File size: 2,187 Bytes
20bea13
 
de1f5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20bea13
 
de1f5d5
 
20bea13
de1f5d5
20bea13
de1f5d5
 
 
 
 
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
20bea13
de1f5d5
 
 
 
 
 
 
 
20bea13
de1f5d5
20bea13
de1f5d5
 
 
 
 
 
 
20bea13
 
de1f5d5
20bea13
de1f5d5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-base
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- Shamus/multimed_short
metrics:
- wer
model-index:
- name: whisper-BASE-LORA-med
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Shamus/multimed_short
      type: Shamus/multimed_short
    metrics:
    - type: wer
      value: 21.47240659965864
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-BASE-LORA-med

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Shamus/multimed_short dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5848
- Wer: 21.4724
- Cer: 12.0240

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     | Cer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.2829        | 1.0   | 7077  | 0.6521          | 24.4961 | 14.2032 |
| 0.8621        | 2.0   | 14154 | 0.6147          | 24.9126 | 14.5952 |
| 0.3164        | 3.0   | 21231 | 0.5794          | 22.2598 | 12.4891 |
| 0.3039        | 4.0   | 28308 | 0.5678          | 22.0960 | 12.5164 |
| 0.5835        | 5.0   | 35385 | 0.5848          | 21.4724 | 12.0240 |


### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1