{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79f1ae0fc0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f1ae0fc180>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f1ae0fc220>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f1ae0fc2c0>", "_build": "<function ActorCriticPolicy._build at 0x79f1ae0fc360>", "forward": "<function ActorCriticPolicy.forward at 0x79f1ae0fc400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f1ae0fc4a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f1ae0fc540>", "_predict": "<function ActorCriticPolicy._predict at 0x79f1ae0fc5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f1ae0fc680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f1ae0fc720>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f1ae0fc7c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f1ae02ee00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742123823329708390, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2mLz5c3Gi8EtCsOK4hF7rZ18q9G9ywuAAAgD8AAIA/M8L8vK7JqrrKT5C1bQHQsCBZQDpV/rE0AACAPwAAgD+NSoW9jZkkPuYvMj67SGq+9Yu0PBRzqD0AAAAAAAAAAOYuHL6pXjW8qoxEvNKjwrpmI6I9KgOgOwAAgD8AAIA/zd0sPtTGpLw1sYk7zSItup0LFr4J6gu7AACAPwAAgD8qTmu+nhYpP3qgFL53dBS/gmOAvmZj/z0AAAAAAAAAALNmLj7RC0c/wducPhrEHr9FaFo+LSNUPQAAAAAAAAAA4D0pvoPnObxMEYY7vo4KOumeqz2l99G6AACAPwAAgD9mX7k8FjCxP0qYQD9atde+7w+nvHKly70AAAAAAAAAABojwT2hplY++lAFvPU0kL6nXD49+z8jPAAAAAAAAAAAbZtTPqxArjy44VU4mxnVNoYtOz7WsYq3AACAPwAAgD8NPLy9WNqfP3qjEL/tjSO/H6h0vdpQhb4AAAAAAAAAAIBT2b367jY+NVwOPq+0Vr5r4bY8K+sXvQAAAAAAAAAAmiYePRBiqj5iKQ49vIXLvr6UHrz+bPU8AAAAAAAAAADmQLs9/KAnPYIAqL1KCZK+j9bIPJ52gjwAAAAAAAAAAGaxiD2wxqU+0PRzu883fL6hkWQ9EJ1NvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHATOBMBZISMAWyUS7iMAXSUR0CdwZ4MnZ00dX2UKGgGR0BxF6k8A7xNaAdLumgIR0Cdwhj4593KdX2UKGgGR0BwpZwBHTZyaAdL2mgIR0CdwpbcoH9ndX2UKGgGR0BwX8S+QEIPaAdLz2gIR0Cdw+GqPwNLdX2UKGgGR0BwytS4vvjPaAdLxmgIR0CdxKKIBRyfdX2UKGgGR0Byo/yhBZ6laAdL8WgIR0CdxU+cpb2UdX2UKGgGR0Bt529nK4hEaAdL52gIR0CdxY86V+qjdX2UKGgGR0ByU4l8gIQfaAdL12gIR0CdyDyi22G7dX2UKGgGR0BwsWyquKXOaAdL0WgIR0CdyhjAi3XqdX2UKGgGR0Bczi7wrlNlaAdN6ANoCEdAncpaWC2+f3V9lChoBkdAb+nxmTTvzGgHS8xoCEdAncqHs5XEInV9lChoBkdAcQauF6AvtmgHS+xoCEdAncy2E4//vXV9lChoBkdAcTYj1wo9cWgHS8BoCEdAnc2TN6gM+nV9lChoBkdAcMrXDm8ujGgHS+RoCEdAnc4/Gp++d3V9lChoBkdAcGJ/C66J7GgHS71oCEdAnc5Vl9SdfHV9lChoBkdAcWn2ycCo0mgHS+toCEdAndAivcJtznV9lChoBkdAYzd0f5k9U2gHTegDaAhHQJ3RHJPqLTB1fZQoaAZHQHMHT41xbStoB0v1aAhHQJ3SbwPRRdh1fZQoaAZHQHDz2R7qptJoB0vUaAhHQJ3SxG3F1jl1fZQoaAZHQG4nvW6K+BZoB0vVaAhHQJ3S68+Royt1fZQoaAZHQHC27Gm1pkBoB0vVaAhHQJ3UgWM0gr91fZQoaAZHQGzp0yxiXppoB00OAWgIR0Cd1JQE6kqMdX2UKGgGR0Bzjwt6HCXQaAdLwmgIR0Cd1Pj9n9NvdX2UKGgGR0BxVDC2tuDSaAdL32gIR0Cd1V0ngHeKdX2UKGgGR0ByptrEcbR4aAdNEAFoCEdAndeFfu1F6XV9lChoBkdAcjL8PWhAW2gHS/loCEdAndi2YBvJinV9lChoBkdAcXtDXOGCZmgHS8ZoCEdAndnOenQ6ZHV9lChoBkdAX3ZzltCRfWgHTegDaAhHQJ3aSUornT11fZQoaAZHQHGIgxSHdoFoB0u1aAhHQJ3a+Axzq8l1fZQoaAZHQF+bY1YQrc1oB03oA2gIR0Cd21RNATqTdX2UKGgGR0Bz1+lZX+2maAdNMgFoCEdAndvc8PnSv3V9lChoBkdAY6eXaakRBmgHTegDaAhHQJ3b+LP2PDJ1fZQoaAZHQHFkwnMMZxdoB00HAWgIR0Cd3ASThYNidX2UKGgGR0ByOQVqN6w/aAdNFwFoCEdAndw9OuaF23V9lChoBkdAcBYkXk5p8GgHS9poCEdAndw/SH/LknV9lChoBkdAcYzTOgQHzGgHS8ZoCEdAndxenEVFhHV9lChoBkdAcKHK+BYms2gHS+xoCEdAnd0EZ3s5XHV9lChoBkdAZIUNS619fGgHTegDaAhHQJ3eaX/o7mx1fZQoaAZHQHFfcTJyQxNoB0vbaAhHQJ3feJ79hql1fZQoaAZHQHIHM3l0YCRoB00FAWgIR0Cd37/lQuVYdX2UKGgGR0BhMLkKeCkHaAdN6ANoCEdAneCfWhAWznV9lChoBkdAclui4J/oaGgHS8loCEdAneCrfcer/HV9lChoBkdAcQaSZ0CA+mgHS91oCEdAneC7AP/aQHV9lChoBkdAcOxBfa6BiGgHS8FoCEdAneC4FFDv3XV9lChoBkdAcULp4KQaJmgHS7xoCEdAneFFkQPI4nV9lChoBkdAbj2YCQtBfWgHS8NoCEdAneFvMW43FXV9lChoBkdAcVhyfcvdumgHS9doCEdAneG5uZThpHV9lChoBkdAc2L6H0se4mgHS8xoCEdAneHDkIX0oXV9lChoBkdAcmFD/EOy3WgHS+BoCEdAneHQqy4WlHV9lChoBkdAZB1xjJ+2E2gHTegDaAhHQJ3iHO7g88t1fZQoaAZHQHGauoYNy5toB0vzaAhHQJ3iQcHWz4V1fZQoaAZHQHHAdqk/KQtoB0v4aAhHQJ3jIj4YaYN1fZQoaAZHQHKzkg0TDfpoB0vLaAhHQJ3jTHPu5SZ1fZQoaAZHQHHKKSHM2WJoB0u1aAhHQJ3jnLhaTwF1fZQoaAZHQG/bUmUnogVoB0vQaAhHQJ3kYlu3trt1fZQoaAZHQHEChcu8K5VoB0vHaAhHQJ3k5E1EVnF1fZQoaAZHQHAH0/jbSJFoB0vUaAhHQJ3lPE9+w1R1fZQoaAZHQHJA7Cm/FitoB0vlaAhHQJ3lj/EOy3V1fZQoaAZHQG7a0A1ejVRoB0vbaAhHQJ3l9u3trsV1fZQoaAZHQHLyK+FlCkZoB0vHaAhHQJ3mYtmL9/B1fZQoaAZHQHLUNoWYWtVoB00QAWgIR0Cd5qmdy1eCdX2UKGgGR0Bu6HitJWeZaAdL1GgIR0Cd5uANoakzdX2UKGgGR0BwzRyOq//OaAdNCwFoCEdAneehacI7eXV9lChoBkdAc32G6f8Mu2gHTRABaAhHQJ3nzXyy2QZ1fZQoaAZHQHFB4kVvddpoB0vbaAhHQJ3oIkeIVM51fZQoaAZHQHFfxxgiNbVoB0v3aAhHQJ3pAfNiYsx1fZQoaAZHQG/dyElE7XBoB0vNaAhHQJ3pQHB1s+F1fZQoaAZHQHAKMS5AhStoB0vHaAhHQJ3qBwo9cKR1fZQoaAZHQHFOAX/HYHxoB0vGaAhHQJ3qWjxkNF11fZQoaAZHQHGZNOqNp/RoB0vvaAhHQJ3qq07bL2Z1fZQoaAZHQHDkr5hz/6xoB0vjaAhHQJ3rmOR1X/51fZQoaAZHQG/bGE4//vRoB0vTaAhHQJ3rp+y7f511fZQoaAZHQHGcr3Cbc45oB0vZaAhHQJ3sG9nK4hF1fZQoaAZHQHA+/Aj6eoVoB0vVaAhHQJ3sPMibDuV1fZQoaAZHQG2afq5byH5oB0vHaAhHQJ3soeV9nbt1fZQoaAZHQG8Utjslb/xoB0vEaAhHQJ3sv62v0RR1fZQoaAZHQHGJ832mHgxoB0vWaAhHQJ3tiiaiKzl1fZQoaAZHQHNY/Ot4iX9oB0vJaAhHQJ3uYTbnHNp1fZQoaAZHQHHAGlyimEZoB0v3aAhHQJ3vZUDMeOp1fZQoaAZHQG/faPS2H+JoB0vMaAhHQJ3vrqiXY151fZQoaAZHQHEoPlhgE2ZoB0vZaAhHQJ3vsdS2php1fZQoaAZHQHKZo4Qz1sdoB0vRaAhHQJ3wHonrpq11fZQoaAZHQHMCGWMS9M9oB0vBaAhHQJ3wnG8274B1fZQoaAZHQHGPbj94u9RoB0veaAhHQJ3xWQfZElV1fZQoaAZHQG557O/tY0VoB0vOaAhHQJ3xcnmaH9F1fZQoaAZHQHFI25H3DeloB0vgaAhHQJ3yD9hqj8F1fZQoaAZHQHDmiExqO95oB0viaAhHQJ3yisKb8WN1fZQoaAZHQHIbtGAkLQZoB0vVaAhHQJ3zLNQj2SN1fZQoaAZHQGWPygwoLG9oB03oA2gIR0Cd82MkyDZldX2UKGgGR0BzmuN4qwyJaAdL1WgIR0Cd9A12JSBLdX2UKGgGR0BwpYkiUxEfaAdLx2gIR0Cd9PK/20zCdX2UKGgGR0Bu08vIwM6SaAdL02gIR0Cd9U0u14PgdX2UKGgGR0BxiK3uuzQeaAdL5GgIR0Cd9XXumaYvdX2UKGgGR0Bxhv30wrUcaAdL3WgIR0Cd9gfnwG4adX2UKGgGR0Bv2AV45cTraAdLxWgIR0Cd9uwYLsrvdX2UKGgGR0Bw6U3AEdNnaAdL6GgIR0Cd90G1hLGrdX2UKGgGR0BxDZGKAJ9iaAdL12gIR0Cd987EHdGidX2UKGgGR0Bvus+HJtBOaAdL1WgIR0Cd+JG96C17dX2UKGgGR0Bw3NVBD5TIaAdLv2gIR0Cd+Z6d1+y7dX2UKGgGR0Buu1wDNhVmaAdL0mgIR0Cd+g/5ckdFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |