File size: 1,402 Bytes
2108788
 
b1e46ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108788
 
b1e46ca
 
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
2108788
b1e46ca
 
 
 
 
 
 
 
 
 
2108788
b1e46ca
2108788
 
 
b1e46ca
2108788
b1e46ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- Shamus/multimed_short
model-index:
- name: whisper-large-v3-lora-med
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-lora-med

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Shamus/multimed_short dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results



### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1