TiMauzi commited on
Commit
544318c
·
verified ·
1 Parent(s): 7f060b5

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ confusion_matrix_best.png filter=lfs diff=lfs merge=lfs -text
37
+ confusion_matrix_latest.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,199 +1,92 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - generator
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: EraClassifierBiLSTM
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # EraClassifierBiLSTM
19
+
20
+ This model is a fine-tuned version of [](https://huggingface.co/) on the generator dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.0269
23
+ - Accuracy: 0.6593
24
+ - F1: 0.5103
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0006535848403050624
44
+ - train_batch_size: 64
45
+ - eval_batch_size: 64
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: reduce_lr_on_plateau
49
+ - num_epochs: 3
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|
56
+ | 1.1478 | 0.1031 | 2000 | 1.1945 | 0.5275 | 0.3487 |
57
+ | 0.9699 | 0.2063 | 4000 | 1.0621 | 0.6357 | 0.4551 |
58
+ | 0.9049 | 0.3094 | 6000 | 1.0657 | 0.5898 | 0.4074 |
59
+ | 0.8577 | 0.4126 | 8000 | 1.0708 | 0.6032 | 0.4562 |
60
+ | 0.8293 | 0.5157 | 10000 | 1.0425 | 0.6096 | 0.4274 |
61
+ | 0.8002 | 0.6188 | 12000 | 1.0197 | 0.6157 | 0.4464 |
62
+ | 0.7799 | 0.7220 | 14000 | 1.0540 | 0.6103 | 0.4576 |
63
+ | 0.7545 | 0.8251 | 16000 | 1.0288 | 0.6266 | 0.4682 |
64
+ | 0.7415 | 0.9283 | 18000 | 1.0332 | 0.6206 | 0.4614 |
65
+ | 0.7205 | 1.0314 | 20000 | 1.0262 | 0.6333 | 0.4734 |
66
+ | 0.7005 | 1.1345 | 22000 | 0.9989 | 0.6363 | 0.4840 |
67
+ | 0.6924 | 1.2377 | 24000 | 1.0136 | 0.6347 | 0.4647 |
68
+ | 0.6541 | 1.3408 | 26000 | 0.9917 | 0.6466 | 0.4951 |
69
+ | 0.6261 | 1.4440 | 28000 | 0.9876 | 0.6465 | 0.4924 |
70
+ | 0.6271 | 1.5471 | 30000 | 1.0057 | 0.6449 | 0.4976 |
71
+ | 0.6124 | 1.6503 | 32000 | 0.9994 | 0.6494 | 0.5007 |
72
+ | 0.6137 | 1.7534 | 34000 | 1.0015 | 0.6493 | 0.4976 |
73
+ | 0.604 | 1.8565 | 36000 | 1.0058 | 0.6524 | 0.4997 |
74
+ | 0.6063 | 1.9597 | 38000 | 1.0046 | 0.6512 | 0.5032 |
75
+ | 0.5859 | 2.0628 | 40000 | 1.0162 | 0.6572 | 0.5121 |
76
+ | 0.5778 | 2.1660 | 42000 | 1.0052 | 0.6591 | 0.5089 |
77
+ | 0.5679 | 2.2691 | 44000 | 1.0288 | 0.6539 | 0.5044 |
78
+ | 0.5646 | 2.3722 | 46000 | 1.0247 | 0.6559 | 0.5085 |
79
+ | 0.5693 | 2.4754 | 48000 | 1.0250 | 0.6581 | 0.5096 |
80
+ | 0.5607 | 2.5785 | 50000 | 1.0296 | 0.6573 | 0.5069 |
81
+ | 0.5641 | 2.6817 | 52000 | 1.0266 | 0.6573 | 0.5080 |
82
+ | 0.5601 | 2.7848 | 54000 | 1.0268 | 0.6577 | 0.5098 |
83
+ | 0.5607 | 2.8879 | 56000 | 1.0263 | 0.6539 | 0.5060 |
84
+ | 0.5582 | 2.9911 | 58000 | 1.0269 | 0.6593 | 0.5103 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.49.0
90
+ - Pytorch 2.6.0+cu126
91
+ - Datasets 3.3.2
92
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
confusion_matrix_best.png ADDED

Git LFS Details

  • SHA256: f99c13c1c8580fcb2fb8d19ee5d7b1266574fba513af5a1ddfe897786c8a8d46
  • Pointer size: 131 Bytes
  • Size of remote file: 243 kB
confusion_matrix_latest.png ADDED

Git LFS Details

  • SHA256: bab7e0ca712b3a417f0f740a5277cd1896da867a6310d2742fe3a40b38e30bd7
  • Pointer size: 131 Bytes
  • Size of remote file: 243 kB
final_model/config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "EraClassifierBiLSTM"
4
+ ],
5
+ "hidden_size": 2048,
6
+ "input_size": 8,
7
+ "num_eras": 6,
8
+ "num_layers": 2,
9
+ "torch_dtype": "float32",
10
+ "transformers_version": "4.49.0"
11
+ }
final_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef3ebf72d5c3dc9ffaecdeccef131cf33366f6cae7fd3b9cf553f781427d34bc
3
+ size 537757280
final_model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ab53a13651b7cf61ee383e2731543629fad05c47740480bb8068d1d2aa6a967
3
+ size 537758974
final_model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d862f5c9fb79b775a34a74c42a935798418c53f06842d25e827a8b18adbd284
3
+ size 5304
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d862f5c9fb79b775a34a74c42a935798418c53f06842d25e827a8b18adbd284
3
+ size 5304
training_metrics.png ADDED