File size: 2,212 Bytes
afe2c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: robbertfinetuned2408
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robbertfinetuned2408

This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3389
- Precision: 0.7133
- Recall: 0.7552
- F1: 0.7337
- Accuracy: 0.8993

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 236  | 0.4185          | 0.6648    | 0.6218 | 0.6426 | 0.8720   |
| No log        | 2.0   | 472  | 0.3389          | 0.7133    | 0.7552 | 0.7337 | 0.8993   |
| 0.4572        | 3.0   | 708  | 0.3503          | 0.7484    | 0.7646 | 0.7564 | 0.9046   |
| 0.4572        | 4.0   | 944  | 0.3875          | 0.7607    | 0.7652 | 0.7629 | 0.9062   |
| 0.1454        | 5.0   | 1180 | 0.4251          | 0.7854    | 0.7786 | 0.7820 | 0.9089   |
| 0.1454        | 6.0   | 1416 | 0.4230          | 0.7878    | 0.7920 | 0.7899 | 0.9152   |
| 0.0544        | 7.0   | 1652 | 0.4555          | 0.7983    | 0.7844 | 0.7913 | 0.9113   |
| 0.0544        | 8.0   | 1888 | 0.4679          | 0.7894    | 0.7821 | 0.7857 | 0.9120   |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3