File size: 2,187 Bytes
20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 20bea13 de1f5d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-base
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- Shamus/multimed_short
metrics:
- wer
model-index:
- name: whisper-BASE-LORA-med
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Shamus/multimed_short
type: Shamus/multimed_short
metrics:
- type: wer
value: 21.47240659965864
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-BASE-LORA-med
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Shamus/multimed_short dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5848
- Wer: 21.4724
- Cer: 12.0240
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.2829 | 1.0 | 7077 | 0.6521 | 24.4961 | 14.2032 |
| 0.8621 | 2.0 | 14154 | 0.6147 | 24.9126 | 14.5952 |
| 0.3164 | 3.0 | 21231 | 0.5794 | 22.2598 | 12.4891 |
| 0.3039 | 4.0 | 28308 | 0.5678 | 22.0960 | 12.5164 |
| 0.5835 | 5.0 | 35385 | 0.5848 | 21.4724 | 12.0240 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1 |