAHDKPn0TXV9lChoBkdAnn7SlabF0mgHTegDaAhHQKgCkLuQZGd1fZQoaAZHQJxCaOhkAghoB03oA2gIR0CoBNjxLCemdX2UKGgGR0CdE/VrRBu5aAdN6ANoCEdAqAtYlfJFLHV9lChoBkdAmTqP/BFd9mgHTegDaAhHQKgOUMcZLqV1fZQoaAZHQJy15YbKifxoB03oA2gIR0CoDx46GQCCdX2UKGgGR0Caz9U8V58jaAdN6ANoCEdAqBFUr/bTMXV9lChoBkdAn3FAQxveg2gHTegDaAhHQKgXqHSnccl1fZQoaAZHQJrNi+sYEW9oB03oA2gIR0CoGprNnoPkdX2UKGgGR0CcyfXEZR8/aAdN6ANoCEdAqBti0Sh8IHV9lChoBkdAnScaAOJ+D2gHTegDaAhHQKgdeXOW0JF1fZQoaAZHQJ/l6JO32EloB03oA2gIR0CoI/HlwLmZdX2UKGgGR0CgWaz6ab4KaAdN6ANoCEdAqCbKFVT723V9lChoBkdAnj3eoHcDbWgHTegDaAhHQKgnkgi/wiJ1fZQoaAZHQJ3X0mw7kn1oB03oA2gIR0CoKdDAaef7dX2UKGgGR0Cfh8xsEaESaAdN6ANoCEdAqDA2+fywwHV9lChoBkdAnrggZKnNxGgHTegDaAhHQKgzJHAh0Qt1fZQoaAZHQJ9XCYlY2bZoB03oA2gIR0CoM/T/IbOvdX2UKGgGR0Ce9nG1x82KaAdN6ANoCEdAqDYmnuRcNnV9lChoBkdAnvaBpHqeLGgHTegDaAhHQKg8g1twaR91fZQoaAZHQJ4SqpHZsbhoB03oA2gIR0CoP3NuUD+zdX2UKGgGR0CdUFB68g6maAdN6ANoCEdAqEBOBOHnEHV9lChoBkdAmUYMjVx0dWgHTegDaAhHQKhCeTWXkYJ1fZQoaAZHQJwTZtALRa5oB03oA2gIR0CoSOdQ40djdX2UKGgGR0CcU8L2YfGNaAdN6ANoCEdAqEvN8ohIOHV9lChoBkdAnOlbuc+aB2gHTegDaAhHQKhMmfq5byJ1fZQoaAZHQJdLf7P6bfBoB03oA2gIR0CoTrkBjnV5dX2UKGgGR0CcVnGi5/b1aAdN6ANoCEdAqFUtpqREGHV9lChoBkdAlu7Ytg8bJmgHTegDaAhHQKhYIIfr8ix1fZQoaAZHQJa4e3I+4b1oB03oA2gIR0CoWOqMWGh3dX2UKGgGR0CXv6VGTcIraAdN6ANoCEdAqFsbTQVsUXV9lChoBkdAmfPIi9qUNmgHTegDaAhHQKhhkQV9F4N1fZQoaAZHQJZ4SXjU/fRoB03oA2gIR0CoZIw8GLUDdX2UKGgGR0CYRUIqLCN0aAdN6ANoCEdAqGVUXN1QqXV9lChoBkdAlrUc7uDzy2gHTegDaAhHQKhnet5D7ZZ1fZQoaAZHQJNNUHAymANoB03oA2gIR0CobeGi5/b1dX2UKGgGR0CX2tC2MKkVaAdN6ANoCEdAqHDX863iJnV9lChoBkdAk7/qBNEgGWgHTegDaAhHQKhxoKpDNQl1fZQoaAZHQJa4Iv/R3NdoB03oA2gIR0Coc775Ec81dX2UKGgGR0CeDDyhzvJBaAdN6ANoCEdAqHolPN3W4HV9lChoBkdAmKqMr3CbdGgHTegDaAhHQKh9IFcIJJJ1fZQoaAZHQJpFxXZGrjpoB03oA2gIR0Cofezb349HdX2UKGgGR0CXkN3BYV7AaAdN6ANoCEdAqIAmQU5+6XV9lChoBkdAn2SBXS0BwWgHTegDaAhHQKiGmenyd4F1fZQoaAZHQJ1uqpPykKxoB03oA2gIR0CoiXe3x4IKdX2UKGgGR0CfgS/UvwmWaAdN6ANoCEdAqIpD0aqCH3V9lChoBkdAm4OD63y7PWgHTegDaAhHQKiMb/VAiV11fZQoaAZHQJhhD4pMHr1oB03oA2gIR0Cokq4f4h2XdX2UKGgGR0CVvrd5IH1OaAdN6ANoCEdAqJWXA/LTyHV9lChoBkdAnTiuVTrE+GgHTegDaAhHQKiWWm3vx6R1fZQoaAZHQJllUczZYgdoB03oA2gIR0ComHONHYpVdX2UKGgGR0CcswIrOJLvaAdN6ANoCEdAqJ7DjcVQAXV9lChoBkdAoQrsANoak2gHTegDaAhHQKihr987ZFp1fZQoaAZHQJkUjpt78eloB03oA2gIR0CoonMJx//edX2UKGgGR0CeT0WHDaXbaAdN6ANoCEdAqKSGZ9d/rnV9lChoBkdAoFLyYRdyDWgHTegDaAhHQKiq3a37UG51fZQoaAZHQJs4kR6F/QVoB03oA2gIR0Corc7Lt/nXdX2UKGgGR0Cc+KICEHt4aAdN6ANoCEdAqK6TB2wFDHV9lChoBkdAoJyDs0HhTGgHTegDaAhHQKiwtepGWld1fZQoaAZHQKBTip3HJcRoB03oA2gIR0CotwwKjSG8dX2UKGgGR0CVaUhH9WIXaAdN6ANoCEdAqLn9hPTG53V9lChoBkdAoLYrl1bJOmgHTegDaAhHQKi6w6UaAFx1fZQoaAZHQJA3P4L1EmZoB03oA2gIR0CovN6oVEeAdX2UKGgGR0CUP9Mqz7djaAdN6ANoCEdAqMNWMju8b3VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e28ceb90c9f3f70622068eaec980e91f417669cae23af78080fb4f21cbf66c
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9104491f441b2befc476e564807cf7734699a443351c557ead0123d5ad740703
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65561135f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6556113680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6556113710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65561137a0>", "_build": "<function ActorCriticPolicy._build at 0x7f6556113830>", "forward": "<function ActorCriticPolicy.forward at 0x7f65561138c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6556113950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f65561139e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6556113a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6556113b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6556113b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f655615d930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658413461.081193, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAoqKWPqkv4z8418G/dCycPpneJj83b0I///6IPakXY77VI+8+PTo+PdXxET+2Lqw+kLmgvmxetr/rJwy9dDyTv/yrVz/G7D6/X4e1vh4y7D48qie/sWyXvB4g1z7ivNO+bCh0P3CpAz+4MA8/cmV7P3EEDb/CNay/6xpPvgOKBD+BqHs/3OIUP4OS/T56+5S+0RMoP3X5I75E8pE+vukKvtlUp791hRo/0Qr2PbGRsL8oef+7EOrOPruqZj/6kNA9hfxjPhzXDUBRmhe/yrlPP2wodD9E4fi/uDAPPxFYgr/ixQrAjrGmP+GN1L6sQtK/K9jLvORbEjo2ABc+zfl3P7LTIT+u1B6+AgRrvwpqcTzkcHc/0H76vvQ0HD/cNQI//Zvav2HAib233kY/5n88PkGlm76XJcw+Y2+Xv35LhrpsKHQ/cKkDP7gwDz9yZXs/Hsn7PhZoA0DCBTDArvnNPtXzUL+O2xu/tldePfdebb+8eSU/DdA7P80Isz32Zre+9u1NPlF2jz4/teI+RfwXPjVZnD/Do7a8LfLrvlSHpr1aqOm+3NXmP/YkfD9liWS+TjWGv3CpAz+4MA8/cmV7P5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHw1MzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1m+E7AAAAAIoG5b8AAAAAdCDNPQAAAAAgBgBAAAAAABupE70AAAAA9grlPwAAAAAWXGC9AAAAAOEu+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN1KG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPno0PAAAAABAp+G/AAAAADw+pr0AAAAAOw76PwAAAAAW6P49AAAAAIB69j8AAAAA06yhPQAAAACy3Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArxiQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsjzT0AAAAAuSj7vwAAAAAQrlA8AAAAACIB/D8AAAAAMj1CuwAAAACK++o/AAAAAKgCwz0AAAAACZDcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgvrTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICu3re9AAAAAB/v5r8AAAAArWSCvQAAAAAFUvs/AAAAAA1N9T0AAAAAyZkAQAAAAABdIaS9AAAAALCB578AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2nddeIEbKMAWyUTegDjAF0lEdAp5C4KD0163V9lChoBkdAnzjggHNX5mgHTegDaAhHQKeRiu0TlDF1fZQoaAZHQHY60qlP8AJoB03oA2gIR0Cnk8tYB/7SdX2UKGgGR0CJWu0Mw1ziaAdN6ANoCEdAp5pwtjCpFXV9lChoBkdAko0v2oNutWgHTegDaAhHQKedfzMA3kx1fZQoaAZHQJwU7RCx/utoB03oA2gIR0CnnkrIo3JgdX2UKGgGR0Cc5coLG7z1aAdN6ANoCEdAp6CEYZVGTnV9lChoBkdAhq9ZU1hsqWgHTegDaAhHQKenLot+TeR1fZQoaAZHQIyjDkKeCkJoB03oA2gIR0CnqjIFmnO0dX2UKGgGR0CWbSjEvTPTaAdN6ANoCEdAp6sB42S+xnV9lChoBkdAmce+jVQQ+WgHTegDaAhHQKetLY6GQCF1fZQoaAZHQIXgFpyp71JoB03oA2gIR0Cns/S26TW5dX2UKGgGR0CH5QZWJaaDaAdN6ANoCEdAp7b/1tfoinV9lChoBkdAjsl0/fO2RmgHTegDaAhHQKe3yzvZyuJ1fZQoaAZHQJKawqhDgIhoB03oA2gIR0CnufddVvMsdX2UKGgGR0CHmfqoqCpWaAdN6ANoCEdAp8CBWNm16XV9lChoBkdAkaTW7nPmgmgHTegDaAhHQKfDfiXpnpV1fZQoaAZHQJ8rwWN3np1oB03oA2gIR0CnxEbMHKOldX2UKGgGR0CciK6H0se5aAdN6ANoCEdAp8aL0UXYUXV9lChoBkdAlnpqLKmsNmgHTegDaAhHQKfNC8zyjHp1fZQoaAZHQI4n5uhsZYRoB03oA2gIR0Cn0Asg2ZRbdX2UKGgGR0Ca23NbC79RaAdN6ANoCEdAp9DTN8ma6XV9lChoBkdAne6eI2wV02gHTegDaAhHQKfS7kupS751fZQoaAZHQJSCikcjqwBoB03oA2gIR0Cn2ZNg0CRwdX2UKGgGR0CUwzBUJfICaAdN6ANoCEdAp9yZeiSJTHV9lChoBkdAmus9YOlO5GgHTegDaAhHQKfdXQrMC911fZQoaAZHQJih2Axzq8loB03oA2gIR0Cn33i2MKkVdX2UKGgGR0Cc0ncafjCIaAdN6ANoCEdAp+XuAkLQX3V9lChoBkdAmItv51vETGgHTegDaAhHQKfo6bkwN9Z1fZQoaAZHQJeyqoBJZntoB03oA2gIR0Cn6bSVObiIdX2UKGgGR0Camsru6VdHaAdN6ANoCEdAp+vsGA08/3V9lChoBkdAlfTPNiYsumgHTegDaAhHQKfyatYB/7V1fZQoaAZHQJRAsYyfthNoB03oA2gIR0Cn9VBDPWxydX2UKGgGR0CWpvflp48maAdN6ANoCEdAp/YWxdIGyHV9lChoBkdAmKc7bHp8nmgHTegDaAhHQKf4V/4qPOp1fZQoaAZHQJ+bXV/c32poB03oA2gIR0Cn/skpy6tldX2UKGgGR0CeeuDdP+GXaAdN6ANoCEdAqAHDKPn0TXV9lChoBkdAnn7SlabF0mgHTegDaAhHQKgCkLuQZGd1fZQoaAZHQJxCaOhkAghoB03oA2gIR0CoBNjxLCemdX2UKGgGR0CdE/VrRBu5aAdN6ANoCEdAqAtYlfJFLHV9lChoBkdAmTqP/BFd9mgHTegDaAhHQKgOUMcZLqV1fZQoaAZHQJy15YbKifxoB03oA2gIR0CoDx46GQCCdX2UKGgGR0Caz9U8V58jaAdN6ANoCEdAqBFUr/bTMXV9lChoBkdAn3FAQxveg2gHTegDaAhHQKgXqHSnccl1fZQoaAZHQJrNi+sYEW9oB03oA2gIR0CoGprNnoPkdX2UKGgGR0CcyfXEZR8/aAdN6ANoCEdAqBti0Sh8IHV9lChoBkdAnScaAOJ+D2gHTegDaAhHQKgdeXOW0JF1fZQoaAZHQJ/l6JO32EloB03oA2gIR0CoI/HlwLmZdX2UKGgGR0CgWaz6ab4KaAdN6ANoCEdAqCbKFVT723V9lChoBkdAnj3eoHcDbWgHTegDaAhHQKgnkgi/wiJ1fZQoaAZHQJ3X0mw7kn1oB03oA2gIR0CoKdDAaef7dX2UKGgGR0Cfh8xsEaESaAdN6ANoCEdAqDA2+fywwHV9lChoBkdAnrggZKnNxGgHTegDaAhHQKgzJHAh0Qt1fZQoaAZHQJ9XCYlY2bZoB03oA2gIR0CoM/T/IbOvdX2UKGgGR0Ce9nG1x82KaAdN6ANoCEdAqDYmnuRcNnV9lChoBkdAnvaBpHqeLGgHTegDaAhHQKg8g1twaR91fZQoaAZHQJ4SqpHZsbhoB03oA2gIR0CoP3NuUD+zdX2UKGgGR0CdUFB68g6maAdN6ANoCEdAqEBOBOHnEHV9lChoBkdAmUYMjVx0dWgHTegDaAhHQKhCeTWXkYJ1fZQoaAZHQJwTZtALRa5oB03oA2gIR0CoSOdQ40djdX2UKGgGR0CcU8L2YfGNaAdN6ANoCEdAqEvN8ohIOHV9lChoBkdAnOlbuc+aB2gHTegDaAhHQKhMmfq5byJ1fZQoaAZHQJdLf7P6bfBoB03oA2gIR0CoTrkBjnV5dX2UKGgGR0CcVnGi5/b1aAdN6ANoCEdAqFUtpqREGHV9lChoBkdAlu7Ytg8bJmgHTegDaAhHQKhYIIfr8ix1fZQoaAZHQJa4e3I+4b1oB03oA2gIR0CoWOqMWGh3dX2UKGgGR0CXv6VGTcIraAdN6ANoCEdAqFsbTQVsUXV9lChoBkdAmfPIi9qUNmgHTegDaAhHQKhhkQV9F4N1fZQoaAZHQJZ4SXjU/fRoB03oA2gIR0CoZIw8GLUDdX2UKGgGR0CYRUIqLCN0aAdN6ANoCEdAqGVUXN1QqXV9lChoBkdAlrUc7uDzy2gHTegDaAhHQKhnet5D7ZZ1fZQoaAZHQJNNUHAymANoB03oA2gIR0CobeGi5/b1dX2UKGgGR0CX2tC2MKkVaAdN6ANoCEdAqHDX863iJnV9lChoBkdAk7/qBNEgGWgHTegDaAhHQKhxoKpDNQl1fZQoaAZHQJa4Iv/R3NdoB03oA2gIR0Coc775Ec81dX2UKGgGR0CeDDyhzvJBaAdN6ANoCEdAqHolPN3W4HV9lChoBkdAmKqMr3CbdGgHTegDaAhHQKh9IFcIJJJ1fZQoaAZHQJpFxXZGrjpoB03oA2gIR0Cofezb349HdX2UKGgGR0CXkN3BYV7AaAdN6ANoCEdAqIAmQU5+6XV9lChoBkdAn2SBXS0BwWgHTegDaAhHQKiGmenyd4F1fZQoaAZHQJ1uqpPykKxoB03oA2gIR0CoiXe3x4IKdX2UKGgGR0CfgS/UvwmWaAdN6ANoCEdAqIpD0aqCH3V9lChoBkdAm4OD63y7PWgHTegDaAhHQKiMb/VAiV11fZQoaAZHQJhhD4pMHr1oB03oA2gIR0Cokq4f4h2XdX2UKGgGR0CVvrd5IH1OaAdN6ANoCEdAqJWXA/LTyHV9lChoBkdAnTiuVTrE+GgHTegDaAhHQKiWWm3vx6R1fZQoaAZHQJllUczZYgdoB03oA2gIR0ComHONHYpVdX2UKGgGR0CcswIrOJLvaAdN6ANoCEdAqJ7DjcVQAXV9lChoBkdAoQrsANoak2gHTegDaAhHQKihr987ZFp1fZQoaAZHQJkUjpt78eloB03oA2gIR0CoonMJx//edX2UKGgGR0CeT0WHDaXbaAdN6ANoCEdAqKSGZ9d/rnV9lChoBkdAoFLyYRdyDWgHTegDaAhHQKiq3a37UG51fZQoaAZHQJs4kR6F/QVoB03oA2gIR0Corc7Lt/nXdX2UKGgGR0Cc+KICEHt4aAdN6ANoCEdAqK6TB2wFDHV9lChoBkdAoJyDs0HhTGgHTegDaAhHQKiwtepGWld1fZQoaAZHQKBTip3HJcRoB03oA2gIR0CotwwKjSG8dX2UKGgGR0CVaUhH9WIXaAdN6ANoCEdAqLn9hPTG53V9lChoBkdAoLYrl1bJOmgHTegDaAhHQKi6w6UaAFx1fZQoaAZHQJA3P4L1EmZoB03oA2gIR0CovN6oVEeAdX2UKGgGR0CUP9Mqz7djaAdN6ANoCEdAqMNWMju8b3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (773 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1070.4934912229771, "std_reward": 165.66638735349437, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-21T15:39:07.525547"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:885b0ff3b17d5a071ea4d55c34e4fe032a5ee362753b808cb49e80811ec6d83e
|
3 |
+
size 2763
|