### model model_name_or_path: Qwen/Qwen3-0.6B quantization_bit: 4 # choices: [8 (bnb/hqq/eetq), 4 (bnb/hqq), 3 (hqq), 2 (hqq)] quantization_method: bnb # choices: [bnb, hqq, eetq] trust_remote_code: true ### method stage: sft do_train: true finetuning_type: lora lora_rank: 8 lora_target: all ### dataset dataset: alpaca_en_demo template: qwen3 cutoff_len: 2048 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 dataloader_num_workers: 4 ### output output_dir: saves/qwen3-0.6b/lora/sft logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true save_only_model: false report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow] ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval # val_size: 0.1 # per_device_eval_batch_size: 1 # eval_strategy: steps # eval_steps: 500