--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - Shamus/multimed_short metrics: - wer model-index: - name: whisper-BASE-LORA-med results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Shamus/multimed_short type: Shamus/multimed_short metrics: - type: wer value: 21.47240659965864 name: Wer --- # whisper-BASE-LORA-med This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Shamus/multimed_short dataset. It achieves the following results on the evaluation set: - Loss: 0.5848 - Wer: 21.4724 - Cer: 12.0240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.2829 | 1.0 | 7077 | 0.6521 | 24.4961 | 14.2032 | | 0.8621 | 2.0 | 14154 | 0.6147 | 24.9126 | 14.5952 | | 0.3164 | 3.0 | 21231 | 0.5794 | 22.2598 | 12.4891 | | 0.3039 | 4.0 | 28308 | 0.5678 | 22.0960 | 12.5164 | | 0.5835 | 5.0 | 35385 | 0.5848 | 21.4724 | 12.0240 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1