Upload server.py with huggingface_hub
Browse files
server.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import logging
|
4 |
+
import re
|
5 |
+
print(f"Initial logging._nameToLevel: {logging._nameToLevel}")
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import List, Dict, Any, Optional
|
8 |
+
|
9 |
+
import soundfile as sf
|
10 |
+
import numpy as np
|
11 |
+
from fastapi import FastAPI, HTTPException
|
12 |
+
from pydantic import BaseModel
|
13 |
+
|
14 |
+
# Ensure sensevoice_rknn.py is in the same directory or PYTHONPATH
|
15 |
+
# Add the directory of this script to sys.path if sensevoice_rknn is not found directly
|
16 |
+
import sys
|
17 |
+
SCRIPT_DIR = Path(__file__).resolve().parent
|
18 |
+
if str(SCRIPT_DIR) not in sys.path:
|
19 |
+
sys.path.append(str(SCRIPT_DIR))
|
20 |
+
|
21 |
+
try:
|
22 |
+
from sensevoice_rknn import WavFrontend, SenseVoiceInferenceSession, FSMNVad, languages
|
23 |
+
except ImportError as e:
|
24 |
+
logging.error(f"Error importing from sensevoice_rknn.py: {e}")
|
25 |
+
logging.error("Please ensure sensevoice_rknn.py is in the same directory as server.py or in your PYTHONPATH.")
|
26 |
+
# Fallback for critical components if import fails, to allow FastAPI to at least start and show an error
|
27 |
+
class WavFrontend:
|
28 |
+
def __init__(self, *args, **kwargs): raise NotImplementedError("WavFrontend not loaded")
|
29 |
+
def get_features(self, *args, **kwargs): raise NotImplementedError("WavFrontend not loaded")
|
30 |
+
class SenseVoiceInferenceSession:
|
31 |
+
def __init__(self, *args, **kwargs): raise NotImplementedError("SenseVoiceInferenceSession not loaded")
|
32 |
+
def __call__(self, *args, **kwargs): raise NotImplementedError("SenseVoiceInferenceSession not loaded")
|
33 |
+
class FSMNVad:
|
34 |
+
def __init__(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded")
|
35 |
+
def segments_offline(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded")
|
36 |
+
class Vad:
|
37 |
+
def all_reset_detection(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded")
|
38 |
+
vad = Vad()
|
39 |
+
|
40 |
+
languages = {"en": 4} # Default fallback
|
41 |
+
|
42 |
+
app = FastAPI()
|
43 |
+
|
44 |
+
# Logging will be handled by Uvicorn's default configuration or a custom log_config if provided to uvicorn.run
|
45 |
+
# Get a logger instance for application-specific logs if needed
|
46 |
+
logger = logging.getLogger(__name__)
|
47 |
+
logger.setLevel(logging.INFO) # Set level for this specific logger
|
48 |
+
|
49 |
+
# --- Model Configuration & Loading ---
|
50 |
+
MODEL_BASE_PATH = Path(__file__).resolve().parent
|
51 |
+
|
52 |
+
# These paths should match those used in sensevoice_rknn.py's main function
|
53 |
+
# or be configurable if they differ.
|
54 |
+
MVN_PATH = MODEL_BASE_PATH / "am.mvn"
|
55 |
+
EMBEDDING_NPY_PATH = MODEL_BASE_PATH / "embedding.npy"
|
56 |
+
ENCODER_RKNN_PATH = MODEL_BASE_PATH / "sense-voice-encoder.rknn"
|
57 |
+
BPE_MODEL_PATH = MODEL_BASE_PATH / "chn_jpn_yue_eng_ko_spectok.bpe.model"
|
58 |
+
VAD_CONFIG_DIR = MODEL_BASE_PATH # Assuming fsmn-config.yaml and fsmnvad-offline.onnx are here
|
59 |
+
|
60 |
+
# Global model instances
|
61 |
+
w_frontend: Optional[WavFrontend] = None
|
62 |
+
asr_model: Optional[SenseVoiceInferenceSession] = None
|
63 |
+
vad_model: Optional[FSMNVad] = None
|
64 |
+
|
65 |
+
@app.on_event("startup")
|
66 |
+
def load_models():
|
67 |
+
global w_frontend, asr_model, vad_model
|
68 |
+
logging.info("Loading models...")
|
69 |
+
start_time = time.time()
|
70 |
+
try:
|
71 |
+
if not MVN_PATH.exists():
|
72 |
+
raise FileNotFoundError(f"CMVN file not found: {MVN_PATH}")
|
73 |
+
w_frontend = WavFrontend(cmvn_file=str(MVN_PATH))
|
74 |
+
|
75 |
+
if not EMBEDDING_NPY_PATH.exists() or not ENCODER_RKNN_PATH.exists() or not BPE_MODEL_PATH.exists():
|
76 |
+
raise FileNotFoundError(
|
77 |
+
f"One or more ASR model files not found: "
|
78 |
+
f"Embedding: {EMBEDDING_NPY_PATH}, Encoder: {ENCODER_RKNN_PATH}, BPE: {BPE_MODEL_PATH}"
|
79 |
+
)
|
80 |
+
asr_model = SenseVoiceInferenceSession(
|
81 |
+
embedding_model_file=str(EMBEDDING_NPY_PATH),
|
82 |
+
encoder_model_file=str(ENCODER_RKNN_PATH),
|
83 |
+
bpe_model_file=str(BPE_MODEL_PATH),
|
84 |
+
# Assuming default device_id and num_threads as in sensevoice_rknn.py's main
|
85 |
+
device_id=-1,
|
86 |
+
intra_op_num_threads=4
|
87 |
+
)
|
88 |
+
|
89 |
+
# Check for VAD model files (fsmn-config.yaml, fsmnvad-offline.onnx)
|
90 |
+
if not (VAD_CONFIG_DIR / "fsmn-config.yaml").exists() or not (VAD_CONFIG_DIR / "fsmnvad-offline.onnx").exists():
|
91 |
+
raise FileNotFoundError(f"VAD config or model not found in {VAD_CONFIG_DIR}")
|
92 |
+
vad_model = FSMNVad(config_dir=str(VAD_CONFIG_DIR))
|
93 |
+
|
94 |
+
logging.info(f"Models loaded successfully in {time.time() - start_time:.2f} seconds.")
|
95 |
+
except FileNotFoundError as e:
|
96 |
+
logging.error(f"Model loading failed: {e}")
|
97 |
+
# Keep models as None, endpoints will raise errors
|
98 |
+
except Exception as e:
|
99 |
+
logging.error(f"An unexpected error occurred during model loading: {e}")
|
100 |
+
# Keep models as None
|
101 |
+
|
102 |
+
class TranscribeRequest(BaseModel):
|
103 |
+
audio_file_path: str
|
104 |
+
language: str = "en" # Default to English
|
105 |
+
use_itn: bool = False
|
106 |
+
|
107 |
+
class Segment(BaseModel):
|
108 |
+
start_time_s: float
|
109 |
+
end_time_s: float
|
110 |
+
text: str
|
111 |
+
|
112 |
+
class TranscribeResponse(BaseModel):
|
113 |
+
full_transcription: str
|
114 |
+
segments: List[Segment]
|
115 |
+
|
116 |
+
@app.post("/transcribe", response_model=str)
|
117 |
+
async def transcribe_audio(request: TranscribeRequest):
|
118 |
+
if w_frontend is None or asr_model is None or vad_model is None:
|
119 |
+
logging.error("Models not loaded. Transcription cannot proceed.")
|
120 |
+
raise HTTPException(status_code=503, detail="Models are not loaded. Please check server logs.")
|
121 |
+
|
122 |
+
audio_path = Path(request.audio_file_path)
|
123 |
+
if not audio_path.exists() or not audio_path.is_file():
|
124 |
+
logging.error(f"Audio file not found: {audio_path}")
|
125 |
+
raise HTTPException(status_code=404, detail=f"Audio file not found: {audio_path}")
|
126 |
+
|
127 |
+
try:
|
128 |
+
waveform, sample_rate = sf.read(
|
129 |
+
str(audio_path),
|
130 |
+
dtype="float32",
|
131 |
+
always_2d=True
|
132 |
+
)
|
133 |
+
except Exception as e:
|
134 |
+
logging.error(f"Error reading audio file {audio_path}: {e}")
|
135 |
+
raise HTTPException(status_code=400, detail=f"Could not read audio file: {e}")
|
136 |
+
|
137 |
+
if sample_rate != 16000:
|
138 |
+
# Basic resampling could be added here if needed, or just raise an error
|
139 |
+
logging.warning(f"Audio sample rate is {sample_rate}Hz, expected 16000Hz. Results may be suboptimal.")
|
140 |
+
# For now, we proceed but log a warning. For critical applications, convert or reject.
|
141 |
+
|
142 |
+
logging.info(f"Processing audio: {audio_path}, Duration: {len(waveform) / sample_rate:.2f}s, Channels: {waveform.shape[1]}")
|
143 |
+
|
144 |
+
lang_code = languages.get(request.language.lower())
|
145 |
+
if lang_code is None:
|
146 |
+
logging.warning(f"Unsupported language: {request.language}. Defaulting to 'en'. Supported: {list(languages.keys())}")
|
147 |
+
lang_code = languages.get("en", 0) # Fallback to 'en' or 'auto' if 'en' isn't in languages
|
148 |
+
|
149 |
+
all_segments_text: List[str] = []
|
150 |
+
detailed_segments: List[Segment] = []
|
151 |
+
processing_start_time = time.time()
|
152 |
+
|
153 |
+
for channel_id in range(waveform.shape[1]):
|
154 |
+
channel_data = waveform[:, channel_id]
|
155 |
+
logging.info(f"Processing channel {channel_id + 1}/{waveform.shape[1]}")
|
156 |
+
|
157 |
+
try:
|
158 |
+
# Ensure channel_data is 1D for VAD if it expects that
|
159 |
+
speech_segments = vad_model.segments_offline(channel_data) # segments_offline expects 1D array
|
160 |
+
except Exception as e:
|
161 |
+
logging.error(f"VAD processing failed for channel {channel_id}: {e}")
|
162 |
+
# Optionally skip this channel or raise an error for the whole request
|
163 |
+
continue # Skip to next channel
|
164 |
+
|
165 |
+
for part_idx, part in enumerate(speech_segments):
|
166 |
+
start_sample = int(part[0] * 16) # VAD returns ms, convert to samples (16 samples/ms for 16kHz)
|
167 |
+
end_sample = int(part[1] * 16)
|
168 |
+
segment_audio = channel_data[start_sample:end_sample]
|
169 |
+
|
170 |
+
if len(segment_audio) == 0:
|
171 |
+
logging.info(f"Empty audio segment for channel {channel_id}, part {part_idx}. Skipping.")
|
172 |
+
continue
|
173 |
+
|
174 |
+
try:
|
175 |
+
# Ensure get_features expects 1D array
|
176 |
+
audio_feats = w_frontend.get_features(segment_audio)
|
177 |
+
# ASR model expects batch dimension, add [None, ...]
|
178 |
+
asr_result_text_raw = asr_model(
|
179 |
+
audio_feats[None, ...],
|
180 |
+
language=lang_code,
|
181 |
+
use_itn=request.use_itn,
|
182 |
+
)
|
183 |
+
# Remove tags like <|en|>, <|HAPPY|>, etc.
|
184 |
+
asr_result_text_cleaned = re.sub(r"<\|[^\|]+\|>", "", asr_result_text_raw).strip()
|
185 |
+
|
186 |
+
segment_start_s = part[0] / 1000.0
|
187 |
+
segment_end_s = part[1] / 1000.0
|
188 |
+
logging.info(f"[Ch{channel_id}] [{segment_start_s:.2f}s - {segment_end_s:.2f}s] Raw: {asr_result_text_raw} Cleaned: {asr_result_text_cleaned}")
|
189 |
+
all_segments_text.append(asr_result_text_cleaned)
|
190 |
+
detailed_segments.append(Segment(start_time_s=segment_start_s, end_time_s=segment_end_s, text=asr_result_text_cleaned))
|
191 |
+
except Exception as e:
|
192 |
+
logging.error(f"ASR processing failed for segment {part_idx} in channel {channel_id}: {e}")
|
193 |
+
# Optionally add a placeholder or skip this segment's text
|
194 |
+
detailed_segments.append(Segment(start_time_s=part[0]/1000.0, end_time_s=part[1]/1000.0, text="[ASR_ERROR]"))
|
195 |
+
|
196 |
+
vad_model.vad.all_reset_detection() # Reset VAD state for next channel or call
|
197 |
+
|
198 |
+
full_transcription = " ".join(all_segments_text).strip()
|
199 |
+
logging.info(f"Transcription complete in {time.time() - processing_start_time:.2f}s. Result: {full_transcription}")
|
200 |
+
|
201 |
+
return full_transcription
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
import uvicorn
|
205 |
+
|
206 |
+
MINIMAL_LOGGING_CONFIG = {
|
207 |
+
"version": 1,
|
208 |
+
"disable_existing_loggers": False, # Let other loggers (like our app logger) exist
|
209 |
+
"formatters": {
|
210 |
+
"default": {
|
211 |
+
"()": "uvicorn.logging.DefaultFormatter",
|
212 |
+
"fmt": "%(levelprefix)s %(message)s",
|
213 |
+
"use_colors": None,
|
214 |
+
},
|
215 |
+
},
|
216 |
+
"handlers": {
|
217 |
+
"default": {
|
218 |
+
"formatter": "default",
|
219 |
+
"class": "logging.StreamHandler",
|
220 |
+
"stream": "ext://sys.stderr",
|
221 |
+
},
|
222 |
+
},
|
223 |
+
"loggers": {
|
224 |
+
"uvicorn": { # Uvicorn's own operational logs
|
225 |
+
"handlers": ["default"],
|
226 |
+
"level": logging.INFO, # Explicitly use integer
|
227 |
+
"propagate": False,
|
228 |
+
},
|
229 |
+
"uvicorn.error": { # Logs for errors within Uvicorn
|
230 |
+
"handlers": ["default"],
|
231 |
+
"level": logging.INFO, # Explicitly use integer
|
232 |
+
"propagate": False,
|
233 |
+
},
|
234 |
+
# We are deliberately not configuring uvicorn.access here for simplicity
|
235 |
+
# It might default to INFO or be silent if not configured and no parent handler catches it.
|
236 |
+
},
|
237 |
+
# Ensure our application logger also works if needed
|
238 |
+
__name__: {
|
239 |
+
"handlers": ["default"],
|
240 |
+
"level": logging.INFO,
|
241 |
+
"propagate": False,
|
242 |
+
}
|
243 |
+
}
|
244 |
+
|
245 |
+
logger.info(f"Attempting to run Uvicorn with minimal explicit log_config.")
|
246 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, log_config=MINIMAL_LOGGING_CONFIG)
|