File size: 2,248 Bytes
1669f3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0410_lrate10b32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate10b32
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4435
- Precisions: 0.8143
- Recall: 0.8300
- F-measure: 0.8201
- Accuracy: 0.9162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.6187 | 1.0 | 118 | 0.3807 | 0.8761 | 0.6803 | 0.6943 | 0.8771 |
| 0.3045 | 2.0 | 236 | 0.3297 | 0.7915 | 0.7331 | 0.7475 | 0.8966 |
| 0.1748 | 3.0 | 354 | 0.3503 | 0.7831 | 0.7466 | 0.7553 | 0.9005 |
| 0.1059 | 4.0 | 472 | 0.3670 | 0.8133 | 0.7784 | 0.7893 | 0.9086 |
| 0.0649 | 5.0 | 590 | 0.3926 | 0.7875 | 0.7973 | 0.7908 | 0.9053 |
| 0.0376 | 6.0 | 708 | 0.4213 | 0.7906 | 0.7922 | 0.7906 | 0.9082 |
| 0.0221 | 7.0 | 826 | 0.4435 | 0.8143 | 0.8300 | 0.8201 | 0.9162 |
| 0.014 | 8.0 | 944 | 0.4521 | 0.8170 | 0.8047 | 0.8090 | 0.9142 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|